Arsenic Trioxide, Itraconazole, All-Trans Retinoic Acid and Nicotinamide: A Proof of Concept for Combined Treatments with Hedgehog Inhibitors in Advanced Basal Cell Carcinoma
Abstract
:1. Introduction
2. Putative Alternative Hedgehog Pathway Inhibitors
2.1. Arsenic Trioxide
2.2. Itraconazole
2.3. Retinoids
2.4. Nicotinamide
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AK | Actinic keratosis |
BCC | Basal cell carcinoma |
CCND1 | Cyclin D1 |
Hh | Hedgehog |
ITRA | Itraconazole |
mTOR | Mammalian Target of Rapamycin |
NAD | Nicotinamide adenine dinucleotide |
NAM | Nicotinamide |
NMSC | Non-melanoma Skin Cancer |
PTCH | Patched |
SCC | Squamous Cell Carcinoma |
SIRT | Silent mating-type Information Regulation |
SMO | Smoothened |
RAR | Retinoic Acid Receptors |
RXR | Retinoid X Receptors |
VEGF | Vascular Endothelial Growth Factor |
References
- Von Domarus, H.; Stevens, P.J. Metastatic basal cell carcinoma. Report of five cases and review of 170 cases in the literature. J. Am. Acad. Dermatol. 1984, 10, 1043–1060. [Google Scholar] [CrossRef]
- Wadhera, A.; Fazio, M.; Bricca, G.; Stanton, O. Metastatic basal cell carcinoma: A case report and literature review. How accurate is our incidence data? Dermatol. Online J. 2006, 12, 7. [Google Scholar]
- Ganti, A.K.; Kessinger, A. Systemic therapy for disseminated basal cell carcinoma: An uncommon manifestation of a common cancer. Cancer Treat. Rev. 2011, 37, 440–443. [Google Scholar] [CrossRef]
- McCusker, M.; Basset-Séguin, N.; Dummer, R.; Lewis, K.; Schadendorf, D.; Sekulić, A.; Hou, J.; Wang, L.; Yue, H.; Hauschild, A. Metastatic basal cell carcinoma: Prognosis dependent on anatomic site and spread of disease. Eur. J. Cancer 2014, 50, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Kalderon, D. Transducing the hedgehog signal. Cell 2000, 103, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Di Magliano, M.P.; Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer 2003, 3, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, R.J. Nevoid basal cell carcinoma (Gorlin) syndrome. Genet. Med. 2004, 6, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.K. Teratogen-mediated inhibition of target tissue response to shh signaling. Science 1998, 280, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Robarge, K.D.; Brunton, S.A.; Castanedo, G.M. GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett. 2009, 19, 5576–5581. [Google Scholar] [CrossRef]
- Pan, S.; Wu, X.; Jiang, J.; Gao, W.; Wan, Y.; Cheng, D.; Han, N.; Liu, J.; Englund, N.P.; Wang, Y.; et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett. 2010, 1, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- I Altaba, A.R.; Sánchez-Gómez, P.; Dahmane, N. Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nat. Rev. Cancer 2002, 2, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Gutzmer, R.; Solomon, J.A. Hedgehog pathway inhibition for the treatment of basal cell carcinoma. Target. Oncol. 2019, 14, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Pricl, S.; Cortelazzi, B.; Col, V.D.; Marson, D.; Laurini, E.; Fermeglia, M.; Licitra, L.; Pilotti, S.; Bossi, P.; Perrone, F. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol. Oncol. 2014, 9, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Chowdhury, S.; Sarkar, R.R. Molecular basis of drug resistance in smoothened receptor: An in silico study of protein resistivity and specificity. Proteins Struct. Funct. Bioinform. 2019, 88, 514–526. [Google Scholar] [CrossRef]
- Atwood, S.X.; Sarin, K.Y.; Whitson, R.J.; Li, J.R.; Kim, G.; Rezaee, M.; Ally, M.S.; Kim, J.; Yao, C.; Chang, A.L.S.; et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 2015, 27, 342–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, H.; Evron, T.; Vardy, E.; Han, G.W.; Huang, X.-P.; Hufeisen, S.J.; Mangano, T.J.; Urban, D.J.; Katritch, V.; et al. Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs. Nat. Commun. 2014, 5, 4355. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, H.J.; Pau, G.; Dijkgraaf, G.J.; Basset-Séguin, N.; Modrusan, Z.; Januario, T.; Tsui, V.; Durham, A.B.; Dlugosz, A.A.; Haverty, P.M.; et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 2015, 27, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, H.; Katritch, V.; Han, G.W.; Huang, X.-P.; Liu, W.; Siu, F.Y.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Structure of the human smoothened receptor bound to an antitumour agent. Nature 2013, 497, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Doyle, A.C. Notes of a case of leukocythaemia. Lancet 1882, 119, 490. [Google Scholar] [CrossRef]
- Alimoghaddam, K. A review of arsenic trioxide and acute promyelocytic leukemia. Int. J. Hematol. Stem Cell Res. 2014, 8, 44–54. [Google Scholar]
- Zhou, J.; Zhang, Y.; Li, J.; Li, X.; Hou, J.; Zhao, Y.; Liu, X.; Han, X.; Hu, L.; Wang, S.; et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood 2010, 115, 1697–1702. [Google Scholar] [CrossRef] [Green Version]
- Lengfelder, E.; Hofmann, W.-K.; Nowak, D. Impact of arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 2011, 26, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, T.; Yin, D.; Lu, Z.; Wang, J.; Li, Y.; Chen, X.; Liang, Y.; Song, X.; Qi, S.; Sun, B.; et al. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma. Mol. Cancer 2014, 13, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paret, C.; Theruvath, J.; Russo, A.; Kron, B.; El Malki, K.; Lehmann, N.; Wingerter, A.; Neu, M.A.; Gerhold-Ay, A.; Wagner, W.; et al. Activation of the basal cell carcinoma pathway in a patient with CNS HGNET-BCOR diagnosis: Consequences for personalized targeted therapy. Oncotarget 2016, 7, 83378–83391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ally, M.S.; Ransohoff, K.; Sarin, K.Y.; Atwood, S.X.; Rezaee, M.; Bailey-Healy, I.; Kim, J.; Beachy, P.A.; Chang, A.L.S.; Oro, A.; et al. Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma. JAMA Dermatol. 2016, 152, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, C.; de Sauvage, F.J. Hedgehog fights back: Mechanisms of acquired resistance against smoothened antagonists. Cancer Res. 2011, 71, 5057–5061. [Google Scholar] [CrossRef] [Green Version]
- Bureta, C.; Saitoh, Y.; Tokumoto, H.; Sasaki, H.; Maeda, S.; Nagano, S.; Komiya, S.; Taniguchi, N.; Setoguchi, T. Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma. Oncol. Rep. 2019, 41, 3404–3412. [Google Scholar] [CrossRef]
- Kim, J.; Aftab, B.T.; Tang, J.Y.; Kim, D.; Lee, A.H.; Rezaee, M.; Kim, J.; Chen, B.; King, E.; Borodovsky, A.; et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 2013, 23, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Jeanne, M.; Lallemand-Breitenbach, V.; Ferhi, O.; Koken, M.; Le Bras, M.; Duffort, S.; Peres, L.; Berthier, C.; Soilihi, H.; Raught, B.; et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010, 18, 88–98. [Google Scholar] [CrossRef]
- Goto, E.; Tomita, A.; Hayakawa, F.; Atsumi, A.; Kiyoi, H.; Naoe, T. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood 2011, 118, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Lehmann-Che, J.; Bally, C.; De Thé, H. Resistance to therapy in acute promyelocytic leukemia. N. Engl. J. Med. 2014, 371, 1170–1172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, J. Resistance to arsenic trioxide and retinoic acid therapy in acute promyelocytic leukemia. Ann. Hematol. 2017, 96, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-H.; Qin, Y.; Huang, X.-J. Resistance to arsenic therapy in acute promyelocytic leukemia. N. Engl. J. Med. 2014, 370, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, N.R.; Waddell, J.A.; Schrock, N.E. Itraconazole therapy in a pancreatic adenocarcinoma patient: A case report. J. Oncol. Pharm. Pract. 2015, 22, 528–532. [Google Scholar] [CrossRef]
- Pantziarka, P.; Sukhatme, V.; Bouche, G.; Meheus, L.; Sukhatme, V.P. Repurposing drugs in oncology (ReDO)—Itraconazole as an anti-cancer agent. Ecancermedicalscience 2015, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Fang, D.; Xiong, Z.; Luo, R. Inhibition of the hedgehog pathway for the treatment of cancer using Itraconazole. OncoTargets Ther. 2019, 12, 6875–6886. [Google Scholar] [CrossRef] [Green Version]
- Nacev, B.A.; Grassi, P.; Dell, A.; Haslam, S.M.; Liu, J.O. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J. Boil. Chem. 2011, 286, 44045–44056. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.M.; Clissold, S.P. Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 1989, 37, 310–344. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, J.; Spaunhurst, K.; Montoya, J.; Khodosh, R.; Chandra, K.; Fu, T.; Gilliam, A.; Molgó, M.; Beachy, P.A.; et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J. Clin. Oncol. 2014, 32, 745–751. [Google Scholar] [CrossRef]
- Busch, A.M.; Galimberti, F.; E Nehls, K.; Roengvoraphoj, M.; Sekula, D.; Li, B.; Guo, Y.; DiRenzo, J.; Fiering, S.N.; Spinella, M.J.; et al. All-trans-retinoic acid antagonizes the hedgehog pathway by inducing patched. Cancer Boil. Ther. 2014, 15, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkouteren, J.; Ramdas, K.; Wakkee, M.; Nijsten, T.E. Epidemiology of basal cell carcinoma: Scholarly review. Br. J. Dermatol. 2017, 177, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Goyette, P.; Allan, D.; Peschard, P.; Chen, C.F.; Wang, W.; Lohnes, D. Regulation of gli activity by all-trans retinoic acid in mouse keratinocytes. Cancer Res. 2000, 60, 5386–5389. [Google Scholar]
- Tomita, A.; Kiyoi, H.; Naoe, T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int. J. Hematol. 2013, 97, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangolli, P.M. Does topical tretinoin used for chemoprevention cause increased mortality? J. Cutan. Aesthetic Surg. 2009, 2, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Fricker, R.A.; Green, E.L.; Jenkins, S.I.; Griffin, S.M. The influence of nicotinamide on health and disease in the central nervous system. Int. J. Tryptophan Res. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Benavente, C.A.; Jacobson, M.; Jacobson, E. NAD in skin: Therapeutic approaches for niacin. Curr. Pharm. Des. 2009, 15, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Surjana, D.; Halliday, G.M.; Damian, D.L. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.C.; Damian, D.L. Nicotinamide and the skin. Australas. J. Dermatol. 2014, 55, 169–175. [Google Scholar] [CrossRef]
- Jacobson, E.L.; Shieh, W.M.; Huang, A.C. Mapping the role of NAD metabolism in prevention and treatment of carcinogenesis. In ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancery; Springer: Boston, MA, USA, 1999. [Google Scholar]
- Fang, E.F.; Lautrup, S.H.; Hou, Y.; Demarest, T.G.; Croteau, D.L.; Mattson, M.P.; A Bohr, V. NAD + in aging: Molecular mechanisms and translational implications. Trends Mol. Med. 2017, 23, 899–916. [Google Scholar] [CrossRef]
- Luna, A.; Aladjem, M.I.; Kohn, K.W. SIRT1/PARP1 crosstalk: Connecting DNA damage and metabolism. Genome Integr. 2013, 4, 6. [Google Scholar] [CrossRef]
- Carafa, V.; Rotili, D.; Forgione, M.; Cuomo, F.; Serretiello, E.; Hailu, G.S.; Jarho, E.; Lahtela-Kakkonen, M.K.; Mai, A.; Altucci, L. Sirtuin functions and modulation: From chemistry to the clinic. Clin. Epigenet. 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Peterson, L.M.; Wilking-Busch, M.J.; Ndiaye, M.A.; Philippe, C.G.A.; Setaluri, V.; Ahmad, N. Sirtuins in skin and skin cancers. Ski. Pharmacol. Physiol. 2017, 30, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Poljšak, B. NAD+ in cancer prevention and treatment: Pros and cons. J. Clin. Exp. Oncol. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.C.; Choy, B.; Dalziell, R.A.; McKenzie, C.; Dhillon, H.; Vardy, J.L.; Chinniah, N.; Damian, D.; Martin, A.J.; Fernandez-Penas, P.; et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef] [Green Version]
- Snaidr, V.A.; Damian, D.L.; Halliday, G.M. Nicotinamide for photoprotection and skin cancer chemoprevention: A review of efficacy and safety. Exp. Dermatol. 2019, 28, 15–22. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, C.; Vassilopoulos, A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 2017, 16, 1208–1218. [Google Scholar] [CrossRef]
Drug | NCT Number | Official Title on ClinicalTrials.gov or Publication Title | Phase | Sample Size | Study Results |
---|---|---|---|---|---|
itraconazole | NCT01108094 Completed February 2012 | Pilot Biomarker Trial to Evaluate the Efficacy of Itraconazole in Patients with Basal Cell Carcinomas | II | 29 pts Non-randomized Parallel assignment | Results available at https://clinicaltrials.gov/ |
NCT02120677 | A Pilot Study Investigating Antitumorigenic Potential of Topical Itraconazole in the Treatment of Basal Cell Carcinoma | Early I | 5 pts Single assignment group | No results available. | |
Retinoic acid | NCT00005660 Completed November 2001 | The Evaluation of Oral Acitretin in the Treatment of Psoriasis, Cutaneous Disorders of Keratinization, Multiple Basal Cell Carcinomas and Other Retinoid Responsive Diseases | 130 pts | No results available. | |
NCT00007631 Completed January 2009 | CSP #402—VA Topical Tretinoin Chemoprevention Trial | III | 1131 pts Randomized Parallel assignment | No results available. | |
Arsenic trioxide | NCT01791894 Completed June 2018 | An Open-label, Biomarker Study of Arsenic Trioxide for the Treatment of Patients with Basal Cell Carcinoma | I II | 5 pts Single group assignment | Results available at https://clinicaltrials.gov/ |
Nicotinamie | NCT03769285 Recruiting | Nicotinamide Chemoprevention for Keratinocyte Carcinoma in Solid Organ Transplant Recipients: A Pilot, Placebo-controlled, Randomized Trial | II | 120 pts Randomized parallel assignment | No results available. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosio, T.; Di Prete, M.; Campione, E. Arsenic Trioxide, Itraconazole, All-Trans Retinoic Acid and Nicotinamide: A Proof of Concept for Combined Treatments with Hedgehog Inhibitors in Advanced Basal Cell Carcinoma. Biomedicines 2020, 8, 156. https://doi.org/10.3390/biomedicines8060156
Cosio T, Di Prete M, Campione E. Arsenic Trioxide, Itraconazole, All-Trans Retinoic Acid and Nicotinamide: A Proof of Concept for Combined Treatments with Hedgehog Inhibitors in Advanced Basal Cell Carcinoma. Biomedicines. 2020; 8(6):156. https://doi.org/10.3390/biomedicines8060156
Chicago/Turabian StyleCosio, Terenzio, Monia Di Prete, and Elena Campione. 2020. "Arsenic Trioxide, Itraconazole, All-Trans Retinoic Acid and Nicotinamide: A Proof of Concept for Combined Treatments with Hedgehog Inhibitors in Advanced Basal Cell Carcinoma" Biomedicines 8, no. 6: 156. https://doi.org/10.3390/biomedicines8060156
APA StyleCosio, T., Di Prete, M., & Campione, E. (2020). Arsenic Trioxide, Itraconazole, All-Trans Retinoic Acid and Nicotinamide: A Proof of Concept for Combined Treatments with Hedgehog Inhibitors in Advanced Basal Cell Carcinoma. Biomedicines, 8(6), 156. https://doi.org/10.3390/biomedicines8060156