Early and Late Onset Side Effects of Photodynamic Therapy
Abstract
:1. Introduction
2. Early Onset Side Effects
2.1. Pain
2.2. LSRs
2.3. Urticaria
2.4. Contact Dermatitis
2.5. Immunosuppression
2.6. Miscellanea
3. Late Onset Side Effects
3.1. Pigmentary Changes and Scarring
3.2. Bullous Pemphigoid
3.3. Carcinogenicity
4. Conclusions
Conflicts of Interest
References
- Morton, C.; Szeimies, R.M.; Sidoroff, A.; Wennberg, A.M.; Basset-Seguin, N.; Calzavara-Pinton, P.; Gilaberte, Y.; Hofbauer, G.; Hunger, R.; Karrer, S.; et al. European Dermatology Forum. European Dermatology Forum Guidelines on topical photodynamic therapy. Eur. J. Dermatol. 2015, 25, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Borgia, F.; Saitta, C.; Vaccaro, M.; Franzè, M.S.; Lentini, M.; Cannavò, S.P. Nodular-cystic eruption in course of sorafenib administration for hepatocarcinoma: An unconventional skin reaction requiring unconventional treatment. Int. J. Immunopathol. Pharmacol. 2017, 30, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Borgia, F.; Giuffrida, R.; Vaccaro, M.; Lentini, M.; Cannavò, S.P. Photodynamic therapy in lupus miliaris disseminatus faciei’s scars. Dermatol. Ther. 2016, 29, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Borgia, F.; Vaccaro, M.; Foti, A.; Giuffrida, R.; Cannavò, S.P. Zoon’s balanitis successfully treated with photodynamic therapy: Case report and literature review. Photodiagn. Photodyn. Ther. 2016, 13, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Borgia, F.; Vaccaro, M.; Cantavenera, L.G.; Aragona, E.; Cannavò, S.P. Ulcerative necrobiosis lipoidica successfully treated with photodynamic therapy: Case report and literature review. Photodiagn. Photodyn. Ther. 2014, 11, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.; Bendsoe, N.; Klinteberg, C.A.; Enejder, A.M.; Andersson-Engels, S.; Svanberg, S.; Svanberg, K. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: Results of a phase III clinical trial. Br. J. Dermatol. 2001, 144, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Tierney, E.P.; Eide, M.J.; Jacobsen, G.; Ozog, D. Photodynamic therapy for actinic keratoses: Survey of patient perceptions of treatment satisfaction and outcomes. J. Cosmet. Laser Ther. 2008, 10, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Salmon, R. Field treatment of facial and scalp actinic keratoses with photodynamic therapy: Survey of patient perceptions of treatment satisfaction and outcomes. Australas. J. Dermatol. 2011, 52, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Valentine, R.; Ibbotson, S.H.; Brown, T.A.; Wood, K.; Moseley, H. A quantitative comparison of 5-aminolaevulinic acid and methyl aminolevulinate-induced fluorescence, photobleaching and pain during photodynamic therapy. Photochem. Photobiol. 2011, 87, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Borroni, R.G.; Carugno, A.; Rivetti, N.; Arbustini, E.; Brazzelli, V. Risk of acute postoperative hypertension after topical photodynamic therapy for non-melanoma skin cancer. Photodermatol. Photoimmunol. Photomed. 2013, 29, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Gholam, P.; Kroehl, V.; Enk, A.H. Dermatology life quality index and side effects after topical photodynamic therapy of actinic keratosis. Dermatology 2013, 226, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Middelburg, T.A.; Nijsten, T.; Neumann, M.H.; de Haas, E.R.; Robinson, D.J. Red light ALA-PDT for large areas of actinic keratosis is limited by severe pain and patient dissatisfaction. Photodermatol. Photoimmunol. Photomed. 2013, 29, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Mikolajewska, P.; Iani, V.; Juzeniene, A.; Moan, J. Topical aminolaevulinic acid- and aminolaevulinic acid methyl ester-based photodynamic therapy with red and violet light: Influence of wavelength on pain and erythema. Br. J. Dermatol. 2009, 161, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Mahmound, B.H.; Hexsel, C.L.; Hamzavi, I.; Lim, H.W. Effects of visible light on the skin. Photochem. Photobiol. Sci. 2008, 84, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Kasche, A.; Luderschmidt, S.; Ring, J.; Hein, R. Photodynamic therapy induces less pain in patients treated with methyl aminolevulinate compared to aminolevulinic acid. J. Drugs Dermatol. 2006, 5, 353–356. [Google Scholar] [PubMed]
- Hambly, R.A.; Mansoor, N.; Quinlan, C.; Shah, Z.; Lenane, P.; Ralph, N.; Moloney, F.J. Factors predicting pain and effect of oral analgesia in topical photodynamic therapy. Photodermatol. Photoimmunol. Photomed. 2017, 33, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Halldin, C.B.; Gillstedt, M.; Paoli, J.; Wennberg, A.M.; Gonzalez, H. Predictors of pain associated with photodynamic therapy: A retrospective study of 658 treatments. Acta Derm. Venereol. 2011, 91, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Virgili, A.; Osti, F.; Maranini, C.; Corazza, M. Photodynamic therapy: Parameters predictive of pain. Br. J. Dermatol. 2010, 162, 460–461. [Google Scholar] [CrossRef] [PubMed]
- Arits, A.H.; Van de Weert, M.M.; Nelemans, P.J.; Kelleners-Smeets, N.W. Pain during topical photodynamic therapy: Uncomfortable and unpredictable. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 1452–1457. [Google Scholar] [CrossRef] [PubMed]
- Steinbauer, J.M.; Schreml, S.; Babilas, P.; Zeman, F.; Karrer, S.; Landthaler, M.; Szeimies, R.M. Topical photodynamic therapy with porphyrin precursors-assessment of treatment—Associated pain in a retrospective study. Photochem. Photobiol. Sci. 2009, 8, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Gaál, M.; Otrosinka, S.; Baltás, E.; Ocsai, H.; Oláh, J.; Kemény, L.; Gyulai, R. Photodynamic therapy of non-melanoma skin cancer with methyl aminolaevulinate is associated with less pain than with aminolaevulinic acid. Acta Derm. Venereol. 2012, 92, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Ibbotson, S.H.; Valentine, R.; Hearn, R. Is the pain of topical photodynamic therapy with methyl aminolevulinate any different from that with 5-aminolaevulinic acid? Photodermatol. Photoimmunol. Photomed. 2012, 28, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Yazdanyar, S.; Zarchi, K.; Jemec, G.B.E. Pain during topical photodynamic therapy—Comparing methyl aminolevulinate (Metvix®) to aminolaevulinic acid (Ameluz®); an intra-individual clinical study. Photodiagn. Photodyn. Ther. 2017, 20, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Waters, A.J.; Ibbotson, S.H. Parameters associated with severe pain during photodynamic therapy: Results of a large Scottish series. Br. J. Dermatol. 2011, 165, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Attili, S.K.; Dawe, R.; Ibbotson, S. A review of pain experienced during topical photodynamic therapy—Our experience in Dundee. Photodiagn. Photodyn. Ther. 2011, 8, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Piffaretti, F.; Zellweger, M.; Kasraee, B.; Barge, J.; Salomon, D.; van den Bergh, H.; Wagnières, G. Correlation between protoporphyrin IX fluorescence intensity, photobleaching, pain and clinical outcome of actinic keratosis treated by photodynamic therapy. Dermatology 2013, 227, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Kanick, S.C.; Davis, S.C.; Zhao, Y.; Sheehan, K.L.; Hasan, T.; Maytin, E.V.; Pogue, B.W.; Chapman, M.S. Pre-treatment protoporphyrin IX concentration in actinic keratosis lesions may be a predictive biomarker of response to aminolevulinic-acid based photodynamic therapy. Photodiagn. Photodyn. Ther. 2015, 12, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Wiegell, S.R.; Skiveren, P.A.; Philipsen, P.A.; Wulf, H.C. Pain during photodynamic therapy is associated with protoporphyrin IX fluorescence and fluence rate. Br. J. Dermatol. 2008, 158, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, C.; Stenquist, B.; Rosdahl, I.; Ros, A.M.; Synnerstad, I.; Karlsson, M.; Gudmundson, F.; Ericson, M.B.; Larkö, O.; Wennberg, A.M. Important factors for pain during photodynamic therapy for actinic keratosis. Acta Derm. Venereol. 2006, 86, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Braathen, L.R.; Paredes, B.E.; Saksela, O.; Fritsch, C.; Gardlo, K.; Morken, T.; Frølich, K.W.; Warloe, T.; Solér, A.M.; Ros, A.M. Short incubation with methyl aminolevulinate for photodynamic therapy of actinic keratoses. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Touma, D.; Yaar, M.; Whitehead, S.; Konnikov, N.; Gilchrest, B.A. A trial of short incubation, broad-area photodynamic therapy for facial actinic keratoses and diffuse photodamage. Arch. Dermatol. 2004, 140, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lerche, C.M.; Fabricius, S.; Philipsen, P.A.; Wulf, H.C. Correlation between treatment time, photobleaching, inflammation and pain after photodynamic therapy with methyl aminolevulinate on tape-stripped skin in healthy volunteers. Photochem. Photobiol. Sci. 2015, 14, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Shahzidi, S.; Cunderlíková, B.; Więdłocha, A.; Zhen, Y.; Vasovič, V.; Nesland, J.M.; Peng, Q. Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochem. Photobiol. Sci. 2011, 10, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, W.J.; Paquette, A.D.; Keymel, K.R.; Foster, T.H.; Oseroff, A.R. Irradiance-dependent photobleaching and pain in delta-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas. Clin. Cancer Res. 2008, 14, 4475–4483. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Sotiriou, E.; Panagiotidou, D.; Lefaki, I.; Goussi, C.; Ioannides, D. The impact of different fluence rates on pain and clinical outcome in patients with actinic keratoses treated with photodynamic therapy. Photodermatol. Photoimmunol. Photomed. 2011, 27, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Ibbotson, S.H. Irradiance is an important determinant of pain experienced during topical photodynamic therapy. J. Am. Acad. Dermatol. 2011, 65, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Barge, J.; Glanzmann, T.; Zellweger, M.; Salomon, D.; van den Bergh, H.; Wagnières, G. Correlations between photoactivable porphyrins’ fluorescence, erythema and the pain induced by PDT on normal skin using ALA-derivatives. Photodiagn. Photodyn. Ther. 2013, 10, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Radakovic-Fijan, S.; Blecha-Thalhammer, U.; Kittler, H.; Hönigsmann, H.; Tanew, A. Efficacy of 3 different light doses in the treatment of actinic keratosis with 5-aminolevulinic acid photodynamic therapy: A randomized, observer-blinded, intrapatient, comparison study. J. Am. Acad. Dermatol. 2005, 53, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, L.; Zhang, Y.F.; Zhou, Q.; Zheng, J.; Szeimies, R.M.; Wang, X.L. Gain with no pain? Pain management in dermatological photodynamic therapy. Br. J. Dermatol. 2017, 177, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Wiegell, S.R.; Wulf, H.C.; Szeimies, R.M.; Basset-Seguin, N.; Bissonnette, R.; Gerritsen, M.J.; Gilaberte, Y.; Calzavara-Pinton, P.; Morton, C.A.; Sidoroff, A.; et al. Daylight photodynamic therapy for actinic keratosis: An international consensus: International Society for Photodynamic Therapy in Dermatology. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Fargnoli, M.C.; Ibbotson, S.H.; Hunger, R.E.; Rostain, G.; Gaastra, M.-T.W.; Eibenschutz, L.; Cantisani, C.; Venema, A.W.; Medina, S.; Kerrouche, N.; et al. Patient and physician satisfaction in an observational study with methyl aminolevulinate daylight-photodynamic therapy in the treatment of multiple actinic keratoses of the face and scalp in 6 European countries. J. Eur. Acad. Dermatol. Venereol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Grapengiesser, S.; Ericson, M.; Gudmundsson, F.; Larkö, O.; Rosén, A.; Wennberg, A.M. Pain caused by photodynamic therapy of skin cancer. Clin. Exp. Dermatol. 2002, 27, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Lindeburg, K.E.; Brogaard, H.M.; Jemec, G.B. Pain and photodynamic therapy. Dermatology 2007, 215, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Skiveren, J.; Haedersdal, M.; Philipsen, P.A.; Wiegell, S.R.; Wulf, H.C. Morphine gel 0.3% does not relieve pain during topical photodynamic therapy: A randomized, double-blind, placebo-controlled study. Acta Derm. Venereol. 2006, 86, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Borelli, C.; Herzinger, T.; Merk, K.; Berking, C.; Kunte, C.; Plewig, G.; Degitz, K. Effect of subcutaneous infiltration anesthesia on pain in photodynamic therapy: A controlled open pilot trial. Dermatol. Surg. 2007, 33, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Fink, C.; Enk, A.; Gholam, P. Photodynamic therapy—Aspects of pain management. J. Dtsch. Dermatol. Ges. 2015, 13, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ibbotson, S.H. Adverse effects of topical photodynamic therapy. Photodermatol. Photoimmunol. Photomed. 2011, 27, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, P. Side effects of topical photodynamic therapy. Hautarzt 2007, 58, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Esmann, S.; Jemec, G.B. Patients’ perceptions of topical treatments of actinic keratosis. J. Dermatol. Treat. 2014, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Brooke, R.C.; Sinha, A.; Sidhu, M.K.; Watson, R.E.; Church, M.K.; Friedmann, P.S.; Clough, G.F.; Rhodes, L.E. Histamine is released following aminolevulinic acid-photodynamic therapy of human skin and mediates an aminolevulinic acid dose-related immediate inflammatory response. J. Investig. Dermatol. 2006, 126, 2296–2301. [Google Scholar] [CrossRef] [PubMed]
- Vanaman Wilson, M.J.; Jones, I.T.; Wu, D.C.; Goldman, M.P. A randomized, double-blind, placebo-controlled clinical trial evaluating the role of systemic antihistamine therapy for the reduction of adverse effects associated with topical 5-aminolevulinic acid photodynamic therapy. Lasers Surg. Med. 2017, 49, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Brooke, R.C.; Sidhu, M.; Sinha, A.; Watson, R.E.; Friedmann, P.S.; Clough, G.F.; Rhodes, L.E. Prostaglandin E2 and nitric oxide mediate the acute inflammatory (erythemal) response to topical 5-aminolaevulinic acid therapy in human skin. Br. J. Dermatol. 2013, 169, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Wiegell, S.R.; Haedersdal, M.; Eriksen, P.; Wulf, H.C. Photodynamic therapy of actinic keratoses with 8% and 16% methyl aminolaevulinate and home-based daylight exposure: A double-blinded randomized clinical trial. Br. J. Dermatol. 2009, 160, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, S.; Lerche, C.M.; Philipsen, P.A.; Wulf, H.C. The relation between methyl aminolevulinate concentration and inflammation after photodynamic therapy in healthy volunteers. Photochem. Photobiol. Sci. 2013, 12, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wiegell, S.R.; Petersen, B.; Wulf, H.C. Topical corticosteroid reduces inflammation without compromising the efficacy of photodynamic therapy for actinic keratoses: A randomized clinical trial. Br. J. Dermatol. 2014, 171, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.; Wiegell, S.R.; Wulf, H.C. Light protection of the skin after photodynamic therapy reduces inflammation: An unblinded randomized controlled study. Br. J. Dermatol. 2014, 171, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, S.; Nakano, H.; Nishizawa, A.; Kaneko, T.; Harada, K.; Hanada, K. A case of photocontact urticaria induced by photodynamic therapy with topical 5-aminolaevulinic acid. J. Dermatol. 2005, 32, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.C.; Ferguson, J.; Ibbotson, S.H. Acute phototoxicity with urticarial features during topical 5-aminolaevulinic acid photodynamic therapy. Clin. Exp. Dermatol. 2007, 32, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Kaae, J.; Philipsen, P.A.; Haedersdal, M.; Wulf, H.C. Immediate whealing urticaria in red light exposed areas during photodynamic therapy. Acta Derm. Venereol. 2008, 88, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Miguélez, A.; Martín-Santiago, A.; Bauzá, A.; Gilaberte, Y. Urticaria-like reaction secondary to photodynamic therapy in 2 pediatric patients. Actas Dermosifiliogr. 2013, 104, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Wulf, H.C.; Philipsen, P. Allergic contact dermatitis to 5-aminolaevulinic acid methylester but not to 5-aminolaevulinic acid after photodynamic therapy. Br. J. Dermatol. 2004, 150, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Harries, M.J.; Street, G.; Gilmour, E.; Rhodes, L.E.; Beck, M.H. Allergic contact dermatitis to methyl aminolevulinate (Metvix) cream used in photodynamic therapy. Photodermatol. Photoimmunol. Photomed. 2007, 23, 35–36. [Google Scholar] [CrossRef] [PubMed]
- Hohwy, T.; Andersen, K.E.; Sølvsten, H.; Sommerlund, M. Allergic contact dermatitis to methyl aminolevulinate after photodynamic therapy in 9 patients. Contact Dermat. 2007, 57, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Korshøj, S.; Sølvsten, H.; Erlandsen, M.; Sommerlund, M. Frequency of sensitization to methyl aminolaevulinate after photodynamic therapy. Contact Dermat. 2009, 60, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Nieto, M.A.; Olivares, M.; Sánchez-Herreros, C.; Belmar, P.; de Eusebio, E. Occupational allergic contact dermatitis from methyl aminolevulinate. Dermatitis 2011, 22, 216–219. [Google Scholar] [CrossRef]
- Gniazdowska, B.; Ruëff, F.; Hillemanns, P.; Przybilla, B. Allergic contact dermatitis from delta-aminolevulinic acid used for photodynamic therapy. Contact Dermat. 1998, 38, 348–349. [Google Scholar] [CrossRef]
- Pastor-Nieto, M.A.; Jiménez-Blázquez, E.; Sánchez-Herreros, C.; Belmar-Flores, P. Allergic contact dermatitis caused by methyl aminolevulinate. Actas Dermosifiliogr. 2013, 104, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Al Malki, A.; Marguery, M.C.; Giordano-Labadie, F.; Konstantinou, M.P.; Mokeddem, L.; Lamant, L.; Paul, C.; Maza, A.; Mazereeuw-Hautier, J. Systemic allergic contact dermatitis caused by methyl aminolaevulinate in a patient with keratosis-ichthyosis-deafness syndrome. Contact Dermat. 2017, 76, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Mroz, P.; Hamblin, M.R. The immunosuppressive side of PDT. Photochem. Photobiol. Sci. 2011, 10, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M. PDT-associated host response and its role in the therapy outcome. Lasers Surg. Med. 2006, 38, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Cecic, L.; Stott, B.; Korbelik, M. Acute phase response-associated systemic neutrophil mobilization in mice bearing tumors treated by photodynamic therapy. Int. Immunopharmacol. 2006, 6, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Stott, B.; Korbelik, M. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy. Cancer Immunol. Immunother. 2007, 56, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Mroz, P.; Szokalska, A.; Wu, M.X.; Hamblin, M.R. Photodynamic Therapy of Tumors Can Lead to Development of Systemic Antigen-Specific Immune Response. PLoS ONE 2010, 5, e15194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, Y.J.; Damian, D.L. Topical photodynamic therapy is immunosuppressive in humans. Br. J. Dermatol. 2010, 162, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, G.; Farrar, M.D.; White, R.D.; Sorefan, N.B.; Wright, K.P.; McLean, K.; Andrew, S.; Watson, R.E.; Rhodes, L.E. Topical aminolaevulinic acid-photodynamic therapy produces an inflammatory infiltrate but reduces Langerhans cells in healthy human skin in vivo. Br. J. Dermatol. 2011, 165, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, G.; Farrar, M.D.; Cotterell, L.; Andrew, S.; Tosca, A.D.; Watson, R.B.E.; Rhodes, L.E. Topical photodynamic therapy significantly reduces epidermal Langerhans cells during clinical treatment of basal cell carcinoma. Br. J. Dermatol. 2012, 166, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Thanos, S.M.; Halliday, G.M.; Damian, D.L. Nicotinamide reduces photodynamic therapy-induced immunosuppression in humans. Br. J. Dermatol. 2012, 167, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Frost, G.A.; Halliday, G.M.; Damian, D.L. Photodynamic therapy-induced immunosuppression in humans is prevented by reducing the rate of light delivery. J. Investig. Dermatol. 2011, 131, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Halliday, G.M.; Surjana, D.; Damian, D.L. Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem. Photobiol. 2010, 86, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, C.M.; Hatfield, K.; Cognetta, A.B. Cellulitis as a postprocedural complication of topical 5-aminolevulinic acid photodynamic therapy in the treatment of actinic keratosis. J. Drugs Dermatol. 2007, 6, 544–548. [Google Scholar] [PubMed]
- Guarneri, C.; Vaccaro, M. Erosive pustular dermatosis of the scalp following topical methylaminolaevulinate photodynamic therapy. J. Am. Acad. Dermatol. 2009, 60, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Rongioletti, F.; Chinazzo, C.; Javor, S. Erosive pustular dermatosis of the scalp induced by ingenol mebutate. J. Eur. Acad. Dermatol. Venereol. 2016, 30, e110–e111. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, M.; Borgia, F.; Gasco, L.; Cannavò, S.P. Erosive pustular dermatosis of the scalp following topical ingenol mebutate for actinic keratoses. Dermatol. Ther. 2017, 30, e12521. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Skak, K.; Schroder, K.; Schroder, W.A.; Boyle, G.M.; Pierce, C.J.; Suhrbier, A. IL-1 Contributes to the Anti-Cancer Efficacy of Ingenol Mebutate. PLoS ONE 2016, 21, e0153975. [Google Scholar] [CrossRef] [PubMed]
- Gemigniani, F.; Bodet, D.; González-Llavona, B.; García-Patos, V. Peripheral facial palsy after topical photodynamic therapy for facial actinic keratoses. J. Am. Acad. Dermatol. 2014, 71, e90–e92. [Google Scholar] [CrossRef] [PubMed]
- Moseley, H.; Ibbotson, S.; Woods, J.; Brancaleon, L.; Lesar, A.; Goodman, C.; Ferguson, J. Clinical and research applications of photodynamic therapy in dermatology: Experience of the Scottish PDT Centre. Lasers Surg. Med. 2006, 38, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Rakvit, P.; Kerr, A.C.; Ibbotson, S.H. Localized bullous pemphigoid induced by photodynamic therapy. Photodermatol. Photoimmunol. Photomed. 2011, 27, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Kluger, N.; Jeskanen, L.; Höök-Nikanne, J. Photodynamic therapy-triggered bullous pemphigoid. Int. J. Dermatol. 2017, 56, e41–e42. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.; Holt, P.J.; Anstey, A.V. Erythroplasia of Queyrat treated by topical aminolaevulinic acid photodynamic therapy: A cautionary tale. Br. J. Dermatol. 2000, 142, 825–826. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, Y.G.; Kennedy, C.; Wolterbeek, R.; Collen, A.F.; Willemze, R.; Bavinck, J.N.B. Photodynamic therapy does not prevent cutaneous squamous-cell carcinoma in organ-transplant recipients: Results of a randomized-controlled trial. J. Investig. Dermatol. 2006, 126, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Maydan, E.; Nootheti, P.K.; Goldman, M.P. Development of a keratoacanthoma after topical photodynamic therapy with 5-aminolevulinic acid. J. Drugs Dermatol. 2006, 5, 804–806. [Google Scholar] [PubMed]
- Calista, D. Development of squamous cell carcinoma after photodynamic therapy with methyl aminoleuvulinate. Br. J. Dermatol. 2014, 171, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.M.; Theng, T.S.; Lim, K.S.; Tan, W.P. Rapid development of squamous cell carcinoma after photodynamic therapy. Dermatol. Surg. 2014, 40, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Bardazzi, F.; Loi, C.; Magnano, M.; Burtica, E.C.; Giordano, F.; Patrizi, A. Methyl-aminolevulinic acid photodynamic therapy for actinic keratoses: A useful treatment or a risk factor? A retrospective study. J. Dermatol. Treat. 2015, 26, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Gogia, R.; Grekin, R.C.; Shinkai, K. Eruptive Self-Resolving Keratoacanthomas Developing After Treatment with Photodynamic Therapy and Microdermabrasion. Dermatol. Surg. 2013, 39, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.; Groff, S.; Kowalewski, C. Eruptive Keratoacanthomas after Photodynamic Therapy. Dermatol. Surg. 2015, 41, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Ratour-Bigot, C.; Chemidling, M.; Montlahuc, C.; Abirached, G.; Madjlessi, N.; Bullier, C.; Battistella, M.; Bagot, M.; Lebbe, C.; Basset-Seguin, N. Squamous Cell Carcinoma Following Photodynamic Therapy for Cutaneous Bowen’s Disease in a Series of 105 Patients. Acta Derm. Venereol. 2016, 96, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Fink-Puches, R.; Reimann-Weber, A.; Kerl, H. Development of malignant melanoma after repeated topical photodynamic therapy with 5-aminolevulinic acid at the exposed site. Dermatology 1997, 194, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Schreml, S.; Gantner, S.; Steinbauer, J.; Babilas, P.; Landthaler, M.; Szeimies, R.M. Melanoma promotion after photodynamic therapy of a suspected Bowen’s disease lesion. Dermatology 2009, 219, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Kerl, H. Photodynamic therapy in patient with xeroderma pigmentosum. Lancet 1991, 337, 1613–1614. [Google Scholar] [CrossRef]
- Giri, U.; Sharma, S.D.; Abdulla, M.; Athar, M. Evidence that in situ generated reactive oxygen species act as a potent stage I tumor promoter in mouse skin. Biochem. Biophys. Res. Commun. 1995, 209, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Kick, G.; Messer, G.; Plewig, G.; Kind, P.; Goetz, A.E. Strong and prolonged induction of c-jun and c-fos proto-oncogenes by photodynamic therapy. Br. J. Cancer 1996, 74, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Giri, U.; Iqbal, M.; Athar, M. Porphyrin-mediated photosensitization has a weak tumor promoting activity in mouse skin: Possible role of in situ-generated reactive oxygen species. Carcinogenesis 1996, 17, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Miyazu, Y.M.; Miyazawa, T.; Hiyama, K.; Kurimoto, N.; Iwamoto, Y.; Matsuura, H.; Kanoh, K.; Kohno, N.; Nishiyama, M.; Hiyama, E. Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer. Cancer Res. 2005, 65, 9623–9627. [Google Scholar] [CrossRef] [PubMed]
- Gilaberte, Y.; Milla, L.; Salazar, N.; Vera-Alvarez, J.; Kourani, O.; Damian, A.; Rivarola, V.; Roca, M.J.; Espada, J.; González, S.; Juarranz, A. Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy. J. Investig. Dermatol. 2014, 134, 2428–2437. [Google Scholar] [CrossRef] [PubMed]
- Brabender, J.; Danenberg, K.D.; Metzger, R.; Schneider, P.M.; Park, J.; Salonga, D.; Hölscher, A.H.; Danenberg, P.V. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin. Cancer Res. 2001, 7, 1850–1855. [Google Scholar] [PubMed]
- Shimizu, T.; Izumi, H.; Oga, A.; Furumoto, H.; Murakami, T.; Ofuji, R.; Muto, M.; Sasaki, K. Epidermal growth factor receptor overexpression and genetic aberrations in metastatic squamous-cell carcinoma of the skin. Dermatology 2001, 202, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Alao, J.P. The regulation of cyclin D1 degradation: Roles in cancer development and the potential for therapeutic invention. Mol. Cancer 2007, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Moreno Romero, J.A.; Campoy, A.; Perez, N.; Garcia, F.; Grimalt, R. Rapidly-growing squamous cell carcinoma shortly after treatment with ingenol mebutate for actinic keratoses: Report of two cases. Br. J. Dermatol. 2015, 173, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Freiberger, S.N.; Cheng, P.F.; Iotzova-Weiss, G.; Neu, J.; Liu, Q.; Dziunycz, P.; Zibert, J.R.; Dummer, R.; Skak, K.; Levesque, M.P.; et al. Ingenol Mebutate Signals via PKC/MEK/ERK in Keratinocytes and Induces Interleukin Decoy Receptors IL1R2 and IL13RA2. Mol. Cancer Ther. 2015, 14, 2132–2142. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, V.; Brunetti, G.; Puca, R.V.; Ruocco, E. The immunocompromised district: A unifying concept for lymphoedematous, herpes-infected and otherwise damaged sites. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1364–1373. [Google Scholar] [CrossRef] [PubMed]
- Caccavale, S.; Kannangara, A.P.; Ruocco, E. The immunocompromised cutaneous district and the necessity of a new classification of its disparate causes. Indian J. Dermatol. Venereol. Leprol. 2016, 82, 227–229. [Google Scholar] [CrossRef] [PubMed]
Reference | Patients Treated | Lesions Treated | Topical Photosensitizer | Site of Treatment | Sessions | Time between PDT and Onset of Skin Cancer | Type of Skin Cancer Observed during Follow-Up after PDT |
---|---|---|---|---|---|---|---|
Case series | |||||||
Bardazzi et al. (2015) [94] | 357 | AKs | ALA | Face, scalp, chest and hands | 1 for 10 patients; 2 for 3 patients; 3 for 4 patients 3 | 7 months (mean time) 3 | 17 Invasive SCCs + 7 BCCs and BD |
Ratour-Bigot et al. (2016) [97] | 105 | BD | MAL | Head, neck, limbs, trunk | 4 (mean) | 6 months (mean time) | 16 Invasive SCCs |
De Graaf et al. (2006) [90] | 40 | None 1 | ALA | Forearm and hand | Not specified | During a two years follow-up | 15 invasive SCC in 9 patients |
Calista (2014) [92] | 15 | AKs | MAL | Scalp, forehead and ears | 2 | 6 months | 5 Invasive SCCs |
Case studies | |||||||
Liang et al. (2014) [93] | 2 | BD | MAL | Right temple, chest | 2 | 2 months (right temple), 4 months (chest) | Invasive SCC |
Wolf et al. (1997) [98] | 1 | Solar keratoses and SCCs | ALA | Scalp | 7 | 6 months | Melanoma (Clark level II; Breslow index 0.4 mm) |
Varma et al. (2000) [89] | 1 | EQ | ALA | Glans penis | 4 | 4 months | Invasive SCC |
Maydan et al. (2006) [91] | 1 | AKs | ALA | Face | N/A | N/A | Keratoacanthoma |
Schreml (2009) [99] | 1 | BD | Not reported | Right check | 1 | 2 months | Melanoma (Clark level III; Breslow index 0.4 mm) |
Ibbotson et al. (2011) [43] | 1 | BD | Not reported | Periocular | Not reported | Short interval, not better defined | Invasive SCC |
Gogia et al. (2013) [95] | 1 | AKs | ALA 2 | Face | 1 | 3 weeks | Eruptive keratoacanthomas |
Ramirez et al. (2015) [96] | 1 | AKs | ALA | Forearms | Not reported | 3 weeks | Eruptive keratoacanthomas |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgia, F.; Giuffrida, R.; Caradonna, E.; Vaccaro, M.; Guarneri, F.; Cannavò, S.P. Early and Late Onset Side Effects of Photodynamic Therapy. Biomedicines 2018, 6, 12. https://doi.org/10.3390/biomedicines6010012
Borgia F, Giuffrida R, Caradonna E, Vaccaro M, Guarneri F, Cannavò SP. Early and Late Onset Side Effects of Photodynamic Therapy. Biomedicines. 2018; 6(1):12. https://doi.org/10.3390/biomedicines6010012
Chicago/Turabian StyleBorgia, Francesco, Roberta Giuffrida, Emanuela Caradonna, Mario Vaccaro, Fabrizio Guarneri, and Serafinella P. Cannavò. 2018. "Early and Late Onset Side Effects of Photodynamic Therapy" Biomedicines 6, no. 1: 12. https://doi.org/10.3390/biomedicines6010012