Can the Molar Insulin: C-Peptide Ratio Be Used to Predict Hyperinsulinaemia?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Protocol
2.5. Ethics
2.6. Participant Classification
2.7. Calculations and Statistical Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cerutti, F.; Sacchetti, C.; Bessone, A.; Rabbone, I.; Cavallo-Perin, P.; Pacini, G. Insulin secretion and hepatic insulin clearance as determinants of hyperinsulinaemia in normotolerant grossly obese adolescents. Acta Paediatr. 1998, 87, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Crofts, C.A.P.; Schofield, G.; Zinn, C.; Wheldon, M.; Kraft, J. Identifying hyperinsulinaemia in the absence of impaired glucose tolerance: An examination of the Kraft database. Diabetes Res. Clin. Pract. 2016, 118, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.T.; Mansoor, J.; Dohm, L.; Chapman, W.H.H.; Pender, J.R.; Pories, W.J. Hyperinsulinemic syndrome: The metabolic syndrome is broader than you think. Surgery 2014, 156, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Sobki, S.H.; Ekhzaimy, A.; Khan, I.; Almusawi, M.A. Biomarker potential of C-peptide for screening of insulin resistance in diabetic and non-diabetic individuals. Saudi J. Biol. Sci. 2018, 25, 1729–1732. [Google Scholar] [CrossRef] [PubMed]
- Anoop, S.; Misra, A.; Bhatt, S.P.; Gulati, S.; Mahajan, H. High fasting C-peptide levels and insulin resistance in non-lean & non-obese (BMI > 19 to <25 kg/m2) Asian Indians with type 2 diabetes are independently associated with high intra-abdominal fat and liver span. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 708–715. [Google Scholar] [CrossRef]
- Brands, M.; Swat, M.; Lammers, N.M.; Sauerwein, H.P.; Endert, E.; Ackermans, M.T.; Verhoeven, A.J.; Serlie, M.J. Effects of a hypercaloric diet on beta-cell responsivity in lean healthy men. Clin. Endocrinol. 2013, 78, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Block, M.B.; Rosenfield, R.L.; Mako, M.E.; Steiner, D.F.; Rubenstein, A.H. Sequential changes in beta-cell function in insulin-treated diabetic-patients assessed by c-peptide immunoreactivity. N. Engl. J. Med. 1973, 288, 1144–1148. [Google Scholar] [CrossRef]
- Brandenburg, D. History and Diagnostic Significance of C-Peptide. Exp. Diabetes Res. 2008, 576862. [Google Scholar] [CrossRef]
- Clark, P.M. Assays for insulin, proinsulin(s) and C-peptide. Ann. Clin. Biochem. 1999, 36, 541–564. [Google Scholar] [CrossRef] [Green Version]
- De León, D.D.; Stanley, C.A. Determination of insulin for the diagnosis of hyperinsulinemic hypoglycemia. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.I.; Rubenstein, A.H. Metabolism of proinsulin, insulin, and c-peptide in rat. J. Clin. Investig. 1973, 52, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Gastaldelli, A.; Sironi, A.; Ciociaro, D.; Positano, V.; Buzzigoli, E.; Giannessi, D.; Lombardi, M.; Ferrannini, E. Visceral fat and beta cell function in non-diabetic humans. Diabetologia 2005, 48, 2090–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoah, A.G.B.; Schuster, D.P.; Gaillard, T.; Osei, K. Insulin sensitivity and cardiovascular risk factors in hypertensive and normotensive native Ghanaians. Diabetologia 2003, 46, 949–955. [Google Scholar] [CrossRef] [Green Version]
- Iwase, H.; Kobayashi, M.; Nakajima, M.; Takatori, T. The ratio of insulin to C-peptide can be used to make a forensic diagnosis of exogenous insulin overdosage. Forensic Sci. Int. 2001, 115, 123–127. [Google Scholar] [CrossRef]
- Argoud, G.W.; Schade, D.S.; Eaton, R.P.; Sterling, W.A. C-peptide suppression test and recurrent insulinoma. Am. J. Med. 1989, 86, 335–337. [Google Scholar] [CrossRef]
- Cust, A.E.; Allen, N.E.; Rinaldi, S.; Dossus, L.; Friedenreich, C.; Olsen, A.; Tjønneland, A.; Overvad, K.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; et al. Serum levels of C-peptide, IGFBP-1 and IGFBP-2 and endometrial cancer risk; results from the European prospective investigation into cancer and nutrition. Int. J. Cancer 2007, 120, 2656–2664. [Google Scholar] [CrossRef]
- Ma, J.; Li, H.; Giovannucci, E.; Mucci, L.; Qiu, W.; Nguyen, P.L.; Gaziano, J.M.; Pollak, M.; Stampfer, M.J. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: A long-term survival analysis. Lancet Oncol. 2008, 9, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Kraft, J.R. Diabetes Epidemic and You, 2nd ed.; Trafford Publishing: Bloomington, IN, USA, 2011; (Original work published 2008) (Reprinted from 2011). [Google Scholar]
- Kraft, J.R. Insulin and Glucagon. In Nuclear Medicine In Vitro, 2nd ed.; Rothfeld, B., Ed.; J.B. Lippincott Company: Philadelphia, PA, USA, 1975. [Google Scholar]
- World Health Organisation. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications (WHO/NCD/NCS/99.2); WHO Document Production Services: Geneva, Switzerland, 1999; Available online: http://www.clinimeded.co.uk/uploads/2/3/1/9/23199750/who_diabetes_1999_criteria.pdf. (accessed on 3 September 2019).
- Genazzani, A.D.; Prati, A.; Santagni, S.; Ricchieri, F.; Chierchia, E.; Rattighieri, E.; Campedelli, A.; Simoncini, T.; Artini, P.G. Differential insulin response to myo-inositol administration in obese polycystic ovary syndrome patients. Gynecol. Endocrinol. 2012, 28, 969–973. [Google Scholar] [CrossRef]
- Lunger, F.; Wildt, L.; Seeber, B. Accurate screening for insulin resistance in PCOS women using fasting insulin concentrations. Gynecol. Endocrinol. 2013, 29, 541–544. [Google Scholar] [CrossRef]
- Saisho, Y. Postprandial C-Peptide to Glucose Ratio as a Marker of β Cell Function: Implication for the Management of Type 2 Diabetes. Int. J. Mol. Sci. 2016, 17, 744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariyam, S.B.; Muthubeevi, S.B.; Vasantha, S.C. Serum c-peptide level in obese and non-obese patients with type 2 diabetes mellitus. J. Evol. Med. Dent. Sci. JEMDS 2017, 6, 350–353. [Google Scholar] [CrossRef]
- Wahren, J. C-peptide: New findings and therapeutic implications in diabetes. Clin. Physiol. Funct. Imaging 2004, 24, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Ehtisham, S.; Barrett, T.G. The emergence of type 2 diabetes in childhood. Ann. Clin. Biochem. 2004, 41, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.; Jung, K. Historical Census Statistics on Population Totals by Race, 1790 to 1990, and by Hispanic Origin, 1970 to 1990 for Large Cities and Other Urban Places in the United States; BiblioGov Census Bureau: Washington, DC, USA, 2005. Available online: https://www.census.gov/content/dam/Census/library/working-papers/2005/demo/POP-twps0076.pdf. (accessed on 10 September 2019).
- Cosma, C.; Padoan, A.; Clerico, A.; Plebani, M. C-peptide and insulin assays with the Mindray CL-2000i: Precision and comparability with different methods. Clin. Chimica Acta—Int. J. Clin. Chem. 2019, 495, 210–214. [Google Scholar] [CrossRef]
- Manley, S.E.; Stratton, I.M.; Clark, P.M.; Luzio, S.D. Comparison of 11 human insulin assays: Implications for clinical investigation and research. Clin. Chem. 2007, 53, 922–932. [Google Scholar] [CrossRef] [Green Version]
Total | Men | Women | p | ||
---|---|---|---|---|---|
n | 255 | 91 | 164 | ||
Age (years) | 46.2 (16.7) | 47.1 (15.4) | 45.7 (17.4) | 0.52 | |
BMI (kg/m2) | 25.2 (5.16) | 25.9 (3.80) | 24.9 (5.75) | 0.11 | |
WHO glucose status | |||||
Diabetes mellitus | 103 (40%) | 46 (50.5%) | 57 (34.8%) | ||
Impaired glucose tolerance | 68 (26.7%) | 25 (27.5%) | 43 (26.2%) | ||
Impaired fasting glucose | 1 (0.4%) | 0 | 1 (0.6%) | ||
Normal glucose tolerance | 83 (32.5%) | 20 (22%) | 63 (38.4%) | ||
Kraft Pattern | |||||
Kraft I (Normal insulin) | 59 (23.1%) | 18 (19.8%) | 41 (25%) | ||
Kraft IIA (Borderline) | 32 (12.5%) | 11 (12.1%) | 21 (12.8%) | ||
Kraft IIB (Hyperinsulinaemia) | 48 (18.8%) | 15 (16.5%) | 33 (20.1%) | ||
Kraft III (Hyperinsulinaemia) | 100 (39.2%) | 39 (42.9%) | 61 (37.2%) | ||
Kraft IV* (Hyperinsulinaemia) | 2 (0.8%) | 1 (1.1%) | 1 (0.6%) | ||
Kraft V* (Hypoinsulinaemia) | 14 (5.5%) | 7 (7.7%) | 7 (4.3%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guildford, L.; Crofts, C.; Lu, J. Can the Molar Insulin: C-Peptide Ratio Be Used to Predict Hyperinsulinaemia? Biomedicines 2020, 8, 108. https://doi.org/10.3390/biomedicines8050108
Guildford L, Crofts C, Lu J. Can the Molar Insulin: C-Peptide Ratio Be Used to Predict Hyperinsulinaemia? Biomedicines. 2020; 8(5):108. https://doi.org/10.3390/biomedicines8050108
Chicago/Turabian StyleGuildford, Lynda, Catherine Crofts, and Jun Lu. 2020. "Can the Molar Insulin: C-Peptide Ratio Be Used to Predict Hyperinsulinaemia?" Biomedicines 8, no. 5: 108. https://doi.org/10.3390/biomedicines8050108