Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision
Abstract
:1. Introduction
1.1. Epithelial Ovarian Cancer
1.2. Liquid Biopsy
1.3. microRNAs
2. Methods
Systematic Review of Studies Investigating Circulating miRNAs in Therapeutic Response in EOC Patients
Author, Year, [ref.] | Aim of the Study | Number of Patients | Additional Details and Histology (If Reported) | Therapy | Biological Matrix | Technique/s Used | Validation of the Results | Most Important Findings |
---|---|---|---|---|---|---|---|---|
miRNAs expression in chemotherapy resistant and sensitive OC patients | ||||||||
Li et al., 2021 [39] | To characterize the expression of hsa-miR-105 in PTX-resistant EOC | 105 EOC pts: n = 59 resistant, n = 56 sensitive to chemo | Primary diagnosis EOC | TX-based chemo | Plasma | qRT-PCR | Cell lines and xenograft models | ↓ miR-105 in PTX-resistant EOC, to PTX-responsive EOC (p < 0.0001). |
Chen et al., 2020 [40] | To investigate serum miR-125b as a biomarker for diagnosis and prediction of treatment response in EOC | 83 EOC pts: n = 35 resistant, n = 48 sensitive to chemo | Primary diagnosis EOC | PT and TX-based chemo | Serum | qRT-PCR | \ | ↓ miR-125b in PT-resistant EOC pts |
Biamonte et al., 2019 [41] | To explore the functional roles of let-7g in EOC | 17 EOC pts: n = 9 resistant, n = 8 sensitive to chemo | Primary diagnosis HGSOC (Stage IIIc–IV) | PT + TX + BVZ | Serum | qRT-PCR | Cell lines | ↓ let-7g in resistant EOC pts |
Kuhlmann et al., 2019 [42] | To explore the signature of EV-associated miRNAs in PT-resistant EOCs | 30 EOC pts: n = 15 resistant, n = 15 sensitive to chemo | SOC | PT and TX-based chemo | Exosomes from plasma | Illumina NGS | \ | 12 miRNAs (miR-181a-2-3p, miR-1908-5p, miR-1304-3p, miR-486-3p, miR-21-3p, miR-548o-3p, miR-1185-1-3p, miR-223-5p, miR-664-5p, miR-345-5p, miR-625-3p, miR-443b-3p); however, after adjustment, no significance maintained |
Fukagawa et al., 2017 [43] | To identify candidate circulating miRNAs as biomarkers, and potential therapeutic targets | Profiling in 12 EOC pts: n = 6 resistant, n = 6 sensitive to chemo. Validation in 98 sera | Primary diagnosis EOC (Profiling: n = 7 SOC, n = 7 EMOC, n = 1 CCOC; Validation: n = 34 SOC, n = 16 EMOC, n = 6 MCOC, n = 28 CCOC, n = 14 other) | PT and TX-based chemo | Serum | Agilent Microarray; qRT-PCR | Independent cohort of pts; cell lines and xenograft models | ↑ miR-135a-3p associated with ↑ OS |
Longitudinal analysis of miRNA levels to monitor chemotherapy response | ||||||||
Robelin et al., 2020 [44] | To identify specific circulating miRNAs to monitor disease burden and guide clinicians in decision making for EOC pts | Profiling in 8 EOC pts; validation in 111 OC pts | Primary diagnosis EOC (Profiling: n = 8 SOC; Validation: n = 98 SOC, n = 1 EMOC, n = 1 CCOC, n = 1 MCOC, n = 3 Undifferentiated, n = 7 NA) | PT and TX-based chemotherapy +/− nintedanib and debulking surgery | Plasma | miScript miRNA PCR Array (Qiagen); qRT-PCR | Independent cohort of pts | The longitudinal kinetics of miRNA expressions were highly inconsistent and there was no relation with the CA-125 dynamics |
Zhu et al., 2019 [45] | To analyze the correlation between exosomal miR-223 and recurrence | 12 relapsed EOC pts. 2 time points: at the time of surgery and after recurrence | SOC (stage IIIC–V) | PT and TX-based chemo | Exosomes from serum | qRT-PCR | Cell lines and xenograft models | ↑ miR-223 at recurrence vs. time of surgery |
Kobayashi et al., 2018 [46] | To identify circulating miRNAs as potential diagnostic and prognostic biomarkers in HGSOCs | 16 EOC pts. 2 time points: before surgery and after the first post-surgical chemo cycle (about 28 days after surgery) | Primary diagnosis HGSOC | PT and TX-based chemo | Serum | qRT-PCR | Cell lines | ↓ miR-1290 after debulking surgery and chemo |
Grabosch et al., 2017 [47] | To confirm the feasibility of collecting serial peritoneal samples from implanted catheters in EOC pts receiving IP chemo | 13 EOC pts. 3 time points: after surgery, before chemo (T0) and after the first (T1) and second (T2) cycles of chemo | Primary diagnosis EOC (n = 9 SOC, n = 3 EMOC, n = 1 CCOC) | PT + TX + BVZ-based IP chemo | Plasma (n = 9) and PW/PF (n = 4) | NanoString nCounter miRNA Expression Assay | \ | In plasma, T0 vs. T1: 55 miRNAs deregulated; T1 vs. T2: 33 miRNAs deregulated In PW/PF, T0 vs. T1: 12 miRNAs deregulated; T1 vs. T2: 33 miRNAs deregulated |
Benson et al., 2015 [48] | To identify alterations in circulating miRNAs associated with decitabine followed by carboPT chemo treatment | 14 EOC pts. 2 time points: at baseline and on day 29 after first cycle of chemo | EOC, progressed to previous PT-based chemo | Decitabine followed by carboplatin chemo | Plasma | qRT-PCR miRNA OpenArrays (Thermo) | \ | In the overall cohort, T0 vs. T1: ↓ miR-193a-5p and miR-375 after chemotherapy; In the non-responder pts, T0 vs. T1: ↑ miR-339-3p, miR-340-5p, miR-133a, and miR-10a, ↓ miR-375, miR-25-3p, and miR-148b-5p. In decitabine, sensitive vs. resistant pts: ↑ miR-616, miR-532-3p, and miR-148b-5p after first cycle of chemo |
Kapetanakis et al., 2015 [49] | To assess the plasma levels of miR-200b in EOCs in a longitudinal study | 33 EOC pts: n = 9 unresectable tumors treated with chemo, n = 14 debulking after chemo, n = 10 direct debulking. 2 time points: pre- and post-chemo | HGSOC | PT and TX-based chemo | Plasma | qRT-PCR | \ | Pre vs. post-chemotherapy: ↓ miR-200b in 33% of unresectable tumors versus in 54% for tumors resectable immediately or after neoadjuvant chemo |
Kuhlmann et al., 2014 [50] | To identify deregulated miRNAs/snRNAs in sera of EOC pts and investigate their potential in therapy monitoring | 69 EOC pts. 2 time points: before surgery (n = 63) and after post-surgical chemo (n = 56) | Primary diagnosis EOC (n = 45 SOC, n = 5 MCOC, n = 5 EOC, n = 3 CCOC, n = 4 mixed, n = 7 other) | PT-based chemotherapy | Serum | Agilent Microarray; qRT-PCR | \ | ↑ RNU2-1f in pts with residual abdominal tumor mass after chemotherapy and PT resistance. In 50 pts with available paired serum samples before surgery and after adjuvant chemotherapy: pts with persistently RNU2-1f-positive levels had ↓ PFS and OS |
Shapira et al., 2014 [51] | To analyze circulating miRNAs as potential biomarkers for EOC detection and outcome | 5 EOC pts. 2 time points: before surgery and after post-surgical chemotherapy | Primary diagnosis EOC | PT-based chemotherapy (not clearly indicated) | Plasma | qRT-PCR miRNA OpenArrays (Thermo) | \ | ↓ miR-1274a, miR-1274b, and miR-1290 after treatment; ↑ miR-19b, miR-25, miR-195, and miR-16 in post-chemotherapy samples |
Association between miRNAs and clinical response | ||||||||
Vigneron et al., 2020 [52] | To assess the predictive value of circulating miR-622 prior to first-line chemotherapy and at relapse | 130 EOC pts (n = 65: prospective cohort, n = 65 retrospective cohort; additional n = 35 at relapse, from the retrospective cohort) | Newly diagnosed HGSOC (stages III–IV) | PT and TX-based chemotherapy | Serum | qRT-PCR | Independent cohort of pts (prospective and retrospective) | ↑ miR-622 in pts with ↓ PFS |
Halvorsen et al., 2017 [53] | To identify circulating miRNAs able to identify EOC pts at high risk for relapse | 207 EOC pts: Profiling in 91 EOC pts; validation in 116 EOC pts | Primary diagnosis EOC (Profiling: n = 58 SOC, n = 6 EMOC, n = 2 MCOC, n = 13 CCOC, n = 8 mixed, n = 4 other; validation: n = 79 SOC, n = 6 EMOC, n = 0 MCOC, n = 14 CCOC, n = 13 mixed, n = 4 other) | PT and TX or PT and TX-based chemotherapy + BVZ | Plasma | Taqman miRNA low density array (Thermo); qRT-PCR | Independent cohort of pts | ↓ miR-200c in pts with ↑ OS treated with BVZ |
3. Results
3.1. miRNA Expression in Chemotherapy-Resistant and -Sensitive EOC Patients
3.2. Longitudinal Analysis of miRNA Levels to Monitor Chemotherapy Response
3.3. Association between miRNAs and Clinical Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kurnit, K.C.; Fleming, G.F.; Lengyel, E. Updates and New Options in Advanced Epithelial Ovarian Cancer Treatment. Obstet. Gynecol. 2020, 137, 108–121. [Google Scholar] [CrossRef]
- De Leo, A.; Santini, D.; Ceccarelli, C.; Santandrea, G.; Palicelli, A.; Acquaviva, G.; Chiarucci, F.; Rosini, F.; Ravegnini, G.; Pession, A.; et al. What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors. Diagnostics 2021, 11, 697. [Google Scholar] [CrossRef]
- Koshiyama, M.; Matsumura, N.; Konishi, I. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II. BioMed Res. Int. 2014, 2014, 934261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, C.; Campbell, I.G.; Gorringe, K.L. When Is “Type I” Ovarian Cancer Not “Type I”? Indications of an Out-Dated Dichotomy. Front. Oncol. 2018, 8, 654. [Google Scholar] [CrossRef] [PubMed]
- Global Cancer Observatory. 2020. Available online: https://gco.iarc.fr/ (accessed on 23 August 2021).
- Gaona-Luviano, P.; Medina-Gaona, L.A.; Magaña-Pérez, K. Epidemiology of ovarian cancer. Chin. Clin. Oncol. 2020, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Fagotti, A.; De Iaco, P.; Fanfani, F.; Vizzielli, G.; Perelli, F.; Pozzati, F.; Perrone, A.M.; Turco, L.C.; Scambia, G. Systematic Pelvic and Aortic Lymphadenectomy in Advanced Ovarian Cancer Patients at the Time of Interval Debulking Surgery: A Double-Institution Case–Control Study. Ann. Surg. Oncol. 2012, 19, 3522–3527. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, Y.; Kim, S.I.; Kim, H.-S.; Kim, S.J.; Song, Y.S. Tumor evolution and chemoresistance in ovarian cancer. NPJ Precis. Oncol. 2018, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Guerra, F.; Paiano, A.; Migoni, D.; Girolimetti, G.; Perrone, A.M.; De Iaco, P.; Fanizzi, F.P.; Gasparre, G.; Bucci, C. Modulation of RAB7A Protein Expression Determines Resistance to Cisplatin through Late Endocytic Pathway Impairment and Extracellular Vesicular Secretion. Cancers 2019, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Karst, A.M.; Drapkin, R. Ovarian Cancer Pathogenesis: A Model in Evolution. J. Oncol. 2010, 2010, 932371. [Google Scholar] [CrossRef]
- Schorge, J.O.; Modesitt, S.C.; Coleman, R.L.; Cohn, D.E.; Kauff, N.D.; Duska, L.R.; Herzog, T.J. SGO White Paper on Ovarian Cancer: Etiology, Screening and Surveillance. Gynecol. Oncol. 2010, 119, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Nero, C.; Ciccarone, F.; Pietragalla, A.; Duranti, S.; Daniele, G.; Salutari, V.; Carbone, M.; Scambia, G.; Lorusso, D. Ovarian Cancer Treatments Strategy: Focus on PARP Inhibitors and Immune Check Point Inhibitors. Cancers 2021, 13, 1298. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Jiang, L.; Liu, K.; Ouyang, L.; Li, Y. Predictive Value of HE4 in Platinum-Based Chemotherapy for Ovarian Cancer: A Systematic Review. Front. Oncol. 2021, 11, 703949. [Google Scholar] [CrossRef] [PubMed]
- Grandi, G.; Perrone, A.M.; Toss, A.; Vitagliano, A.; Friso, S.; Facchinetti, F.; Cortesi, L.; Cascinu, S.; De Iaco, P. The generally low sensitivity of CA 125 for FIGO stage I ovarian cancer diagnosis increases for endometrioid histotype. Minerva Med. 2020, 111, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Fagotti, A.; Vizzielli, G.; De Iaco, P.; Surico, D.; Buda, A.; Mandato, V.D.; Petruzzelli, F.; Ghezzi, F.; Garzarelli, S.; Mereu, L.; et al. A multicentric trial (Olympia–MITO 13) on the accuracy of laparoscopy to assess peritoneal spread in ovarian cancer. Am. J. Obstet. Gynecol. 2013, 209, 462.e1–462.e11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Lo, Y.D. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular Diagnostics. Trends Genet. 2016, 32, 360–371. [Google Scholar] [CrossRef]
- Ilié, M.; Hofman, P. Pros: Can tissue biopsy be replaced by liquid biopsy? Transl. Lung Cancer Res. 2016, 5, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Bernabé, R.; Hickson, N.; Wallace, A.; Blackhall, F.H. What do we need to make circulating tumour DNA (ctDNA) a routine diagnostic test in lung cancer? Eur. J. Cancer 2017, 81, 66–73. [Google Scholar] [CrossRef]
- Malapelle, U.; Sirera, R.; Jantus-Lewintre, E.; Reclusa, P.; Calabuig, S.; Blasco, A.; Pisapia, P.; Rolfo, C.; Camps, C. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer. Expert Rev. Mol. Diagn. 2017, 17, 209–215. [Google Scholar] [CrossRef]
- Heidrich, I.; Ačkar, L.; Mohammadi, P.M.; Pantel, K. Liquid biopsies: Potential and challenges. Int. J. Cancer 2020, 148, 528–545. [Google Scholar] [CrossRef]
- Kilgour, E.; Rothwell, D.; Brady, G.; Dive, C. Liquid Biopsy-Based Biomarkers of Treatment Response and Resistance. Cancer Cell 2020, 37, 485–495. [Google Scholar] [CrossRef]
- Oellerich, M.; Schütz, E.; Beck, J.; Walson, P.D. Circulating Cell-Free DNA—Diagnostic and Prognostic Applications in Personalized Cancer Therapy. Ther. Drug Monit. 2019, 41, 115–120. [Google Scholar] [CrossRef]
- Marrugo-Ramírez, J.; Mir, M.; Samitier, J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int. J. Mol. Sci. 2018, 19, 2877. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Forbes, M.; Bitting, R.; O’Neill, S.; Chou, P.C.; Topaloglu, U.; Miller, L.; Hawkins, G.; Grant, S.; DeYoung, B.; et al. Incorporating blood-based liquid biopsy information into cancer staging: Time for a TNMB system? Ann. Oncol. 2017, 29, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Hu, S.; Zhang, L.; Xin, J.; Sun, C.; Wang, L.; Ding, K.; Wang, B. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020, 10, 4544–4556. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravegnini, G.; Sammarini, G.; Hrelia, P.; Angelini, S. Key Genetic and Epigenetic Mechanisms in Chemical Carcinogenesis. Toxicol. Sci. 2015, 148, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Baer, C.; Claus, R.; Plass, C. Genome-Wide Epigenetic Regulation of miRNAs in Cancer. Cancer Res. 2013, 73, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Simonson, B. MicroRNA Therapeutics: The Next Magic Bullet? Mini-Rev. Med. Chem. 2015, 15, 467–474. [Google Scholar] [CrossRef]
- Oliveto, S.; Mancino, M.; Manfrini, N.; Biffo, S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem. 2017, 8, 45–56. [Google Scholar] [CrossRef]
- Babar, A.I.; Slack, F.J.; Weidhaas, J.B. miRNA modulation of the cellular stress response. Futur. Oncol. 2008, 4, 289–298. [Google Scholar] [CrossRef]
- Khan, S.; Ayub, H.; Khan, T.; Wahid, F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019, 167, 12–24. [Google Scholar] [CrossRef]
- Iorio, M.; Croce, C.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012, 4, 143–159. [Google Scholar] [CrossRef]
- Swarup, V.; Rajeswari, M. Circulating (cell-free) nucleic acids—A promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007, 581, 795–799. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Shi, K.; Yang, S.; Liu, J.; Zhou, Q.; Wang, G.; Song, J.; Li, Z.; Zhang, Z.; Yuan, W. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer 2018, 17, 1–19. [Google Scholar] [CrossRef]
- Moher, D.; PRISMA-P Group; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Stone, P.W. Popping the (PICO) question in research and evidence-based practice. Appl. Nurs. Res. 2002, 15, 197–198. [Google Scholar] [CrossRef]
- Zuberi, M.; Mir, R.; Khan, I.; Javid, J.; Guru, S.A.; Bhat, M.; Sumi, M.P.; Ahmad, I.; Masroor, M.; Yadav, P.; et al. The Promising Signatures of Circulating microRNA-145 in Epithelial Ovarian Cancer Patients. MicroRNA 2019, 9, 49–57. [Google Scholar] [CrossRef]
- Li, M.; Zhang, S.; Ma, Y.; Yang, Y.; An, R. Role of hsa-miR-105 during the pathogenesis of paclitaxel resistance and its clinical implication in ovarian cancer. Oncol. Rep. 2021, 45, 84. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, X.; Sun, S.; Lu, C.; Wang, L. Serum miR-125b levels associated with epithelial ovarian cancer (EOC) development and treatment responses. Bioengineered 2020, 11, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Biamonte, F.; Santamaria, G.; Sacco, A.; Perrone, F.M.; Di Cello, A.; Battaglia, A.M.; Salatino, A.; Di Vito, A.; Aversa, I.; Venturella, R.; et al. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci. Rep. 2019, 9, 5668. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, J.D.; Chebouti, I.; Kimmig, R.; Buderath, P.; Reuter, M.; Puppel, S.-H.; Wimberger, P.; Kasimir-Bauer, S. Extracellular vesicle-associated miRNAs in ovarian cancer—Design of an integrated NGS-based workflow for the identification of blood-based biomarkers for platinum-resistance. Clin. Chem. Lab. Med. 2018, 57, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, S.; Miyata, K.; Yotsumoto, F.; Kiyoshima, C.; Nam, S.O.; Anan, H.; Katsuda, T.; Miyahara, D.; Murata, M.; Yagi, H.; et al. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci. 2017, 108, 886–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robelin, P.; Tod, M.; Colomban, O.; Lachuer, J.; Ray-Coquard, I.; De Rauglaudre, G.; Joly, F.; Chevalier-Place, A.; Combe, P.; Lortholary, A.; et al. Comparative analysis of predictive values of the kinetics of 11 circulating miRNAs and of CA125 in ovarian cancer during first line treatment (a GINECO study). Gynecol. Oncol. 2020, 159, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Shen, H.; Yin, X.; Yang, M.; Wei, H.; Chen, Q.; Feng, F.; Liu, Y.; Xu, W.; Li, Y. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J. Exp. Clin. Cancer Res. 2019, 38, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Sawada, K.; Nakamura, K.; Yoshimura, A.; Miyamoto, M.; Shimizu, A.; Ishida, K.; Nakatsuka, E.; Kodama, M.; Hashimoto, K.; et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J. Ovarian Res. 2018, 11, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabosch, S.; Tseng, G.; Edwards, R.P.; Lankes, H.A.; Moore, K.; Odunsi, K.; Vlad, A.; Ma, T.; Strange, M.; Brozick, J.; et al. Multiplex profiling identifies distinct local and systemic alterations during intraperitoneal chemotherapy for ovarian cancer: An NRG Oncology/Gynecologic Oncology Group Study. Gynecol. Oncol. 2017, 146, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Benson, E.A.; Skaar, T.C.; Liu, Y.; Nephew, K.P.; Matei, D. Carboplatin with Decitabine Therapy, in Recurrent Platinum Resistant Ovarian Cancer, Alters Circulating miRNAs Concentrations: A Pilot Study. PLoS ONE 2015, 10, e0141279. [Google Scholar] [CrossRef] [Green Version]
- Kapetanakis, N.-I.; Uzan, C.; Jimenez-Pailhes, A.-S.; Gouy, S.; Bentivegna, E.; Morice, P.; Caron, O.; Gourzones-Dmitriev, C.; Le Teuff, G.; Busson, P. Plasma miR-200b in ovarian carcinoma patients: Distinct pattern of pre/post-treatment variation compared to CA-125 and potential for prediction of progression-free survival. Oncotarget 2015, 6, 36815–36824. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, J.D.; Baraniskin, A.; Hahn, S.; Mosel, F.; Bredemeier, M.; Wimberger, P.; Kimmig, R.; Kasimir-Bauer, S. Circulating U2 Small Nuclear RNA Fragments as a Novel Diagnostic Tool for Patients with Epithelial Ovarian Cancer. Clin. Chem. 2014, 60, 206–213. [Google Scholar] [CrossRef]
- Shapira, I.; Oswald, M.; Lovecchio, J.; Khalili, H.; Menzin, A.; Whyte, J.; Dos Santos, L.; Liang, S.; Bhuiya, T.; Keogh, M.; et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br. J. Cancer 2013, 110, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Vigneron, N.; Vernon, M.; Meryet-Figuière, M.; Lambert, B.; Briand, M.; Louis, M.-H.; Krieger, S.; Joly, F.; Lheureux, S.; Blanc-Fournier, C.; et al. Predictive Relevance of Circulating miR-622 in Patients with Newly Diagnosed and Recurrent High-Grade Serous Ovarian Carcinoma. Clin. Chem. 2020, 66, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Halvorsen, A.R.; Kristensen, G.; Embleton, A.; Adusei, C.; Barretina-Ginesta, M.P.; Beale, P.; Helland, A. Evaluation of Prognostic and Predictive Significance of Circulating MicroRNAs in Ovarian Cancer Patients. Dis. Markers 2017, 2017, 3098542. [Google Scholar] [CrossRef]
- Feng, Y.-H.; Tsao, C.-J. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016, 5, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Echevarría-Vargas, I.M.; Valiyeva, F.; Vivas-Mejía, P.E. Upregulation of miR-21 in Cisplatin Resistant Ovarian Cancer via JNK-1/c-Jun Pathway. PLoS ONE 2014, 9, e97094. [Google Scholar] [CrossRef]
- Parikh, A.; Lee, C.; Joseph, P.; Marchini, S.; Baccarini, A.; Kolev, V.; Romualdi, C.; Fruscio, R.; Shah, H.; Wang, F.; et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition. Nat. Commun. 2014, 5, 2977. [Google Scholar] [CrossRef]
- Laios, A.; O’Toole, S.; Flavin, R.; Martin, C.; Kelly, L.; Ring, M.; Finn, S.P.; Barrett, C.; Loda, M.; Gleeson, N.; et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol. Cancer 2008, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.; Wei, K.; Lin, Z.; Cui, Y.; Ding, J.; Chen, Y.; Xu, B. MicroRNA-125b Suppresses Ovarian Cancer Progression via Suppression of the Epithelial-Mesenchymal Transition Pathway by Targeting the SET Protein. Cell. Physiol. Biochem. 2016, 39, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Yao, H.; Zheng, Z.; Qiu, G.; Sun, K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int. J. Cancer 2010, 128, 2274–2283. [Google Scholar] [CrossRef] [PubMed]
- Mazieres, J.; Catherinne, C.; Delfour, O.; Gouin, S.; Rouquette, I.; Delisle, M.-B.; Prévot, G.; Escamilla, R.; Didier, A.; Persing, D.H.; et al. Alternative Processing of the U2 Small Nuclear RNA Produces a 19–22nt Fragment with Relevance for the Detection of Non-Small Cell Lung Cancer in Human Serum. PLoS ONE 2013, 8, e60134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraniskin, A.; Nöpel-Dünnebacke, S.; Ahrens, M.; Jensen, S.G.; Zöllner, H.; Maghnouj, A.; Wos, A.; Mayerle, J.; Munding, J.; Kost, D.; et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int. J. Cancer 2012, 132, E48–E57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matei, D.; Fang, F.; Shen, C.; Schilder, J.; Arnold, A.; Zeng, Y.; Berry, W.A.; Huang, T.; Nephew, K.P. Epigenetic Resensitization to Platinum in Ovarian Cancer. Cancer Res. 2012, 72, 2197–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damia, G.; Broggini, M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers 2019, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deans, A.; West, S.C. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 2011, 11, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Thusgaard, C.F.; Korsholm, M.; Koldby, K.M.; Kruse, T.A.; Thomassen, M.; Jochumsen, K.M. Epithelial ovarian cancer and the use of circulating tumor DNA: A systematic review. Gynecol. Oncol. 2021, 161, 884–895. [Google Scholar] [CrossRef]
- Charo, L.M.; Eskander, R.N.; Okamura, R.; Patel, S.P.; Nikanjam, M.; Lanman, R.B.; Piccioni, D.E.; Kato, S.; McHale, M.T.; Kurzrock, R. Clinical implications of plasma circulating tumor DNA in gynecologic cancer patients. Mol. Oncol. 2020, 15, 67–79. [Google Scholar] [CrossRef]
- Sharbatoghli, M.; Vafaei, S.; Es, H.A.; Asadi-Lari, M.; Totonchi, M.; Madjd, Z. Prediction of the treatment response in ovarian cancer: A ctDNA approach. J. Ovarian Res. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, Y.-A.; Choi, J.-J.; Lee, Y.Y.; Kim, C.-J.; Choi, C.; Kim, T.-J.; Lee, N.W.; Kim, B.-G.; Bae, D.-S. The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol. Oncol. 2011, 120, 56–62. [Google Scholar] [CrossRef]
- Loret, N.; Denys, H.; Tummers, P.; Berx, G. The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance. Cancers 2019, 11, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravegnini, G.; De Iaco, P.; Gorini, F.; Dondi, G.; Klooster, I.; De Crescenzo, E.; Bovicelli, A.; Hrelia, P.; Perrone, A.M.; Angelini, S. Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines 2021, 9, 1316. https://doi.org/10.3390/biomedicines9101316
Ravegnini G, De Iaco P, Gorini F, Dondi G, Klooster I, De Crescenzo E, Bovicelli A, Hrelia P, Perrone AM, Angelini S. Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines. 2021; 9(10):1316. https://doi.org/10.3390/biomedicines9101316
Chicago/Turabian StyleRavegnini, Gloria, Pierandrea De Iaco, Francesca Gorini, Giulia Dondi, Isabella Klooster, Eugenia De Crescenzo, Alessandro Bovicelli, Patrizia Hrelia, Anna Myriam Perrone, and Sabrina Angelini. 2021. "Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision" Biomedicines 9, no. 10: 1316. https://doi.org/10.3390/biomedicines9101316