Medical Approaches in Adrenocortical Carcinoma
Abstract
:1. Introduction
2. Molecular Basis of Adrenocortical Carcinoma: A Lesson from Familiar Diseases
3. Adrenocortical Carcinoma: Pathology and Staging
4. Medical Treatment of Adrenocortical Carcinoma
4.1. Mitotane
4.1.1. Mechanism of Action
4.1.2. Mitotane: Clinical Efficacy, Dosage and Concentration
4.2. Mitotane Associated to Systemic Chemotherapeutic Agents
4.2.1. Mitotane Plus Etoposide, Doxorubicin and Cisplatin (EDP-M)
4.2.2. Mitotane Plus Other Chemotherapeutic Agents
4.3. Targeted Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rodgers, S.E.; Evans, D.B.; Lee, J.E.; Perrier, N.D. Adrenocortical carcinoma. Surg. Oncol. Clin. N. Am. 2006, 15, 535–553. [Google Scholar] [CrossRef] [PubMed]
- Else, T.; Kim, A.C.; Sabolch, A.; Raymond, V.M.; Kandathil, A.; Caoili, E.M.; Jolly, S.; Miller, B.S.; Giordano, T.J.; Hammer, G.D. Adrenocortical carcinoma. Endocr. Rev. 2014, 35, 282–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Audenet, F.; Mejean, A.; Chartier-Kastler, E.; Roupret, M. Adrenal tumours are more predominant in females regardless of their histological subtype: A review. World J. Urol. 2013, 31, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Mansmann, G.; Lau, J.; Balk, E.; Rothberg, M.; Miyachi, Y.; Bornstein, S.R. The clinically inapparent adrenal mass: Update in diagnosis and management. Endocr. Rev. 2004, 25, 309–340. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Shen, W.T.; Elaraj, D.; Bentrem, D.J.; Winchester, D.J.; Kebebew, E.; Sturgeon, C. Adrenocortical carcinoma in the united states: Treatment utilization and prognostic factors. Cancer 2008, 113, 3130–3136. [Google Scholar] [CrossRef]
- Icard, P.; Goudet, P.; Charpenay, C.; Andreassian, B.; Carnaille, B.; Chapuis, Y.; Cougard, P.; Henry, J.F.; Proye, C. Adrenocortical carcinomas: Surgical trends and results of a 253-patient series from the french association of endocrine surgeons study group. World J. Surg. 2001, 25, 891–897. [Google Scholar] [CrossRef]
- Schulick, R.D.; Brennan, M.F. Long-term survival after complete resection and repeat resection in patients with adrenocortical carcinoma. Ann. Surg. Oncol. 1999, 6, 719–726. [Google Scholar] [CrossRef]
- Souteiro, P.; Donato, S.; Costa, C.; Pereira, C.A.; Simoes-Pereira, J.; Oliveira, J.; Belo, S.; Santos, A.P.; Cardoso, H.; Leite, V.; et al. Diagnosis, treatment, and survival analysis of adrenocortical carcinomas: A multicentric study. Hormones 2020, 19, 197–203. [Google Scholar] [CrossRef]
- Libe, R. Adrenocortical carcinoma (acc): Diagnosis, prognosis, and treatment. Front. Cell Dev. Biol. 2015, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Berruti, A.; Fassnacht, M.; Haak, H.; Else, T.; Baudin, E.; Sperone, P.; Kroiss, M.; Kerkhofs, T.; Williams, A.R.; Ardito, A.; et al. Prognostic role of overt hypercortisolism in completely operated patients with adrenocortical cancer. Eur. Urol. 2014, 65, 832–838. [Google Scholar] [CrossRef]
- Beuschlein, F.; Weigel, J.; Saeger, W.; Kroiss, M.; Wild, V.; Daffara, F.; Libé, R.; Ardito, A.; Al Ghuzlan, A.; Quinkler, M.; et al. Major prognostic role of ki67 in localized adrenocortical carcinoma after complete resection. J. Clin. Endocrinol. Metab. 2015, 100, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.J.; Tamm, E.P.; Ng, C.; Phan, A.T.; Vassilopoulou-Sellin, R.; Perrier, N.D.; Evans, D.B.; Lee, J.E. Response to mitotane predicts outcome in patients with recurrent adrenal cortical carcinoma. Surgery 2007, 142, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Doroszko, M.; Chrusciel, M.; Stelmaszewska, J.; Slezak, T.; Anisimowicz, S.; Plöckinger, U.; Quinkler, M.; Bonomi, M.; Wolczynski, S.; Huhtaniemi, I.; et al. Gnrh antagonist treatment of malignant adrenocortical tumors. Endocr. Relat. Cancer 2019, 26, 103–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalkiewicz, E.; Sandrini, R.; Figueiredo, B.; Miranda, E.C.; Caran, E.; Oliveira-Filho, A.G.; Marques, R.; Pianovski, M.A.; Lacerda, L.; Cristofani, L.M.; et al. Clinical and outcome characteristics of children with adrenocortical tumors: A report from the international pediatric adrenocortical tumor registry. J. Clin. Oncol. 2004, 22, 838–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malkin, D. Li-fraumeni syndrome. Genes Cancer 2011, 2, 475–484. [Google Scholar] [CrossRef]
- Jouinot, A.; Bertherat, J. Diseases predisposing to adrenocortical malignancy (li-fraumeni syndrome, beckwith-wiedemann syndrome, and carney complex). Exp. Suppl. 2019, 111, 149–169. [Google Scholar] [CrossRef]
- Lodish, M. Genetics of adrenocortical development and tumors. Endocrinol. Metab. Clin. N. Am. 2017, 46, 419–433. [Google Scholar] [CrossRef]
- Wang, K.H.; Kupa, J.; Duffy, K.A.; Kalish, J.M. Diagnosis and management of beckwith-wiedemann syndrome. Front. Pediatr. 2019, 7, 562. [Google Scholar] [CrossRef]
- Mussa, A.; Ferrero, G.B. Screening hepatoblastoma in beckwith-wiedemann syndrome: A complex issue. J. Pediatr. Hematol. Oncol. 2015, 37, 627. [Google Scholar] [CrossRef]
- MacFarland, S.P.; Mostoufi-Moab, S.; Zelley, K.; Mattei, P.A.; States, L.J.; Bhatti, T.R.; Duffy, K.A.; Brodeur, G.M.; Kalish, J.M. Management of adrenal masses in patients with beckwith-wiedemann syndrome. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef]
- Bonnet-Serrano, F.; Bertherat, J. Genetics of tumors of the adrenal cortex. Endocr. Relat. Cancer 2018, 25, R131–R152. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, C.A. Genetics of carney complex and related familial lentiginoses, and other multiple tumor syndromes. Pediatric Pathol. Mol. Med. 2010, 19, 41–68. [Google Scholar] [CrossRef]
- Anselmo, J.; Medeiros, S.; Carneiro, V.; Greene, E.; Levy, I.; Nesterova, M.; Lyssikatos, C.; Horvath, A.; Carney, J.A.; Stratakis, C.A. A large family with carney complex caused by the s147g prkar1a mutation shows a unique spectrum of disease including adrenocortical cancer. J. Clin. Endocrinol. Metab. 2012, 97, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Cherniack, A.D.; Dewal, N.; Moffitt, R.A.; Danilova, L.; Murray, B.A.; Lerario, A.M.; Else, T.; Knijnenburg, T.A.; Ciriello, G.; et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 2016, 30, 363. [Google Scholar] [CrossRef] [PubMed]
- Assie, G.; Letouze, E.; Fassnacht, M.; Jouinot, A.; Luscap, W.; Barreau, O.; Omeiri, H.; Rodriguez, S.; Perlemoine, K.; Rene-Corail, F.; et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 2014, 46, 607–612. [Google Scholar] [CrossRef]
- Wang, W.; Han, R.; Ye, L.; Xie, J.; Tao, B.; Sun, F.; Zhuo, R.; Chen, X.; Deng, X.; Ye, C.; et al. Adrenocortical carcinoma in patients with men1: A kindred report and review of the literature. Endocr. Connect. 2019, 8, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Seki, M.; Tanaka, K.; Kikuchi-Yanoshita, R.; Konishi, M.; Fukunari, H.; Iwama, T.; Miyaki, M. Loss of normal allele of the apc gene in an adrenocortical carcinoma from a patient with familial adenomatous polyposis. Hum. Genet. 1992, 89, 298–300. [Google Scholar] [CrossRef]
- Traill, Z.; Tuson, J.; Woodham, C. Adrenal carcinoma in a patient with gardner’s syndrome: Imaging findings. AJR Am. J. Roentgenol. 1995, 165, 1460–1461. [Google Scholar] [CrossRef] [Green Version]
- Wakatsuki, S.; Sasano, H.; Matsui, T.; Nagashima, K.; Toyota, T.; Horii, A. Adrenocortical tumor in a patient with familial adenomatous polyposis: A case associated with a complete inactivating mutation of the apc gene and unusual histological features. Hum. Pathol. 1998, 29, 302–306. [Google Scholar] [CrossRef]
- Else, T. Association of adrenocortical carcinoma with familial cancer susceptibility syndromes. Mol. Cell. Endocrinol. 2012, 351, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.G.; Clark, S.K.; Katz, D.E.; Reznek, R.H.; Phillips, R.K. Adrenal masses are associated with familial adenomatous polyposis. Dis. Colon Rectum 2000, 43, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, R.; Sheahan, K.; O’Connell, P.R.; Hanly, A.M.; Martin, S.T.; Winter, D.C. Lynch syndrome: An updated review. Genes 2014, 5, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challis, B.G.; Kandasamy, N.; Powlson, A.S.; Koulouri, O.; Annamalai, A.K.; Happerfield, L.; Marker, A.J.; Arends, M.J.; Nik-Zainal, S.; Gurnell, M. Familial adrenocortical carcinoma in association with lynch syndrome. J. Clin. Endocrinol. Metab. 2016, 101, 2269–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbiera, S.; Schmull, S.; Assie, G.; Voelker, H.U.; Kraus, L.; Beyer, M.; Ragazzon, B.; Beuschlein, F.; Willenberg, H.S.; Hahner, S.; et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J. Clin. Endocrinol. Metab. 2010, 95, E161–E171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fassnacht, M.; Dekkers, O.; Else, T.; Baudin, E.; Berruti, A.; de Krijger, R.R.; Haak, H.R.; Mihai, R.; Assie, G.; Terzolo, M. European society of endocrinology clinical practice guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the european network for the study of adrenal tumors. Eur. J. Endocrinol. 2018. [Google Scholar] [CrossRef]
- Weiss, L.M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am. J. Surg. Pathol. 1984, 8, 163–169. [Google Scholar] [CrossRef]
- Weiss, L.M.; Medeiros, L.J.; Vickery, A.L., Jr. Pathologic features of prognostic significance in adrenocortical carcinoma. Am. J. Surg. Pathol. 1989, 13, 202–206. [Google Scholar] [CrossRef]
- Berruti, A.; Fassnacht, M.; Baudin, E.; Hammer, G.; Haak, H.; Leboulleux, S.; Skogseid, B.; Allolio, B.; Terzolo, M. Adjuvant therapy in patients with adrenocortical carcinoma: A position of an international panel. J. Clin. Oncol. 2010, 28, e401–e402. [Google Scholar] [CrossRef]
- Rechache, N.S.; Wang, Y.; Stevenson, H.S.; Killian, J.K.; Edelman, D.C.; Merino, M.; Zhang, L.; Nilubol, N.; Stratakis, C.A.; Meltzer, P.S.; et al. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors. J. Clin. Endocrinol. Metab. 2012, 97, E1004–E1013. [Google Scholar] [CrossRef] [Green Version]
- Barreau, O.; Assié, G.; Wilmot-Roussel, H.; Ragazzon, B.; Baudry, C.; Perlemoine, K.; René-Corail, F.; Bertagna, X.; Dousset, B.; Hamzaoui, N.; et al. Identification of a cpg island methylator phenotype in adrenocortical carcinomas. J. Clin. Endocrinol. Metab. 2013, 98, E174–E184. [Google Scholar] [CrossRef] [Green Version]
- Creemers, S.G.; van Koetsveld, P.M.; van Kemenade, F.J.; Papathomas, T.G.; Franssen, G.J.; Dogan, F.; Eekhoff, E.M.; van der Valk, P.; de Herder, W.W.; Janssen, J.A.; et al. Methylation of igf2 regulatory regions to diagnose adrenocortical carcinomas. Endocr. Relat. Cancer 2016, 23, 727–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, A.L.; Kugelberg, J.; Starker, L.F.; Scholl, U.; Choi, M.; Hellman, P.; Åkerström, G.; Westin, G.; Lifton, R.P.; Björklund, P.; et al. Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors. Genes Chromosomes Cancer 2012, 51, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Özata, D.M.; Caramuta, S.; Velázquez-Fernández, D.; Akçakaya, P.; Xie, H.; Höög, A.; Zedenius, J.; Bäckdahl, M.; Larsson, C.; Lui, W.O. The role of microrna deregulation in the pathogenesis of adrenocortical carcinoma. Endocr. Relat. Cancer 2011, 18, 643–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.E.; Holloway, A.K.; Weng, J.; Fojo, T.; Kebebew, E. Microrna profiling of adrenocortical tumors reveals mir-483 as a marker of malignancy. Cancer 2011, 117, 1630–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabre, O.; Libé, R.; Assie, G.; Barreau, O.; Bertherat, J.; Bertagna, X.; Feige, J.J.; Cherradi, N. Serum mir-483-5p and mir-195 are predictive of recurrence risk in adrenocortical cancer patients. Endocr. Relat. Cancer 2013, 20, 579–594. [Google Scholar] [CrossRef]
- Schmitz, K.J.; Helwig, J.; Bertram, S.; Sheu, S.Y.; Suttorp, A.C.; Seggewiss, J.; Willscher, E.; Walz, M.K.; Worm, K.; Schmid, K.W. Differential expression of microrna-675, microrna-139-3p and microrna-335 in benign and malignant adrenocortical tumours. J. Clin. Pathol. 2011, 64, 529–535. [Google Scholar] [CrossRef]
- Assie, G.; Antoni, G.; Tissier, F.; Caillou, B.; Abiven, G.; Gicquel, C.; Leboulleux, S.; Travagli, J.P.; Dromain, C.; Bertagna, X.; et al. Prognostic parameters of metastatic adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 2007, 92, 148–154. [Google Scholar] [CrossRef]
- Bednarski, B.K.; Habra, M.A.; Phan, A.; Milton, D.R.; Wood, C.; Vauthey, N.; Evans, D.B.; Katz, M.H.; Ng, C.S.; Perrier, N.D.; et al. Borderline resectable adrenal cortical carcinoma: A potential role for preoperative chemotherapy. World J. Surg. 2014, 38, 1318–1327. [Google Scholar] [CrossRef]
- Schteingart, D.E.; Doherty, G.M.; Gauger, P.G.; Giordano, T.J.; Hammer, G.D.; Korobkin, M.; Worden, F.P. Management of patients with adrenal cancer: Recommendations of an international consensus conference. Endocr. Relat. Cancer 2005, 12, 667–680. [Google Scholar] [CrossRef]
- Kerkhofs, T.M.; Ettaieb, M.H.; Hermsen, I.G.; Haak, H.R. Developing treatment for adrenocortical carcinoma. Endocr. Relat. Cancer 2015, 22, R325–R338. [Google Scholar] [CrossRef]
- Stigliano, A.; Cerquetti, L.; Lardo, P.; Petrangeli, E.; Toscano, V. New insights and future perspectives in the therapeutic strategy of adrenocortical carcinoma (review). Oncol. Rep. 2017, 37, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Counsell, R.E.; Djanegara, T.; Schteingart, D.E.; Sinsheimer, J.E.; Wotring, L.L. Metabolic activation and binding of mitotane in adrenal cortex homogenates. J. Pharm. Sci. 1995, 84, 134–138. [Google Scholar] [CrossRef]
- Hart, M.M.; Reagan, R.L.; Adamson, R.H. The effect of isomers of ddd on the acth-induced steroid output, histology and ultrastructure of the dog adrenal cortex. Toxicol. Appl. Pharmacol. 1973, 24, 101–113. [Google Scholar] [CrossRef]
- Basile, V.; Puglisi, S.; Calabrese, A.; Pia, A.; Perotti, P.; Berruti, A.; Reimondo, G.; Terzolo, M. Unwanted hormonal and metabolic effects of postoperative adjuvant mitotane treatment for adrenocortical cancer. Cancers 2020, 12, 2615. [Google Scholar] [CrossRef]
- Waszut, U.; Szyszka, P.; Dworakowska, D. Understanding mitotane mode of action. J. Physiol. Pharmacol. 2017, 68, 13–26. [Google Scholar] [PubMed]
- Sbiera, S.; Leich, E.; Liebisch, G.; Sbiera, I.; Schirbel, A.; Wiemer, L.; Matysik, S.; Eckhardt, C.; Gardill, F.; Gehl, A.; et al. Mitotane inhibits sterol-o-acyl transferase 1 triggering lipid-mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells. Endocrinology 2015, 156, 3895–3908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigand, I.; Altieri, B.; Lacombe, A.M.F.; Basile, V.; Kircher, S.; Landwehr, L.S.; Schreiner, J.; Zerbini, M.C.N.; Ronchi, C.L.; Megerle, F.; et al. Expression of soat1 in adrenocortical carcinoma and response to mitotane monotherapy: An ensat multicenter study. J. Clin. Endocrinol. Metab. 2020, 105. [Google Scholar] [CrossRef]
- Hescot, S.; Amazit, L.; Lhomme, M.; Travers, S.; DuBow, A.; Battini, S.; Boulate, G.; Namer, I.J.; Lombes, A.; Kontush, A.; et al. Identifying mitotane-induced mitochondria-associated membranes dysfunctions: Metabolomic and lipidomic approaches. Oncotarget 2017, 8, 109924–109940. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, T.P.; Wrzesinski, T.; Jagodzinski, P.P. The effect of mitotane on viability, steroidogenesis and gene expression in ncih295r adrenocortical cells. Mol. Med. Rep. 2013, 7, 893–900. [Google Scholar] [CrossRef]
- Zsippai, A.; Szabo, D.R.; Tombol, Z.; Szabo, P.M.; Eder, K.; Pallinger, E.; Gaillard, R.C.; Patocs, A.; Toth, S.; Falus, A.; et al. Effects of mitotane on gene expression in the adrenocortical cell line nci-h295r: A microarray study. Pharmacogenomics 2012, 13, 1351–1361. [Google Scholar] [CrossRef]
- Stigliano, A.; Cerquetti, L.; Borro, M.; Gentile, G.; Bucci, B.; Misiti, S.; Piergrossi, P.; Brunetti, E.; Simmaco, M.; Toscano, V. Modulation of proteomic profile in h295r adrenocortical cell line induced by mitotane. Endocr. Relat. Cancer 2008, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzolo, M.; Angeli, A.; Fassnacht, M.; Daffara, F.; Tauchmanova, L.; Conton, P.A.; Rossetto, R.; Buci, L.; Sperone, P.; Grossrubatscher, E.; et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N. Engl. J. Med. 2007, 356, 2372–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berruti, A.; Grisanti, S.; Pulzer, A.; Claps, M.; Daffara, F.; Loli, P.; Mannelli, M.; Boscaro, M.; Arvat, E.; Tiberio, G.; et al. Long-term outcomes of adjuvant mitotane therapy in patients with radically resected adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 2017, 102, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Reidy-Lagunes, D.L.; Lung, B.; Untch, B.R.; Raj, N.; Hrabovsky, A.; Kelly, C.; Gerst, S.; Katz, S.; Kampel, L.; Chou, J.; et al. Complete responses to mitotane in metastatic adrenocortical carcinoma-a new look at an old drug. Oncologist 2017, 22, 1102–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fassnacht, M.; Assie, G.; Baudin, E.; Eisenhofer, G.; de la Fouchardiere, C.; Haak, H.R.; de Krijger, R.; Porpiglia, F.; Terzolo, M.; Berruti, A.; et al. Adrenocortical carcinomas and malignant phaeochromocytomas: Esmo-euracan clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, Z.; Zou, Z.; Liang, J.; Lu, Y.; Zhu, Y. Benefits of adjuvant mitotane after resection of adrenocortical carcinoma: A systematic review and meta-analysis. Biomed. Res. Int. 2018, 2018, 9362108. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, E.G.; Callender, G.G.; Xing, Y.; Perrier, N.D.; Evans, D.B.; Phan, A.T.; Lee, J.E. Recurrence of adrenal cortical carcinoma following resection: Surgery alone can achieve results equal to surgery plus mitotane. Ann. Surg. Oncol. 2010, 17, 263–270. [Google Scholar] [CrossRef]
- Yap, L.B.; Turner, H.E.; Adams, C.B.; Wass, J.A. Undetectable postoperative cortisol does not always predict long-term remission in cushing’s disease: A single centre audit. Clin. Endocrinol. 2002, 56, 25–31. [Google Scholar] [CrossRef]
- Alexandraki, K.I.; Kaltsas, G.A.; Isidori, A.M.; Storr, H.L.; Afshar, F.; Sabin, I.; Akker, S.A.; Chew, S.L.; Drake, W.M.; Monson, J.P.; et al. Long-term remission and recurrence rates in cushing’s disease: Predictive factors in a single-centre study. Eur. J. Endocrinol. 2013, 168, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Fleseriu, M.; Hamrahian, A.H.; Hoffman, A.R.; Kelly, D.F.; Katznelson, L.; Neuroendocrine, A.; Pituitary Scientific Committee. American association of clinical endocrinologists and american college of endocrinology disease state clinical review: Diagnosis of recurrence in cushing disease. Endocr. Pract. 2016, 22, 1436–1448. [Google Scholar] [CrossRef]
- Faggiano, A.; Leboulleux, S.; Young, J.; Schlumberger, M.; Baudin, E. Rapidly progressing high o,p’ddd doses shorten the time required to reach the therapeutic threshold with an acceptable tolerance: Preliminary results. Clin. Endocrinol. 2006, 64, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Baudin, E.; Pellegriti, G.; Bonnay, M.; Penfornis, A.; Laplanche, A.; Vassal, G.; Schlumberger, M. Impact of monitoring plasma 1,1-dichlorodiphenildichloroethane (o,p’ddd) levels on the treatment of patients with adrenocortical carcinoma. Cancer 2001, 92, 1385–1392. [Google Scholar] [CrossRef]
- Terzolo, M.; Baudin, A.E.; Ardito, A.; Kroiss, M.; Leboulleux, S.; Daffara, F.; Perotti, P.; Feelders, R.A.; deVries, J.H.; Zaggia, B.; et al. Mitotane levels predict the outcome of patients with adrenocortical carcinoma treated adjuvantly following radical resection. Eur. J. Endocrinol. 2013, 169, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Megerle, F.; Herrmann, W.; Schloetelburg, W.; Ronchi, C.L.; Pulzer, A.; Quinkler, M.; Beuschlein, F.; Hahner, S.; Kroiss, M.; Fassnacht, M.; et al. Mitotane monotherapy in patients with advanced adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 2018. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, S.; Calabrese, A.; Basile, V.; Ceccato, F.; Scaroni, C.; Altieri, B.; Della Casa, S.; Loli, P.; Pivonello, R.; De Martino, M.C.; et al. Mitotane concentrations influence outcome in patients with advanced adrenocortical carcinoma. Cancers 2020, 12, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzolo, M.; Pia, A.; Berruti, A.; Osella, G.; Ali, A.; Carbone, V.; Testa, E.; Dogliotti, L.; Angeli, A. Low-dose monitored mitotane treatment achieves the therapeutic range with manageable side effects in patients with adrenocortical cancer. J. Clin. Endocrinol. Metab. 2000, 85, 2234–2238. [Google Scholar] [CrossRef] [PubMed]
- Cusato, J.; De Francia, S.; Allegra, S.; Carrella, S.; Pirro, E.; Piccione, F.M.; De Martino, F.; Ferrero, A.; Daffara, F.C.; Terzolo, M.; et al. Circannual variation of mitotane and its metabolites plasma levels in patients with adrenocortical carcinoma. J. Pharm. Pharmacol. 2017, 69, 1524–1530. [Google Scholar] [CrossRef]
- Neuman, O.; Bruckert, E.; Chadarevian, R.; Jacob, N.; Turpin, G. [hepatotoxicity of a synthetic cortisol antagonist: Op’ddd (mitotane)]. Therapie 2001, 56, 793–797. [Google Scholar]
- Baudry, C.; Coste, J.; Bou Khalil, R.; Silvera, S.; Guignat, L.; Guibourdenche, J.; Abbas, H.; Legmann, P.; Bertagna, X.; Bertherat, J. Efficiency and tolerance of mitotane in cushing’s disease in 76 patients from a single center. Eur. J. Endocrinol. 2012, 167, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Veytsman, I.; Nieman, L.; Fojo, T. Management of endocrine manifestations and the use of mitotane as a chemotherapeutic agent for adrenocortical carcinoma. J. Clin. Oncol. 2009, 27, 4619–4629. [Google Scholar] [CrossRef]
- Paragliola, R.M.; Torino, F.; Papi, G.; Locantore, P.; Pontecorvi, A.; Corsello, S.M. Role of mitotane in adrenocortical carcinoma—Review and state of the art. Eur. Endocrinol. 2018, 14, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Reimondo, G.; Puglisi, S.; Zaggia, B.; Basile, V.; Saba, L.; Perotti, P.; De Francia, S.; Volante, M.; Zatelli, M.C.; Cannavo, S.; et al. Effects of mitotane on the hypothalamic-pituitary-adrenal axis in patients with adrenocortical carcinoma. Eur. J. Endocrinol. 2017, 177, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Poirier, J.; Gagnon, N.; Terzolo, M.; Puglisi, S.; Ghorayeb, N.E.; Calabrese, A.; Lacroix, A.; Bourdeau, I. Recovery of adrenal insufficiency is frequent after adjuvant mitotane therapy in patients with adrenocortical carcinoma. Cancers 2020, 12, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.S.; Imam, H.; Juhlin, C.; Skogseid, B.; Gröndal, S.; Tibblin, S.; Wilander, E.; Oberg, K.; Eriksson, B. Streptozocin and o,p’ddd in the treatment of adrenocortical cancer patients: Long-term survival in its adjuvant use. Ann. Oncol. 2000, 11, 1281–1287. [Google Scholar] [CrossRef]
- Miller, K.C.; Chintakuntlawar, A.V.; Hilger, C.; Bancos, I.; Morris, J.C.; Ryder, M.; Smith, C.Y.; Jenkins, S.M.; Bible, K.C. Salvage therapy with multikinase inhibitors and immunotherapy in advanced adrenal cortical carcinoma. J. Endocr. Soc. 2020, 4, bvaa069. [Google Scholar] [CrossRef]
- Berruti, A.; Terzolo, M.; Sperone, P.; Pia, A.; Della Casa, S.; Gross, D.J.; Carnaghi, C.; Casali, P.; Porpiglia, F.; Mantero, F.; et al. Etoposide, doxorubicin and cisplatin plus mitotane in the treatment of advanced adrenocortical carcinoma: A large prospective phase ii trial. Endocr. Relat. Cancer 2005, 12, 657–666. [Google Scholar] [CrossRef]
- Fassnacht, M.; Terzolo, M.; Allolio, B.; Baudin, E.; Haak, H.; Berruti, A.; Welin, S.; Schade-Brittinger, C.; Lacroix, A.; Jarzab, B.; et al. Combination chemotherapy in advanced adrenocortical carcinoma. N. Engl. J. Med. 2012, 366, 2189–2197. [Google Scholar] [CrossRef]
- Berruti, A.; Sperone, P.; Bellini, E.; Daffara, F.; Perotti, P.; Ardito, A.; Saini, A.; Terzolo, M. Metronomic therapy concepts in the management of adrenocortical carcinoma. Horm. Cancer 2011, 2, 378–384. [Google Scholar] [CrossRef]
- Ferrero, A.; Sperone, P.; Ardito, A.; Rossi, G.; Del Buono, S.; Priola, A.M.; Bracarda, S.; Taberna, E.; Terzolo, M.; Berruti, A. Metronomic chemotherapy may be active in heavily pre-treated patients with metastatic adreno-cortical carcinoma. J. Endocrinol. Investig. 2013, 36, 148–152. [Google Scholar] [CrossRef]
- Sperone, P.; Ferrero, A.; Daffara, F.; Priola, A.; Zaggia, B.; Volante, M.; Santini, D.; Vincenzi, B.; Badalamenti, G.; Intrivici, C.; et al. Gemcitabine plus metronomic 5-fluorouracil or capecitabine as a second-/third-line chemotherapy in advanced adrenocortical carcinoma: A multicenter phase ii study. Endocr. Relat. Cancer 2010, 17, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Quinkler, M.; Hahner, S.; Wortmann, S.; Johanssen, S.; Adam, P.; Ritter, C.; Strasburger, C.; Allolio, B.; Fassnacht, M. Treatment of advanced adrenocortical carcinoma with erlotinib plus gemcitabine. J. Clin. Endocrinol. Metab. 2008, 93, 2057–2062. [Google Scholar] [CrossRef] [Green Version]
- Wortmann, S.; Quinkler, M.; Ritter, C.; Kroiss, M.; Johanssen, S.; Hahner, S.; Allolio, B.; Fassnacht, M. Bevacizumab plus capecitabine as a salvage therapy in advanced adrenocortical carcinoma. Eur. J. Endocrinol. 2010, 162, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Berruti, A.; Sperone, P.; Ferrero, A.; Germano, A.; Ardito, A.; Priola, A.M.; De Francia, S.; Volante, M.; Daffara, F.; Generali, D.; et al. Phase ii study of weekly paclitaxel and sorafenib as second/third-line therapy in patients with adrenocortical carcinoma. Eur. J. Endocrinol. 2012, 166, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Patyna, S.; Arrigoni, C.; Terron, A.; Kim, T.W.; Heward, J.K.; Vonderfecht, S.L.; Denlinger, R.; Turnquist, S.E.; Evering, W. Nonclinical safety evaluation of sunitinib: A potent inhibitor of vegf, pdgf, kit, flt3, and ret receptors. Toxicol. Pathol. 2008, 36, 905–916. [Google Scholar] [CrossRef]
- Kroiss, M.; Quinkler, M.; Johanssen, S.; van Erp, N.P.; Lankheet, N.; Pollinger, A.; Laubner, K.; Strasburger, C.J.; Hahner, S.; Muller, H.H.; et al. Sunitinib in refractory adrenocortical carcinoma: A phase ii, single-arm, open-label trial. J. Clin. Endocrinol. Metab. 2012, 97, 3495–3503. [Google Scholar] [CrossRef] [Green Version]
- Kroiss, M.; Quinkler, M.; Lutz, W.K.; Allolio, B.; Fassnacht, M. Drug interactions with mitotane by induction of cyp3a4 metabolism in the clinical management of adrenocortical carcinoma. Clin. Endocrinol. 2011, 75, 585–591. [Google Scholar] [CrossRef]
- De Martino, M.C.; van Koetsveld, P.M.; Feelders, R.A.; de Herder, W.W.; Dogan, F.; Janssen, J.; Hofste Op Bruinink, D.; Pivonello, C.; Waaijers, A.M.; Colao, A.; et al. Igf and mtor pathway expression and in vitro effects of linsitinib and mtor inhibitors in adrenocortical cancer. Endocrine 2019, 64, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Burtrum, D.; Zhu, Z.; Lu, D.; Anderson, D.M.; Prewett, M.; Pereira, D.S.; Bassi, R.; Abdullah, R.; Hooper, A.T.; Koo, H.; et al. A fully human monoclonal antibody to the insulin-like growth factor i receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res. 2003, 63, 8912–8921. [Google Scholar]
- Abou-Alfa, G.K.; Capanu, M.; O’Reilly, E.M.; Ma, J.; Chou, J.F.; Gansukh, B.; Shia, J.; Kalin, M.; Katz, S.; Abad, L.; et al. A phase ii study of cixutumumab (imc-a12, nsc742460) in advanced hepatocellular carcinoma. J. Hepatol. 2014, 60, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Attias-Geva, Z.; Bentov, I.; Ludwig, D.L.; Fishman, A.; Bruchim, I.; Werner, H. Insulin-like growth factor-i receptor (igf-ir) targeting with monoclonal antibody cixutumumab (imc-a12) inhibits igf-i action in endometrial cancer cells. Eur. J. Cancer 2011, 47, 1717–1726. [Google Scholar] [CrossRef]
- Naing, A.; Lorusso, P.; Fu, S.; Hong, D.; Chen, H.X.; Doyle, L.A.; Phan, A.T.; Habra, M.A.; Kurzrock, R. Insulin growth factor receptor (igf-1r) antibody cixutumumab combined with the mtor inhibitor temsirolimus in patients with metastatic adrenocortical carcinoma. Br. J. Cancer 2013, 108, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Lerario, A.M.; Worden, F.P.; Ramm, C.A.; Hesseltine, E.A.; Stadler, W.M.; Else, T.; Shah, M.H.; Agamah, E.; Rao, K.; Hammer, G.D. The combination of insulin-like growth factor receptor 1 (igf1r) antibody cixutumumab and mitotane as a first-line therapy for patients with recurrent/metastatic adrenocortical carcinoma: A multi-institutional nci-sponsored trial. Horm. Cancer 2014, 5, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, M.; Berruti, A.; Baudin, E.; Demeure, M.J.; Gilbert, J.; Haak, H.; Kroiss, M.; Quinn, D.I.; Hesseltine, E.; Ronchi, C.L.; et al. Linsitinib (osi-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: A double-blind, randomised, phase 3 study. Lancet Oncol. 2015, 16, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Raj, N.; Zheng, Y.; Kelly, V.; Katz, S.S.; Chou, J.; Do, R.K.G.; Capanu, M.; Zamarin, D.; Saltz, L.B.; Ariyan, C.E.; et al. Pd-1 blockade in advanced adrenocortical carcinoma. J. Clin. Oncol. 2020, 38, 71–80. [Google Scholar] [CrossRef]
- Habra, M.A.; Stephen, B.; Campbell, M.; Hess, K.; Tapia, C.; Xu, M.; Rodon Ahnert, J.; Jimenez, C.; Lee, J.E.; Perrier, N.D.; et al. Phase ii clinical trial of pembrolizumab efficacy and safety in advanced adrenocortical carcinoma. J. Immunother. Cancer 2019, 7, 253. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Hoimes, C.; Zarwan, C.; Wong, D.J.; Bauer, S.; Claus, R.; Wermke, M.; Hariharan, S.; von Heydebreck, A.; Kasturi, V.; et al. Avelumab in patients with previously treated metastatic adrenocortical carcinoma: Phase 1b results from the javelin solid tumor trial. J. Immunother. Cancer 2018, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Brabo, E.P.; Moraes, A.B.; Neto, L.V. The role of immune checkpoint inhibitor therapy in advanced adrenocortical carcinoma revisited: Review of literature. J. Endocrinol. Investig. 2020. [Google Scholar] [CrossRef]
- Carneiro, B.A.; Konda, B.; Costa, R.B.; Costa, R.L.B.; Sagar, V.; Gursel, D.B.; Kirschner, L.S.; Chae, Y.K.; Abdulkadir, S.A.; Rademaker, A.; et al. Nivolumab in metastatic adrenocortical carcinoma: Results of a phase 2 trial. J. Clin. Endocrinol. Metab. 2019, 104, 6193–6200. [Google Scholar] [CrossRef]
- Haluska, P.; Worden, F.; Olmos, D.; Yin, D.; Schteingart, D.; Batzel, G.N.; Paccagnella, M.L.; de Bono, J.S.; Gualberto, A.; Hammer, G.D. Safety, tolerability, and pharmacokinetics of the anti-igf-1r monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma. Cancer Chemother. Pharmacol. 2010, 65, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Urup, T.; Pawlak, W.Z.; Petersen, P.M.; Pappot, H.; Rorth, M.; Daugaard, G. Treatment with docetaxel and cisplatin in advanced adrenocortical carcinoma, a phase ii study. Br. J. Cancer 2013, 108, 1994–1997. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, C.; Edgerly, M.; Velarde, M.; Wilkerson, J.; Venkatesan, A.M.; Pittaluga, S.; Yang, S.X.; Nguyen, D.; Balasubramaniam, S.; Fojo, T. The vegf inhibitor axitinib has limited effectiveness as a therapy for adrenocortical cancer. J. Clin. Endocrinol. Metab. 2014, 99, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
|
ENSAT STAGE | Definition |
---|---|
I | T1, N0, M0 |
II | T2, N0, M0 |
III | T1–T2, N1, M0 T3–T4, N0–N1, M0 |
IV | T1–T4, N0–N1, M1 |
Drugs | Therapeutic Scheme | Number of Patients | Results | Reference |
---|---|---|---|---|
Streptozocin plus mitotane | Oral mitotane 1–4 g/day plus i.v. streptozocin 1 g/day for five days, thereafter 2 g once every three weeks. | 40 (37 underwent previous surgery; 28 out of 37 pts with apparent radical surgery) | Increased RFS interval and OS in adjuvantly treated cases. Overall, 2 year and 5 year survival rates of 70% and 32.5%, respectively. | Khan, 2000 [84] |
Etoposide, doxorubicin, cisplatin plus mitotane | i.v. etoposide at doses of 100 mg/m2 on days 5–7, doxorubicin 20 mg/m2 on days 1 and 8, cisplatin 40 mg/m2 on days 2 and 9. Cycles were repeated every 4 weeks. | 72 pts with measurable disease not amenable to radical surgery | Overall response: 48.6%. Median time to progression in responding patients: 18 months. | Berruti, 2005 [86] |
Erlotinib and gemcitabine | Oral erlotinib 100 mg/day plus i.v. gemcitabine 800 mg/m2 every 14 days. | 10 progressive ACC pts after two to four previous systemic therapies | No benefits. | Quinkler, 2008 [91] |
Gemcitabine plus 5-fluorouracil | Intravenous gemcitabine (800 mg/m2, on days 1 and 8, every 21 days) and i.v. 5-fluorouracil protracted infusion (200 mg/m2/day without interruption until progression) in the first six patients, or oral capecitabine (1500 mg/day) in the subsequent patients. Mitotane administration was maintained in all cases. | 28 pts with advanced ACC progressing after mitotane plus one or two systemic chemotherapy | Non-progressing patients after 4 months: 46.3%; complete response: 3.5%; partial regression: 3.5%; disease stabilization: 39.3%; progression of disease: 53.7%. | Sperone, 2010 [90] |
Bevacizumab plus capecitabine | Intravenous bevacizumab 5 mg/kg every 21 days plus oral capecitabine 950 mg/m2 twice daily for 14 days followed by 7 days of rest. | 10 pts from German ACC Registry with refractory ACC progressing after cytotoxic therapies | No benefits. | Wortmann, 2010 [92] |
Figitumumab | Maximal feasible dose (20 mg/kg) on day 1 of each 21 day-cycle (50 cycles). | 14 metastatic refractory ACC pts. | Stable disease: 57%. | Haluska, 2010 [109] |
Mitotane plus etoposide, doxorubicin and cisplatin (EDP) vs. Mitotane plus streptozocin (FIRM-ACT) | Mitotane (goal levels between 14 and 20 mg/L); i.v. etoposide 100 mg/m2 on days 2, 3, and 4; i.v. doxorubicin 40 mg/m2 on day 1; i.v. cisplatin 40 mg/m2 on days 3 and 4, every 4 weeks. i.v. streptozocin 1 g on days 1 to 5 in cycle 1; 2 g on day 1 in subsequent cycles, every 3 weeks. | 304 pts with advanced ACC randomly assigned | Pts in the EDP-mitotane group had a significantly higher response rate than those in the streptozocin-mitotane group (23.2% vs. 9.2%,) and longer median PFS (5.0 months vs. 2.1 months). No significant between-group difference in OS (14.8 months and 12.0 months, respectively). | Fassnacht, 2012 [87] |
Sorafenib plus metronomic paclitaxel | i.v. paclitaxel (60 mg/m2 every week) and oral sorafenib (400 mg twice a day) | 25 advanced ACC pts (second/third line therapy) | No benefits. | Berruti, 2012 [93] |
Sunitinib | Oral sunitinib 50 mg/day, 4 weeks on, 2 weeks off. | 38 pts with refractory ACC progressing after mitotane and one to three cytotoxic chemotherapies | Stable disease in 5/35 pts (median unbiased response rate 15.4%). Median PFS: 2.8 months. PFS in responder pts between 5.6 and 11.2 months; OS between 14.0 and 35.5 months. | Kroiss, 2012 [95] |
Cisplatin plus docetaxel | Intravenous cisplatin 50 mg/m2 and i.v. docetaxel 60 mg/m2 administered with a 3 week interval. | 19 pts with advanced ACC | Response rate: 21%; stable disease: 32%; median PFS: 3 months; 1 year PFS: 21%; median survival: 12.5 months. | Urup, 2013 [110] |
Cixutumumab plus temsirolimus | Intravenous cixutumumab 3–6 mg/kg/week plus i.v. temsirolimus, 25–37.5 mg/week (4 week cycles). | 26 metastatic ACC pts | Stable disease > 6 months (range 6–21 months) in 42% of pts. | Naing, 2013 [101] |
Cixutumumab plus mitotane vs. mitotane as single agent | Intravenous cixutumumab 10 mg/kg every 2 weeks. Mitotane starting dose 2 g daily, subsequently adjusted according to serum levels/symptoms. | 20 chemotherapy-naïve metastatic ACC pts | This study was terminated before the randomization phase due to slow accrual and limited efficacy. | Lerario, 2014 [102] |
Axitinib | Oral axitinib 5 mg twice daily. | 13 metastatic ACC pts | No benefits. | O’Sullivan, 2014 [111] |
Linsitinib | Twice-daily 150 mg oral linsitinib. | 139 locally advanced or metastatic ACC pts (90 assigned to linsitinib and 49 to placebo) | No benefits. | Fassnacht, 2015 [103] |
Avelumab | Intravenous avelumab 10 mg/kg every 2 weeks. Continuation of mitotane was permitted. | 50 previously treated metastatic ACC pts | Objective response rate: 6%; stable disease: 42%; Median PFS: 2.6 months; median OS 10.6 months; 1 year OS rate: 43.4%. | Le Tourneau, 2018 [106] |
Pembrolizumab | Intravenous pembrolizumab 200 mg every 3 weeks. | 16 pts with prior treatment fail in the past 6 months | Objective response rate: 14%. | Habra, 2019 [105] |
Nivolumab | Intravenous nivolumab (240 mg) every 2 weeks. | 10 pts with metastatic ACC previously treated with platinum-based chemotherapy and/or mitotane | Median PFS: 1.8 months; stable disease: 2/10 pts for 48 and 11 weeks. | Carneiro, 2019 [108] |
Pembrolizumab | Intravenous pembrolizumab 200 mg every 3 weeks. | 39 advanced ACC pts | Objective response rate 23%; disease control rate 52%; PFS; 2.1 months; median OS: 24.9 months. | Raj, 2020 [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paragliola, R.M.; Corsello, A.; Locantore, P.; Papi, G.; Pontecorvi, A.; Corsello, S.M. Medical Approaches in Adrenocortical Carcinoma. Biomedicines 2020, 8, 551. https://doi.org/10.3390/biomedicines8120551
Paragliola RM, Corsello A, Locantore P, Papi G, Pontecorvi A, Corsello SM. Medical Approaches in Adrenocortical Carcinoma. Biomedicines. 2020; 8(12):551. https://doi.org/10.3390/biomedicines8120551
Chicago/Turabian StyleParagliola, Rosa Maria, Andrea Corsello, Pietro Locantore, Giampaolo Papi, Alfredo Pontecorvi, and Salvatore Maria Corsello. 2020. "Medical Approaches in Adrenocortical Carcinoma" Biomedicines 8, no. 12: 551. https://doi.org/10.3390/biomedicines8120551
APA StyleParagliola, R. M., Corsello, A., Locantore, P., Papi, G., Pontecorvi, A., & Corsello, S. M. (2020). Medical Approaches in Adrenocortical Carcinoma. Biomedicines, 8(12), 551. https://doi.org/10.3390/biomedicines8120551