Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis
Abstract
:1. Introduction
2. Chemotherapy
2.1. Mechanism of Action
2.2. Side Effects
3. Targeted Therapy with Small Molecule Inhibitors (SMIs)
3.1. Mechanism of Action
3.2. Challenges for SMI Research
- feedback loops and cross talk that can compensate for targeted inhibition,
- selection for mutations leading to resistance,
- selection of kinase switch variants.
- normal tissue toxicity including the immune system and the blood clotting system,
- the appearance of cutaneous squamous carcinoma,
- identification of suitable patients,
- the potentiation of adverse events in the case of combination with other TTs or with chemotherapy.
3.3. Side Effects
4. Cytokines
5. Immunotherapy with Monoclonal Antibodies, Including Checkpoint Inhibitors
5.1. Mechanism of Action
5.2. Side Effects
6. Immunotherapy via Cancer Vaccines and Oncolytic Viruses
6.1. Cancer Vaccines: State-of-the-Art
6.1.1. Mechanism of Action
6.1.2. Side Effects
6.2. Oncolytic Viruses
6.2.1. Mechanism of Action
6.2.2. Side Effects
6.3. Cancer Vaccines Modified by Oncolytic Newcastle Disease Virus
6.3.1. Mechanism of Action
6.3.2. Side Effects
7. Chimeric Antigen Receptor (CAR) T-Cell Therapy
7.1. Mechansm of Action and Costs
7.2. Side Effects
8. Combination of Checkpoint Blockade with Cancer Vaccines, Oncolytic Viruses and Adoptive T-Cell Therapy
9. Discussion
9.1. Chemotherapy
9.2. Molecularly Targeted Therapy
9.3. Immunotherapy
9.4. Checkpoint-Inhibitory Antibodies
9.5. CAR T-Cell Therapy
9.6. Cancer Vaccines and OVs
9.7. Adoptive T-Cell Therapy
10. Conclusions
Funding
Conflicts of Interest
References
- Fisher, B. Biological research in the evolution of cancer surgery: A personal perspective. Cancer Res. 2008, 68, 10007. [Google Scholar] [CrossRef] [Green Version]
- Van den Steene, J.; Soete, G.; Storme, G. Adjuvant radiotherapy for breast cancer significantly improves overall survival: The missing link. Radiother. Oncol. 2000, 55, 263–272. [Google Scholar] [CrossRef]
- Bonadonna, G.; Brusamolino, E.; Valagussa, P.; Rossi, A.; Brugnatelli, L.; Brambilla, C.; Veronesi, U. Combination chemotherapy as an adjunct treatment in operable breast cancer. N. Engl. J. Med. 1976, 294, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R.; Raina, V.; Bradbury, J. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomized trial. Lancet 2013, 381, 805. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G.; Wardt, R.; Barton, M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin. Oncol. 2004, 16, 549–560. [Google Scholar] [CrossRef]
- Blay, J.Y.; Le Cesne, A.; Alberti, L.; Ray-Coquard, I. Targeted cancer therapies. Bull. Cancer 2005, 92, E13–E18. [Google Scholar]
- Ulrich, A.; Schlesinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990, 61, 203–212. [Google Scholar] [CrossRef]
- Savage, D.G.; Antman, K.H. Imatinib mesylate–A new oral targeted therapy. N. Engl. J. Med. 2002, 346, 683–693. [Google Scholar] [CrossRef]
- Burnet, F.M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 1970, 13, 1–27. [Google Scholar]
- Gubin, M.M.; Artyomov, M.N.; Mardis, E.R.; Schreiber, R.D. Tumor neoantigens: Building a framework for personalized cancer immunotherapy. J. Clin. Investig. 2015, 125, 3413–3421. [Google Scholar] [CrossRef]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Cellular and Molecular Immunology, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Schirrmacher, V. Shifts in tumor cell phenotypes induced by signals from the microenvironment. Immunobiology 1980, 157, 89–98. [Google Scholar] [CrossRef]
- Fidler, I.J. The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 2011, 128, 2527–2535. [Google Scholar]
- Yefenof, E. (Ed.) Innate and Adaptive Immunity in the Tumor Microenvironment; Springer Science Business Media LLC: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Bevan, M.J. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011, 35, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Melief, C.J.; van Hall, T.; Arens, R.; Ossendorp, F.; van der Burg, S.H. Therapeutic cancer vaccines. J. Clin. Investig. 2015, 125, 3401–3412. [Google Scholar] [CrossRef]
- Seeber, S.; Schütte, J. (Eds.) Therapiekonzepte Onkologie; Springer: Berlin/Heidelberg, Germany, 1993; pp. 1–562. [Google Scholar]
- Giese, M. (Ed.) Molecular Vaccines. From Prophylaxis to Therapy-Volume I; Springer: Wien, Austra, 2013; pp. 1–447. [Google Scholar]
- Bot, A.; Obrocea, M.; Marincola, F. (Eds.) Cancer Vaccines. From Research to Clinical Practice; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–280. [Google Scholar]
- Khalili, K.; Jeang, K. (Eds.) Viral Oncology. Basic Science and Clinical Applications; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 1–475. [Google Scholar]
- Harrington, K.J.; Vile, R.G.; Pandha, H.S. (Eds.) Viral Therapy of Cancer; Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–404. [Google Scholar]
- Fournier, P.; Schirrmacher, V. Harnessing oncolytic virus-mediated antitumor immunity. Front. Oncol. 2014, 4, 337. [Google Scholar]
- Lowenbraun, S.; DeVita, V.T.; Serpick, A.A. Combination chemotherapy with nitrogen mustard, vincristine, procarbazine and prednison in lymphosarcoma and reticulum cell sarcoma. Cancer 1970, 25, 1018–1025. [Google Scholar] [CrossRef]
- Hannahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Giaccone, G.; Soria, J.C. Targeted Therapies in Oncology, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2014. [Google Scholar]
- Chappell, W.H.; Steelman, L.S.; Long, J.M.; Kempf, R.C.; Abrams, S.L.; Franklin, R.A.; Malaponte, G. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: Rationale and importance to inhibiting these pathways in human health. Oncotarget 2011, 2, 135–164. [Google Scholar] [CrossRef] [Green Version]
- Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K signaling: The path to discovery and understanding. Nat. Rev. 2012, 13, 195–203. [Google Scholar] [CrossRef]
- Weinberg, R.A. The Biology of Cancer; Garland Science, Taylor & Francis Group, LLC: Oxfordshire, UK, 2007; pp. 133–134. [Google Scholar]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; De Braud, F.; Larkin, J.; Chiarion-Sileni, V. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicenter, double-blind, phase 3 randomised controlled trial. Lancet 2015, 386, 444. [Google Scholar] [CrossRef]
- Williams, R. Discontinued in 2013: Oncology drugs. Expert Opin. Investig. Drugs 2015, 24, 95. [Google Scholar] [CrossRef] [PubMed]
- Marshall, H.T.; Djamgoz, M.B.A. Immuno-Oncology: Emerging targets and combination therapies. Front. Oncol. 2018, 8, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.; Robert, C. Immune checkpoint inhibitors. Prog. Tumor Res. 2015, 42, 55–66. [Google Scholar] [PubMed] [Green Version]
- Pico de Coana, Y.; Choudhury, A.; Kiessling, R. Checkpoint blockade for cancer therapy: Revitalizing a suppressed immune system. Trends Mol. Med. 2015, 21, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Curran, M.A. Immune checkpoint combinations from mouse to man. Cancer Immunol. Immunother. 2015, 64, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Barbee, M.S.; Ogunniy, A.; Horvat, T.Z.; Dang, T.O. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann. Pharmacother. 2015, 49, 907–937. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Braiteh, F. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicenter, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Massard, C. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef]
- Abdel-Rahman, O.; ElHalawani, H.; Fouad, M. Risk of gastrointestinal complications in cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Immunotherapy 2015, 7, 1213–1227. [Google Scholar] [CrossRef]
- Corsello, S.M.; Barnabei, A.; Marchetti, P.; De Vecchis, L.; Salvatori, R.; Torino, F. Endocrine side effects by immune checkpoint inhibitors. J. Clin. Endocrinol. Metab. 2013, 98, 1361–1375. [Google Scholar] [CrossRef] [Green Version]
- Spain, L.; Diem, S.; Larkin, J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat. Rev. 2016, 44, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Eigentler, T.K.; Hassel, J.C.; Berking, C.; Aberle, J.; Bachmann, O.; Grünwald, V.; Kähler, K.; Loquai, C.; Reinmuth, N.; Steins, M.; et al. Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy. Cancer Treat. Rev. 2016, 45, 7–18. [Google Scholar] [CrossRef] [PubMed]
- 4Hassel, J.; Heinzerling, L.; Aberle, J.; Bähr, O.; Eigentler, T.K.; Grimm, M.O.; Grünwald, V.; Leipe, J.; Reinmuth, N.; Tietze, J.K.; et al. Combined immune checkpoint blockade (anti-PD-1/anti-CTLA-4): Evaluation and management of adverse drug reactions. Cancer Treat. Rev. 2017, 57, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Lebbé, C.; Meyer, N.; Mortier, L.; Marquez-Rodas, I.; Robert, C.; Rutkowski, P.; Schadendorf, D. Evaluation of two dosing regiments for nivolumab in combination with ipilimumab in patients with advanced melanoma: Results from the phase IIIb/IV checkmate 511 trial. J. Clin. Oncol. 2019, 37, 867. [Google Scholar] [CrossRef] [PubMed]
- Melero, I.; Berman, D.M.; Aznar, M.A.; Korman, A.J.; Gracia, J.L.P.; Haanen, J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 2015, 15, 457. [Google Scholar] [CrossRef] [PubMed]
- Dempke, W.C.M.; Fenchel, K.; Uciechowski, P.; Dale, S.P. Second- and third-generation drugs for immuno-oncology treatment–the more the better? Eur. J. Cancer 2017, 74, 55. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J.M.; Buqué, A.; Senovilla, L.; Baracco, E.E.; Apte, R.N. Classification of current anticancer immunotherapies. Oncotarget 2018, 5, 12472–12508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Xu, Y. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciocca, D.R.; Cayado-Gutierrez, N.; Maccioni, M.; Cuello-Carrion, F.D. Heat shock proteins (HSPs) based anti-cancer vaccines. Curr. Mol. Med. 2012, 12, 1183–1197. [Google Scholar] [CrossRef] [PubMed]
- Tosti, G.; di Pietro, A.; Ferrucci, P.F.; Testori, A. HSPPC-96 vaccine in metastatic melanoma patients: From the state of the art to a possible future. Expert Rev. Vaccines 2009, 8, 1513. [Google Scholar] [CrossRef] [PubMed]
- Bloch, O.; Crane, C.A.; Fuks, Y.; Kaur, R.; Aghi, M.K.; Berger, M.S.; Prados, M.D. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: A phase II, single-arm trial. Neuro-Oncology 2014, 16, 274. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 146. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, A.; Ebrahimzadeh, M.S.; Rahimi, S.B.; Saeidi, M.; Tabarraei, A.; Mohebbi, S.R.; Shirian, S.; Gorji, A.; Ghaemi, A. Non-replicating Newcastle disease virus as an adjuvant for DNA vaccine enhances antitumor efficacy through the induction of TRAIL and granzyme B expression. Virus Res. 2019, 261, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Schirrmacher, V.; Fournier, P. The hemagglutinin-neuraminidase gene of Newcastle disease virus: A powerful molecular adjuvant for DNA anti-tumor vaccination. Vaccine 2010, 28, 6891–6900. [Google Scholar] [CrossRef] [PubMed]
- Lowenfeld, L.; Mick, R.; Datta, J.; Xu, S.; Fitzpatrick, E.; Fisher, C.S.; Roses, R.E. Dendritic cell vaccination enhances immune responses and induces regression of HER2 pos DCIS independent of route: Results of randomized selection design trial. Clin. Cancer Res. 2017, 23, 2961. [Google Scholar] [CrossRef] [Green Version]
- Aurisicchio, L.; Pallocca, M.; Ciliberto, G.; Palombo, F. The perfect personalized cancer therapy: Cancer vaccines against neoantigens. J. Exp. Clin. Cancer Res. 2018, 37, 86. [Google Scholar] [CrossRef] [Green Version]
- Schirrmacher, V.; Lorenzen, D.; Van Gool, S.W.; Stuecker, W. A new strategy of cancer immunotherapy combining hyperthermia/oncolytic virus pretreatment with specific autologous anti-tumor vaccination–A review. Austin Oncol. Case Rep. 2017, 2, 1006. [Google Scholar]
- Obara, W.; Kanehira, M.; Katagiri, T.; Kato, R.; Kato, Y.; Takata, R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci. 2018, 109, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Chamani, R.; Ranji, P.; Hadji, A.; Esmati, E.; Alizadeh, A.M. Application of E75 peptide vaccine in breast cancer patients: A systematic review and Meta-analysis. Eur. J. Pharmacol. 2018, 831, 87–93. [Google Scholar] [CrossRef]
- Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanovic, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der Burg, S.H.; et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019, 565, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Artusio, E.; Hathaway, B.; Stanson, J.; Whiteside, T.L. Transfection of human monocyte-derived dendritic cells with native tumor DNA induces antigen-specific T-cell responses in vitro. Cancer Biol. Ther. 2006, 5, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Abguille, S.; Van den Velde, A.; Smitts, E.L.; Van Tendeloo, V.F.; Juliusson, G.; Cools, N.; Nijs, G.; Stein, B.; Lion, E.; Van Driessche, A.; et al. Dendritic cell vaccination as postremission treatment to prevent delay relapse in acute myeloid leukemia. Blood 2017, 130, 1713–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; He, J.; Liu, C.; Chang, L. An effective cancer vaccine modality: Lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 2006, 24, 3477–3489. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Galani, I.E.; Cerwenka, A.; Schirrmacher, V.; Fournier, P. Antitumor vaccination with Newcastle disease virus hemagglutinin-neuraminidase plasmid DNA application: Changes in tumor microenvironment and activation of innate ant-tumor immunity. Vaccine 2011, 29, 1185–1193. [Google Scholar] [CrossRef]
- DeMaria, P.J.; Bilusic, M. Cancer vaccines. Hematol. Oncol. Clin. N. Am. 2019, 33, 199–214. [Google Scholar] [CrossRef]
- Russel, S.J.; Peng, K.W.; Bell, J.C. Oncolytic virotherapy. Nat. Biotechnol. 2012, 30, 658. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.R.; Kratzke, R.A. Oncolytic virus therapy for cancer: The first wave of translational clinical trials. Transl. Res. 2013, 1785, 217. [Google Scholar] [CrossRef]
- Liang, M. Clinical development of oncolytic viruses in China. Curr. Pharm. Biotechnol. 2012, 13, 1852–1857. [Google Scholar] [CrossRef]
- Raman, S.S.; Hecht, J.R.; Chan, E. Talimogene laherparepvec: Review of its mechansm of action and clinical efficacy and safety. Immunotherapy 2019, 11, 705–723. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demarian, S.; Deutsch, E.; et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immuno Therapy Cancer 2020, 8, e000337. [Google Scholar] [CrossRef] [Green Version]
- Schirrmacher, V. Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biological agent with potential to break therapy resistance. Expert Opin. Biol. Ther. 2015, 15, 1757–1771. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V.; van Gool, S.; Stuecker, W. Breaking therapy resistance: An update on oncolytic Newcastle disease virus for improvements of cancer therapy. Biomedicines 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirukkumaran, C.; Morris, D.G. Oncolytic viral therapy using reovirus. Methods Mol. Biol. 2009, 542, 607–634. [Google Scholar] [PubMed]
- Heery, C.R.; Palena, C.; McMahon, S.; Donahue, R.N.; Lepone, L.M.; Grenga, I.; Dirmeier, U.; Cordes, L.; Marté, J.; Dahut, W.; et al. Phase I study of a poxviral TRICOM-based vaccine directed against the transcription factor brachyuri. Clin. Cancer Res. 2017, 23, 6833–6845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrop, R.; Connolly, N.; Redchenko, I.; Valle, J.; Saunders, M.; Ryan, M.G.; Myers, K.A.; Drury, N.; Kingsman, S.M.; Hawkins, R.E.; et al. Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: A phase I/II trial. Clin. Cancer Res. 2006, 12 Pt 1, 3416–3424. [Google Scholar] [CrossRef] [Green Version]
- Kuryk, L.; Möller, A.W.; Jaderberg, M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huNOG mouse model. Oncoimmunology 2018, 8, 30713786. [Google Scholar] [CrossRef]
- Matveena, O.V.; Kochneva, G.V.; Zainutdinov, S.S.; Ilyinskaya, G.V.; Chumakov, P.M. Oncolytic paramyxoviruses: Mechanism of action, preclinical and clinical studies. Mol. Biol. 2018, 52, 360–379. [Google Scholar]
- Arlen, P.M.; Skarupa, L.; Pazdur, M.; Seetharam, M.; Tsang, K.Y.; Grosenbach, D.W.; Feldman, J.; Poole, D.J.; Litzingger, M.; Steinberg, S.M.; et al. Clinical safety of a viral vector based prostate cancer vaccine strategy. J. Urol. 2007, 178 Pt 1, 1515–1520. [Google Scholar] [CrossRef]
- Shaw, A.R.; Suzuki, M. Recent advances in oncolytic adenovirus therapies for cancer. Curr. Opin. Virol. 2016, 21, 9. [Google Scholar] [CrossRef] [Green Version]
- Melzer, M.K.; Zeitlinger, L.; Mall, S.; Steiger, K.; Schmidt, R.M.; Ebert, O.; Krackhardt, A.; Altomonte, J. Enhanced safety and efficacy of oncolytic VSV therapy by combination with T cell receptor transgenic T cells as carriers. Mol. Ther. 2019, 12, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Von Hoegen, P.; Zawatzky, R.; Schirrmacher, V. Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor-specific cytolytic T cell activity via induction of interferon-alpha/beta. Cell. Immunol. 1990, 126, 80–90. [Google Scholar] [CrossRef]
- Ockert, D.; Schirrmacher, V.; Beck, N.; Stoelben, E.; Ahlert, T.; Flechtenmacher, J.; Hagmüller, E.; Buchcik, R.; Nagel, M.; Saeger, H.D. Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin. Cancer Res. 1996, 2, 21. [Google Scholar]
- Heicappell, R.; Schirrmacher, V.; von Hoegen, P.; Ahlert, T.; Appelhans, B. Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. Int. J. Cancer 1986, 37, 569. [Google Scholar] [CrossRef] [PubMed]
- Schild, H.; von Hoegen, P.; Schirrmacher, V. Modification of tumor cells by a low dose of Newcastle disease virus. II. Augmented tumor-specific T cell response as a result of CD4+ and CD8+ immune T cell cooperation. Cancer Immunol. Immunother. 1989, 28, 22. [Google Scholar] [CrossRef] [PubMed]
- Steiner, H.H.; Bonsanto, M.M.; Beckhove, P.; Brysch, M.; Geletneky, K.; Ahmadi, R.; Schuele-Freyer, R.; Kremer, P.; Ranaie, G.; Matejic, D.; et al. Antitumor vaccination of patients with glioblastoma multiforme: A pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol. 2004, 22, 4272. [Google Scholar] [CrossRef]
- Fournier, P.; Wilden, H.; Schirrmacher, V. Imortance of retinoic acid-inducible gene I and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. Int. J. Oncol. 2012, 40, 287. [Google Scholar] [PubMed] [Green Version]
- Jarahian, M.; Watzl, C.; Fournier, P.; Arnold, A.; Djandi, D.; Zahedi, S.; Cerwenka, A.; Paschen, A.; Schirrmacher, V.; Momburg, F. Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J. Virol. 2009, 83, 8108. [Google Scholar] [CrossRef] [Green Version]
- Washburn, B.; Weigand, M.A.; Grosse-Wilde, A.; Janke, M.; Stahl, H.; Rieser, E.; Sprick, M.R.; Schirrmacher, V.; Walczak, H. TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J. Immunol. 2003, 170, 1814. [Google Scholar] [CrossRef] [Green Version]
- Umansky, V.; Shatrov, V.A.; Lehmann, V.; Schirrmacher, V. Induction of NO synthesis in macrophages by Newcastle disease virus is associated with activation of nuclear factor-kappa B. Int. Immunol. 1996, 8, 303. [Google Scholar] [CrossRef]
- Zaslawsky, E.; Hershberg, U.; Seto, J.; Pham, A.M.; Marques, S.; Duke, J.L.; Wetmur, J.C.; Tenoever, B.R.; Sealfon, S.C.; Kleinstein, S.H. Antiviral response dictated by choreographed cascade of transcription factors. J. Immunol. 2010, 184, 2908–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Koopmann, J.; Fiola, C.; Fournier, P.; Schirrmacher, V. Dendritic cells pulsed with viral oncolysates potently stimulate autologous T cells from cancer patients. Int. J. Oncol. 2002, 21, 685. [Google Scholar] [CrossRef] [PubMed]
- Pettenati, C.; Ingersoll, M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 2018, 15, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. The influence of BCG on vaccine responses–A systematic review. Expert Rev. Vaccines 2018, 17, 547–554. [Google Scholar] [CrossRef]
- Roberts, Z.J.; Better, M.; Bot, A.; Roberts, M.R.; Ribas, A. Axicabtagene Ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk. Lymphoma 2018, 59, 1785. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Qayed, M. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018, 378, 439. [Google Scholar] [CrossRef]
- Whittington, M.D.; McQueen, R.B.; Ollendorf, D.A.; Kumar, V.M.; Chapman, R.H.; Tice, J.A.; Pearson, S.D.; Campbell, J.D. Long-term survival and cost-effectiveness associated with axicabtagene ciloleucel vs chemotherapy for treatment of B-cell lymphoma. JAMA Netw. Open 2019, 2. [Google Scholar] [CrossRef]
- Gorovits, B.; Koren, E. Immunogenicity of chimeric antigen receptor T-cell therapeutics. Biodrugs 2019, 33, 275. [Google Scholar] [CrossRef]
- Yu, W.; Hua, Z. Chimeric antigen receptor T-cell (CAR T) therapy for hematologic and solid malignancies: Efficacy and safety—A systematic review with Meta-analysis. Cancers 2019, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Vareki, S.M. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 157. [Google Scholar] [CrossRef]
- John, L.B.; Devaud, C.; Duong, C.P.; Yong, C.S.; Beavis, P.A.; Haynes, N.M.; Darcy, P.K. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 2013, 19, 5636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonios, J.P.; Soto, H.; Everson, R.G.; Orpilla, J.; Moughon, D.; Shin, N.; Liau, L.M. PD-1 blockade enhances the vaccination-induced immune response in glioma. JCI Insight 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromm, G.; de Silva, S.; Giffin, L.; Xu, X.; Rose, J.; Schreiber, T.H. Gp96-Ig/costimulator (OX40L, ICOSL, or 4-1BBL) combination vaccine improves T-cell priming and enhances immunity, memory, and tumor elimination. Cancer Immunol. Res. 2016, 4, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesney, J.; Puzanov, I.; Collichio, F.; Singh, P.; Milhem, M.M.; Glaspy, J.; Logan, T.F. Randomized, open-label phase II study evaluating the efficacy and safety of Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 2018, 36, 1658. [Google Scholar] [CrossRef]
- Hamid, O.; Ismail, R.; Puzanov, I. Intratumoral immunotherapy–Update. Oncologist 2019. [Google Scholar] [CrossRef]
- Niraula, S.; Amir, E.; Vera-Badillo, F.; Seruga, B.; Ocana, A.; Tannock, I.F. Risk of incremental toxicities and associated costs of new anticancer drugs: A meta-analysis. J. Clin. Oncol. 2014, 32, 3634–3642. [Google Scholar] [CrossRef]
- Niraula, S.; Seruga, B.; Ocana, A.; Shao, T.; Goldstein, R.; Tannock, I.F.; Amir, E. The pRice we pay for progress: A meta-analysis of harms of newly approved anticancer drugs. J. Clin. Oncol. 2012, 30, 3012–3019. [Google Scholar] [CrossRef]
- Tannock, I.F.; Amir, E.; Boothe, C.M.; Niraula, S.; Ocana, A.; Seruga, B.; Templeton, A.J.; Vera-Badillo, F. Relevance of randomized controlled trials in oncology. Lancet Oncol. 2016, 17, e560. [Google Scholar] [CrossRef]
- Gu, X.; He, D.; Li, C.; Wang, H.; Yang, G. Development of inducible CD19-CAR T cells with a Tet-on system for controlled activity and enhanced clinical safety. Int. J. Sci. 2018, 19, 3455. [Google Scholar] [CrossRef] [Green Version]
- Chakravarti, D.; Caraballo, L.D.; Weinberg, B.H.; Wong, W.W. Inducible gene switches with memory in human T cells for cellular immunotherapy. ACS Synth. Biol. 2019, 8, 1744. [Google Scholar] [CrossRef]
- Simon, F.; Borrega, J.G.; Bröckelmann, P.J. Toxicities of novel therapies for hematological malignancies. Expert. Rev. Hematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Müerköster, S.; Wacholski, O.; Zerban, H.; Schirrmacher, V.; Umansky, V.; Rocha, M. Graft-versus-leukemia reactivity involves cluster formation between superantigen-reactive donor T lymphocytes and host macrophages. Clin. Cancer Res. 1998, 4, 3095. [Google Scholar] [PubMed]
- Feuerer, M.; Beckhove, P.; Bai, L.; Solomayer, E.; Bastert, G.; Diel, I.J.; Pedain, C.; Oberniedermayer, M.; Schirrmacher, V.; Umansky, V. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow of breast cancer patients. Nat. Med. 2001, 7, 452. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Beckhove, P.; Feuerer, M.; Umansky, V.; Choi, C.; Schütz, F.; Solomayer, E.; Diel, I.J.; Schirrmacher, V. Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: Bidirectional cell stimulation, survival and antitumor activity in vivo. Int. J. Cancer 2003, 73. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.F.; Bzeih, H.; Schirra, C.; Chitirala, P.; Halimani, M.; Cordat, E.; Krause, E.; Rettig, J.; Pattu, V. Endocytosis of cytotoxic granules is essential for multiple killing of target cells by T lymphocytes. J. Immunol. 2016, 197, 2473. [Google Scholar] [CrossRef] [PubMed]
- Schirrmacher, V.; Fournier, P.; Schlag, P. Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: Long-term patient survival and mechanism of function. Expert Rev. Vaccines 2014, 13, 117. [Google Scholar] [CrossRef]
- Schirrmacher, V.; Beckhove, P.; Krüger, A.; Rocha, M.; Umansky, V.; Fichtner, K.; Hull, W.; Zangemeisterwittke, U.; Griesbach, A.; Jurians, K.; et al. Effective immune rejection of advanced metastasized cancer. Int. J. Oncol. 1995, 6, 505–521. [Google Scholar] [CrossRef]
- Schirrmacher, V. Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: Lessons from GvL studies in animals. Cancer Immunol. Immunother. 2014, 63, 535–543. [Google Scholar] [CrossRef]
Grade | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Intensity | none | mild | moderate | severe | life-threatening or disabling |
1. Bone marrow & blood a | |||||
Hb | > 11 | 10–11 | 8–9 | 7–8 | < 6.5 |
Leucocytes | > 4 | 3–4 | 2–3 | 1–2 | < 1.0 |
Granulocytes | > 2 | 1–2 | 1 | 0.5–0.9 | < 0.5 |
Thrombocytes | > 100 | 75–99 | 50–74 | 25–49 | < 25 |
2. GI Tract | |||||
Liver GOT/GPT | < 1.25 × N b | 1.25–2,5 × N | 2.6–5 × N | 5.1–10 × N | > 10 × N |
Bilirubin | < 1.25 × N | 1.25–2.5 × N | 2.6–5 × N | 5.1–10 × N | >10 × N |
3. Kidney | |||||
Urea | < 1.25 × N b | 1.25–2.5 × N | 2.6–5 × N | 5.1–10 × N | > 10 × N |
Kreatinin | < 1.25 × N | 1.25–2.5 × N | 2.6–5 × N | 5.1–10 × N | > 10 × N |
Proteinuria | none | < 3 g/L | 3–10 g/L | > 10 g/L | ne syn |
4. Fever d | none | < 38 °C | 38–40 °C | > 40 °C | pr dec |
Grade | 3 | 4 |
---|---|---|
Stomatitis | ulcers | peroral nutrition impossible |
Diarrhoe | intolerable | hemorrhagic dehydration |
Obstipation | subileus | Ilius |
Hematuria | macrohematuria | obstructive uropathy |
Lung | dyspnoe | bed stay obligatory |
Allergy | bronchospasms | anaphylaxis |
Skin | ulcerations | dermatitis, necrosis |
Hair | alopecia, reversible | alopecia, irreversible |
Infections | severe | severe + hypotonia |
Heartfunction | dysfunction | dysfunction + nonresponsive |
Bleading | severe | circulatory disorder |
Neurotoxicity | ||
(i) central/consciousness | somnolencia >50% | coma |
(ii) peripheral | paresthesia | paralysis |
(iii) extrapyramidal symptoms | ataxia > 4 days | spasms, coma |
Grade 2–4 |
---|
Skin |
Changes in how the skin feels |
Increase of photosensitivity |
Rash (scalp, face, neck, chest, upper back |
Dry skin |
Itching |
Red, sore cuticles (the areas around the nails) |
Hand-foot syndrome, painful |
Changes in hair growth |
Changes in hair or skin color |
Changes in and around the eyes |
Common and serious side effects |
High blood pressure |
Bleeding or blood clotting problems |
Slow wound healing |
Heart damage |
Swelling |
Diarrhea |
Hepatitis |
Grade 2–4 |
---|
Skin: rash, rarely bullous pemphigoid (BP) Lung: Pulmonary toxicity, pneumonia Heart: autoimmune myocarditis, cardiovascular toxic effects Liver: hepatitis Gastrointestinal: diarrhea, vomiting, colitis (all grades and high grade) Kidney: acute interstitial nephritis Endocrine: hypophysitis, more rarely thyroid disease, occasionally adrenal insufficiency Fatigue: Fewer high grade events with anti-PD-1 than with anti-CTLA-4 mAbs |
Grade | 0 | 1 | 2 | 3 | 4 | References 1 |
---|---|---|---|---|---|---|
Cancer vaccines | + | + | +/− | − | − | [47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] |
Oncolytic viruses | + | + | +/− | − | − | [22,23,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80] |
Virus-modified | ||||||
cancer vaccines | + | + | +/− | − | − | [57,71,72,73,74,75,81,82,83,84,85] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirrmacher, V. Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis. Biomedicines 2020, 8, 61. https://doi.org/10.3390/biomedicines8030061
Schirrmacher V. Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis. Biomedicines. 2020; 8(3):61. https://doi.org/10.3390/biomedicines8030061
Chicago/Turabian StyleSchirrmacher, Volker. 2020. "Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis" Biomedicines 8, no. 3: 61. https://doi.org/10.3390/biomedicines8030061
APA StyleSchirrmacher, V. (2020). Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis. Biomedicines, 8(3), 61. https://doi.org/10.3390/biomedicines8030061