Possible Uses of Plants of the Genus Asphodelus in Oral Medicine
Abstract
:1. Introduction
2. Materials and Methods
- The inclusion criteria applied for the quantitative analysis are to include all those studies that spoke of asphodel in the medical field.
- The exclusion criteria are to exclude all those studies that do not deal with asphodel for a potential use of its metabolites in the field of medicine and oral diseases, or for the diseases that affect the maxillofacial district.
3. Results
4. Discussion
4.1. Possible Uses of plants of the Genus Asphodelus in Oral Medicine
4.1.1. Anticancer, Antioxidant, and Anti-Inflammatory Properties
4.1.2. Antiviral, Antifungal, and Antibacterial Properties
5. Conclusions
- As an anti-inflammatory aimed at inflammatory diseases of the oral cavity and skin;
- Anti-acne due to its inhibitory activity toward Propionibacterium acnes;
- As an antibacterial agent for stomatitis and bacterial inflammation (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pnemoniae, and Pseudomonas aeruginosa);
- As antiviral (HSV1) and anti-protozoa (leishmaniosis);
- In the treatment of oral candidiasis for its antifungal properties;
- In the treatment of neoplasms (cytotoxic action directed toward melanoma cells, in vitro studies);
- As an antioxidant.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10, 1615–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezghi, M.; Fahimi, S.; Zakerin, S. The most frequent herbs proposed by iranian traditional medicine for alopecia areata. Iran. J. Med. Sci. 2016, 41, S69. [Google Scholar] [PubMed]
- Nelson, K.; Lyles, J.T.; Li, T.; Saitta, A.; Addie-Noye, E.; Tyler, P.; Quave, C.L. Anti-acne activity of italian medicinal plants used for skin infection. Front. Pharmacol. 2016, 7, 425. [Google Scholar] [CrossRef] [PubMed]
- Malmir, M.; Serrano, R.; Canica, M.; Silva-Lima, B.; Silva, O. A comprehensive review on the medicinal plants from the genus asphodelus. Plants 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Younis, W.; Alamgeer; Schini-Kerth, V.B.; Junior, A.G.; Majid, M. Cardioprotective effect of asphodelus tenuifolius cav. On blood pressure and metabolic alterations in glucose-induced metabolic syndrome rats-an ethnopharmacological approach. J. Ethnopharmacol. 2018, 214, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Salhi, N.; Mohammed Saghir, S.A.; Terzi, V.; Brahmi, I.; Ghedairi, N.; Bissati, S. Antifungal activity of aqueous extracts of some dominant algerian medicinal plants. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Mayouf, N.; Charef, N.; Saoudi, S.; Baghiani, A.; Khennouf, S.; Arrar, L. Antioxidant and anti-inflammatory effect of asphodelus microcarpus methanolic extracts. J. Ethnopharmacol. 2019, 239, 111914. [Google Scholar] [CrossRef]
- Zhurakivska, K.; Troiano, G.; Caponio, V.C.A.; Dioguardi, M.; Arena, C.; Lo Muzio, L. The effects of adjuvant fermented wheat germ extract on cancer cell lines: A systematic review. Nutrients 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Khalfaoui, A.; Chini, M.G.; Bouheroum, M.; Belaabed, S.; Lauro, G.; Terracciano, S.; Vaccaro, M.C.; Bruno, I.; Benayache, S.; Mancini, I.; et al. Glucopyranosylbianthrones from the algerian asphodelus tenuifolius: Structural insights and biological evaluation on melanoma cancer cells. J. Nat. Prod. 2018, 81, 1786–1794. [Google Scholar] [CrossRef]
- Lo Russo, G.; Spolveri, F.; Ciancio, F.; Mori, A. Mendeley: An easy way to manage, share, and synchronize papers and citations. Plast. Reconstr. Surg. 2013, 131, 946e–947e. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Gonzalez-Paramas, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [Google Scholar] [CrossRef] [PubMed]
- Panghal, M.; Kaushal, V.; Yadav, J.P. In Vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Di Petrillo, A.; Fais, A.; Pintus, F.; Santos-Buelga, C.; Gonzalez-Paramas, A.M.; Piras, V.; Orru, G.; Mameli, A.; Tramontano, E.; Frau, A. Broad-range potential of asphodelus microcarpus leaves extract for drug development. BMC Microbiol. 2017, 17, 159. [Google Scholar] [CrossRef] [PubMed]
- Al-kayali, R.; Haroun, M.F.; Kitaz, A. Antibacterial activity of asphodelin lutea and asphodelus microcarpus against methicillin resistant staphylococcus aureus. Int. J. Pharmacog. Phytochem. Res. 2016, 8, 1964–1968. [Google Scholar]
- Eddine, S.E.; Segni, L.; Ridha, O.M. In Vitro assays of the antibacterial and antioxidant properties of extracts from asphodelus tenuifolius cav and its main constituents: A comparative study. Int. J. Pharm. Clin. Res. 2015, 7, 119–125. [Google Scholar]
- Fafal, T.; Yilmaz, F.F.; Birincioğlu, S.S.; Hoşgör-Limoncu, M.; Kivçak, B. Fatty acid composition and antimicrobial activity of asphodelus aestivus seeds. Hum. Vet. Med. 2016, 8, 103–107. [Google Scholar]
- El-On, J.; Ozer, L.; Gopas, J.; Sneir, R.; Enav, H.; Luft, N.; Davidov, G.; Golan-Goldhirsh, A. Antileishmanial activity in israeli plants. Ann. Trop. Med. Parasitol. 2009, 103, 297–306. [Google Scholar] [CrossRef]
- Abad, M.J.; Guerra, J.A.; Bermejo, P.; Irurzun, A.; Carrasco, L. Search for antiviral activity in higher plant extracts. Phytother. Res. 2000, 14, 604–607. [Google Scholar] [CrossRef]
- Aslam, N.; Janbaz, K.H.; Jabeen, Q. Hypotensive and diuretic activities of aqueous-ethanol extract of asphodelus tenuifolius. Bangladesh J. Pharmacol. 2016, 11, 830–837. [Google Scholar] [CrossRef]
- Gurbuz, I.; Ustun, O.; Yesilada, E.; Sezik, E.; Akyurek, N. In Vivo gastroprotective effects of five turkish folk remedies against ethanol-induced lesions. J. Ethnopharmacol. 2002, 83, 241–244. [Google Scholar] [CrossRef]
- Tiwari, A.; Soni, V.; Londhe, V.; Bhandarkar, A.; Bandawane, D.; Nipate, S. An overview on potent indigenous herbs for urinary tract infirmity: Urolithiasis. Asian J. Pharm. Clin. Res. 2012, 5, 7–12. [Google Scholar]
- Sharma, N.; Tanwer, B.T.; Vijayvergia, R. Study of medicinal plants in aravali regions ofrajasthan for treatment of kidney stone and urinary tract troubles. Int. J. PharmTech Res. 2011, 3, 110–113. [Google Scholar]
- Sibanda, T.; Okoh, A.I. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. Afr. J. Biotechnol. 2007, 6, 2886–2896. [Google Scholar]
- Ljubuncic, P.; Azaizeh, H.; Portnaya, I.; Cogan, U.; Said, O.; Abu Saleh, K.; Bomzon, A. Antioxidant activity and cytotoxicity of eight plants used in traditional arab medicine in israel. J. Ethnopharmacol. 2005, 99, 43–47. [Google Scholar] [CrossRef]
- Subapriya, R.; Kumaraguruparan, R.; Nagini, S.; Thangavelu, A. Oxidant-antioxidant status in oral precancer and oral cancer patients. Toxicol. Mech. Methods 2003, 13, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Di Gioia, G.; Illuzzi, G.; Arena, C.; Caponio, V.C.A.; Caloro, G.A.; Zhurakivska, K.; Adipietro, I.; Troiano, G.; Lo Muzio, L. Inspection of the microbiota in endodontic lesions. Dent. J. 2019, 7. [Google Scholar] [CrossRef]
- Shouval, D.S.; Bilavsky, E.; Avitzur, Y.; Shapiro, R.; Amir, J. Staphylococcus aureus bacteremia complicating herpes simplex virus type 1 stomatitis: Case report and review of the literature. J. Periodontol. 2008, 79, 376–378. [Google Scholar] [CrossRef]
- Garbacz, K.; Jarzembowski, T.; Kwapisz, E.; Daca, A.; Witkowski, J. Do the oral Staphylococcus aureus strains from denture wearers have a greater pathogenicity potential? J. Oral Microbiol. 2019, 11, 1536193. [Google Scholar] [CrossRef] [PubMed]
Data Base | Search Term | Records | Selected Records | Removal Overlaps | Articles Concerning the Pathologies of the Oro-Maxillo Facial Area |
---|---|---|---|---|---|
PubMed | asphodelus | 46 | 23 | \ | \ |
PubMed | Asphodelus ramosus | 5 | 2 | \ | \ |
PubMed | Asphodelus microcarpus | 16 | 13 | \ | \ |
PubMed | Asphodelus tenuifolius | 10 | 6 | \ | \ |
PubMed | Asphodel | 18 | 3 | \ | |
PubMed | Asphodelus aestivus | 4 | 1 | \ | \\ |
Scopus | asphodelus | 255 | 55 | \ | \ |
EBSCO | asphodelus | 46 | 24 | \ | \ |
Web of Science | asphodelus | 174 | 36 | \ | \ |
Total | 574 | 163 | 82 | 11 |
Author, Data, Journal | Type of Study | Type of Asphodel | Part of the Plant Investigated | Type of Extract | Active Principles Investigated or Identified | Pathologies and Effects Studied | Animals, Cell Lines, Microorganism on Which the Extract Was Tested | Indications on Possible Uses in Medicine and Oral Pathologies | Results |
---|---|---|---|---|---|---|---|---|---|
Khalfaoui et al. 2018, J Nat Prod [9] | Vitro | Asphodelus tenuifolius | Extract of the aerial part | - | Glucopyranosylbianthrones (1 and 2) | Human melanoma | Human melanoma A375 cells | Oral melanoma | Inhibition of melanoma cell proliferation |
Di Petrillo et al. 2016, BMC Complement Altern Med [11] | Vitro | Asphodelus microcarpus | Flower, leaves, and tuber | Extracts in alcohol, methanol, and water | Luteolin | Pigmentation disorders | Melanoma murin B16F10 cells | Pigmentation disorders | Tyrosinase inhibitory activity |
Panghal et al. 2011, Ann Clin Microbiol Antimicrob [12] | Vitro | Asphodelus tenuifolius | Fruits | - | Alkaloid, anthraquinones, reducing sugars, tannins, steroids. | Antimicrobial activity in patients with oral cancer | Oral microorganisms (salivary swabs of patients with oral cancer) | Adjuvant treatments in the treatment of oral infections in patients with oral cancer | Inhibit bacterial proliferation in patients with oral cancer |
Mayouf et al. 2019, J Ethnopharmacol [7] | Vitro/vivo | Asphodelus microcarpus | Aerial part, leaf, stem flowers, and root. | Extracts in methanol | Polyphenols and flavonoids | Antioxidant and anti-inflammatory properties | Mice | Possible to use in the treatment of inflammatory processes of the oral cavity | Anti-inflammatory and antioxidative effect |
Di Petrillo et al. 2017, BMC Microbiol [13] | Vitro | Asphodelus microcarpus | Leaves | Extract in ethanol | Polyphenols and flavonoids | Antiviral, antibiotic and antifungal properties | A549 cells, Gram (+) Bacteria, Gram (−) Bacteria, Candida albicans, | Possible to use in the treatment of oral bacterial infections supported by Gram (+), Gram (–), and in the treatment of oral candidiasis | Inhibitor of the activity of Escherichia coli, Staphylococcus aureus and of Candida albicans |
Al-kayali et al. 2016, IJPPR [14] | Vitro | Asphodelin lutea and Asphodelus microcarpus | Aerial parts and bulbs | Extracts in alcohol, methanol, and water | 1,8-dihydroxyanthraquinones | Antibiotic properties | Methicillin Resistant Staphylococcus aureus | Oral infections sustained by staphylococci | Inhibitor of the activity Staphylococcus aureus |
Eddine et al. 2015, IJPCR [15] | Vitro | Asphodelus tenuifolius | Aerial parts | Extracts in alcohol, methanol, and petroleum ether | Glycosides, anthraquinones, flavonoids, steroids, proanthocyanidins, tanninis, Phenolic compound | Antibiotic and antioxidant properties | Staphylococcus aureus | In the treatment of oral bacterial infections and as an antioxidant in preventing the action of free radicals | Antioxidant and antibacterial activities |
Fafal et al. 2016, Human and Veterinary Medicine [16] | Vitro | Asphodelus aestivus | Seeds | The oil extraction of dried and powdered seeds | Fatty acid | Antimicrobial activities and antifungal proprieties | Gram (+) Bacteria, Gram (−) Bacteria. Candida albicans | Possible use in the treatment of oral bacterial infections supported by Gram (+), Gram (–), and in the treatment of oral candidiasis | Moderate antimicrobial activity against Gram (+), Gram (−) bacteria |
Nelson et al. 2016, Front Pharmacol [3] | Vitro | Asphodelus microcarpus | Infructescence, leaves. | Crude extracts | - | Acne | Propionibacterium acnes | Acne treatment | Growth inhibitory activity |
El-On et al. 2009, Ann Trop Med Parasitol [17] | Vitro, vivo | Asphodelus ramosus | Leaves | Extracts in methanol | - | Antileishmanial activity | Male C3H/HeJ mice, Leishmania parassite | Possible use in the treatment of leishmaniasis | No effectiveness |
Abad et al. 2000, Phytother Res [18] | Vitro | Asphodelus ramosus | - | Alcohol Ethanol and Aqueous extract | - | Anti-viral activity | (HSV-1, VSV, and poliovirus type 1) | Possible use in the treatment of oral herpes lesions | No effectiveness |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dioguardi, M.; Campanella, P.; Cocco, A.; Arena, C.; Malagnino, G.; Sovereto, D.; Aiuto, R.; Laino, L.; Laneve, E.; Dioguardi, A.; et al. Possible Uses of Plants of the Genus Asphodelus in Oral Medicine. Biomedicines 2019, 7, 67. https://doi.org/10.3390/biomedicines7030067
Dioguardi M, Campanella P, Cocco A, Arena C, Malagnino G, Sovereto D, Aiuto R, Laino L, Laneve E, Dioguardi A, et al. Possible Uses of Plants of the Genus Asphodelus in Oral Medicine. Biomedicines. 2019; 7(3):67. https://doi.org/10.3390/biomedicines7030067
Chicago/Turabian StyleDioguardi, Mario, Pierpaolo Campanella, Armando Cocco, Claudia Arena, Giancarlo Malagnino, Diego Sovereto, Riccardo Aiuto, Luigi Laino, Enrica Laneve, Antonio Dioguardi, and et al. 2019. "Possible Uses of Plants of the Genus Asphodelus in Oral Medicine" Biomedicines 7, no. 3: 67. https://doi.org/10.3390/biomedicines7030067
APA StyleDioguardi, M., Campanella, P., Cocco, A., Arena, C., Malagnino, G., Sovereto, D., Aiuto, R., Laino, L., Laneve, E., Dioguardi, A., Zhurakivska, K., & Lo Muzio, L. (2019). Possible Uses of Plants of the Genus Asphodelus in Oral Medicine. Biomedicines, 7(3), 67. https://doi.org/10.3390/biomedicines7030067