Role of the Uteroplacental Renin–Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis
Abstract
:1. Introduction
2. Roles of the Uteroplacental RAS
2.1. Placental Development
2.2. Placental Function
3. Regulation of the Uteroplacental RAS and Associated Placenta Dysfunction
3.1. Physiological Regulation
3.2. Uteroplacental RAS Dysregulation
4. Involvement of the Uteroplacental RAS in Preeclampsia Pathogenesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, G.J.; Jauniaux, E. What Is the Placenta? Am. J. Obstet. Gynecol. 2015, 213, S6.e1–S6.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gude, N.M.; Roberts, C.T.; Kalionis, B.; King, R.G. Growth and Function of the Normal Human Placenta. Thromb. Res. 2004, 114, 397–407. [Google Scholar] [CrossRef]
- Bischof, P.; Irminger-Finger, I. The Human Cytotrophoblastic Cell, a Mononuclear Chameleon. Int. J. Biochem. Cell Biol. 2005, 37, 1–16. [Google Scholar] [CrossRef]
- Aplin, J.D. Hypoxia and Human Placental Development. J. Clin. Investig. 2000, 105, 559–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, G.J.; Jauniaux, E.; Charnock-Jones, D.S. The Influence of the Intrauterine Environment on Human Placental Development. Int. J. Dev. Biol. 2009, 54, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastida-Ruiz, D.; Yart, L.; Wuillemin, C.; Ribaux, P.; Morris, N.; Epiney, M.; de Tejada, B.M.; Cohen, M. The Fine-Tuning of Endoplasmic Reticulum Stress Response and Autophagy Activation during Trophoblast Syncytialization. Cell Death Dis. 2019, 10, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, G.J.; Yung, H.W.; Murray, A.J. Mitochondrial—Endoplasmic Reticulum Interactions in the Trophoblast: Stress and Senescence. Placenta 2017, 52, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurlak, L.O.; Mistry, H.D.; Cindrova-Davies, T.; Burton, G.J.; Pipkin, F.B. Human Placental Renin-Angiotensin System in Normotensive and Pre-Eclamptic Pregnancies at High Altitude and after Acute Hypoxia-Reoxygenation Insult: The Renin-Angiotensin System Responses to Hypoxic Insults. J. Physiol. 2016, 594, 1327–1340. [Google Scholar] [CrossRef]
- Allen, A.M.; Zhuo, J.; Mendelsohn, F.A. Localization and Function of Angiotensin AT1 Receptors. Am. J. Hypertens 2000, 13, 31S–38S. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.J.; Mistry, H.D.; Innes, B.A.; Bulmer, J.N.; Broughton Pipkin, F. Expression of AT1R, AT2R and AT4R and Their Roles in Extravillous Trophoblast Invasion in the Human. Placenta 2010, 31, 448–455. [Google Scholar] [CrossRef]
- Matavelli, L.C.; Siragy, H.M. AT2 Receptor Activities and Pathophysiological Implications. J. Cardiovasc. Pharmacol. 2015, 65, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Ghadhanfar, E.; Alsalem, A.; Al-Kandari, S.; Naser, J.; Babiker, F.; Al-Bader, M. The Role of ACE2, Angiotensin-(1–7) and Mas1 Receptor Axis in Glucocorticoid-Induced Intrauterine Growth Restriction. Reprod. Biol. Endocrinol. 2017, 15, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.A. Angiotensin-(1–7). Hypertension 2014, 63, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Yugandhar, V.G.; Clark, M.A. Angiotensin III: A Physiological Relevant Peptide of the Renin Angiotensin System. Peptides 2013, 46, 26–32. [Google Scholar] [CrossRef] [PubMed]
- De Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International Union of Pharmacology. XXIII. The Angiotensin II Receptors. Pharmacol. Rev. 2000, 52, 415–472. [Google Scholar]
- Coleman, J.K.; Krebs, L.T.; Hamilton, T.A.; Ong, B.; Lawrence, K.A.; Sardinia, M.F.; Harding, J.W.; Wright, J.W. Autoradiographic Identification of Kidney Angiotensin IV Binding Sites and Angiotensin IV-Induced Renal Cortical Blood Flow Changes in Rats. Peptides 1998, 19, 269–277. [Google Scholar] [CrossRef]
- Irani, R.A.; Xia, Y. The Functional Role of the Renin–Angiotensin System in Pregnancy and Preeclampsia. Placenta 2008, 29, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Herse, F.; Staff, A.C.; Hering, L.; Müller, D.N.; Luft, F.C.; Dechend, R. AT1-Receptor Autoantibodies and Uteroplacental RAS in Pregnancy and Pre-Eclampsia. J. Mol. Med. 2008, 86, 697–703. [Google Scholar] [CrossRef]
- Kalenga, M.K.; de Gasparo, M.; Thomas, K.; de Hertogh, R. Angiotensin II and Its Different Receptor Subtypes in Placenta and Fetal Membranes. Placenta 1996, 17, 103–110. [Google Scholar] [CrossRef]
- Kalenga, M.K.; Thomas, K.; Gasparo, M.D.; Hertogh, R.D. Determination of Renin, Angiotensin Converting Enzyme and Angiotensin II Levels in Human Placenta, Chorion and Amnion from Women with Pregnancy Induced Hypertension. Clin. Endocrinol. 1996, 44, 429–433. [Google Scholar] [CrossRef]
- Cooper, A.C.; Robinson, G.; Vinson, G.P.; Cheung, W.T.; Broughton Pipkin, F. The Localization and Expression of the Renin–Angiotensin System in the Human Placenta throughout Pregnancy. Placenta 1999, 20, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Pringle, K.G.; Tadros, M.A.; Callister, R.J.; Lumbers, E.R. The Expression and Localization of the Human Placental Prorenin/Renin-Angiotensin System throughout Pregnancy: Roles in Trophoblast Invasion and Angiogenesis? Placenta 2011, 32, 956–962. [Google Scholar] [CrossRef]
- Tower, C.L.; Lui, S.; Charlesworth, N.R.; Smith, S.D.; Aplin, J.D.; Jones, R.L. Differential Expression of Angiotensin II Type 1 and Type 2 Receptors at the Maternal–Fetal Interface: Potential Roles in Early Placental Development. Reproduction 2010, 140, 931–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, E.; Muñoz, M.; Pavia, J.; Montiel, M. Angiotensin Ii Receptor in Human Placental Syncytiotrophoblast Plasma Membranes. Life Sci. 1996, 58, 877–882. [Google Scholar] [CrossRef]
- Herse, F.; Dechend, R.; Harsem, N.K.; Wallukat, G.; Janke, J.; Qadri, F.; Hering, L.; Muller, D.N.; Luft, F.C.; Staff, A.C. Dysregulation of the Circulating and Tissue-Based Renin-Angiotensin System in Preeclampsia. Hypertension 2007, 49, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, J.S.; Gopalakrishnan, K.; Kumar, S. Pregnancy Upregulates Angiotensin Type 2 Receptor Expression and Increases Blood Flow in Uterine Arteries of Rats. Biol. Reprod. 2018, 99, 1091–1099. [Google Scholar] [CrossRef]
- Morgan, T.; Craven, C.; Ward, K. Human Spiral Artery Renin-Angiotensin System. Hypertension 1998, 32, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.M. Role of the Renin-Angiotensin System in the Pathogenesis of Preeclampsia. Am. J. Physiol. Ren. Physiol. 2005, 288, F614–F625. [Google Scholar] [CrossRef]
- Nguyen Dinh Cat, A.; Touyz, R.M. Cell Signaling of Angiotensin II on Vascular Tone: Novel Mechanisms. Curr. Hypertens Rep. 2011, 13, 122–128. [Google Scholar] [CrossRef]
- Heffelfinger, S.C. The Renin Angiotensin System in the Regulation of Angiogenesis. Curr. Pharm. Des. 2007, 13, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Wegman-Ostrosky, T.; Soto-Reyes, E.; Vidal-Millán, S.; Sánchez-Corona, J. The Renin-Angiotensin System Meets the Hallmarks of Cancer. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Dinh, D.T.; Frauman, A.G.; Johnston, C.I.; Fabiani, M.E. Angiotensin Receptors: Distribution, Signalling and Function. Clin. Sci. 2001, 100, 481–492. [Google Scholar] [CrossRef]
- Velez Rueda, J.O.; Palomeque, J.; Mattiazzi, A. Early Apoptosis in Different Models of Cardiac Hypertrophy Induced by High Renin-Angiotensin System Activity Involves CaMKII. J. Appl. Physiol. 2012, 112, 2110–2120. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Horiuchi, M.; Dzau, V.J. Angiotensin II Type 2 Receptor Mediates Programmed Cell Death. Proc. Natl. Acad. Sci. USA 1996, 93, 156–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagemann, A.; Nielsen, A.H.; Poulsen, K. The Uteroplacental Renin-Angiotensin System: A Review. Exp. Clin. Endocrinol. Diabetes 1994, 102, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.H.; Schauser, K.H.; Poulsen, K. Current Topic: The Uteroplacental Renin–Angiotensin System. Placenta 2000, 21, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Squires, P.M.; Kennedy, T.G. Evidence for a Role for a Uterine Renin–Angiotensin System in Decidualization in Rats. Reproduction 1992, 95, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Araki-Taguchi, M.; Nomura, S.; Ino, K.; Sumigama, S.; Yamamoto, E.; Kotani-Ito, T.; Hayakawa, H.; Kajiyama, H.; Shibata, K.; Itakura, A.; et al. Angiotensin II Mimics the Hypoxic Effect on Regulating Trophoblast Proliferation and Differentiation in Human Placental Explant Cultures. Life Sci. 2008, 82, 59–67. [Google Scholar] [CrossRef]
- Xia, Y.; Wen, H.Y.; Kellems, R.E. Angiotensin II Inhibits Human Trophoblast Invasion through AT1 Receptor Activation. J. Biol. Chem. 2002, 277, 24601–24608. [Google Scholar] [CrossRef] [Green Version]
- Ishimatsu, S.; Itakura, A.; Okada, M.; Kotani, T.; Iwase, A.; Kajiyama, H.; Ino, K.; Kikkawa, F. Angiotensin II Augmented Migration and Invasion of Choriocarcinoma Cells Involves PI3K Activation through the AT1 Receptor. Placenta 2006, 27, 587–591. [Google Scholar] [CrossRef]
- Hering, L.; Herse, F.; Geusens, N.; Verlohren, S.; Wenzel, K.; Staff, A.C.; Brosnihan, K.B.; Huppertz, B.; Luft, F.C.; Muller, D.N.; et al. Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy. Hypertension 2010, 56, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, P.; Fu, H.; Zhang, L.; Huang, H.; Luo, F.; Wu, W.; Guo, Y.; Liu, X. Angiotensin II Upregulates the Expression of Placental Growth Factor in Human Vascular Endothelial Cells and Smooth Muscle Cells. BMC Cell Biol. 2010, 11, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bdolah, Y.; Sukhatme, V.P.; Karumanchi, S.A. Angiogenic Imbalance in the Pathophysiology of Preeclampsia: Newer Insights. Semin. Nephrol. 2004, 24, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, R.; Ahmed, S.; Gupta, A.; Venuto, R.C. A Comprehensive Review of Hypertension in Pregnancy. J. Pregnancy 2012, 2012, 105918. [Google Scholar] [CrossRef] [Green Version]
- Irani, R.A.; Xia, Y. Renin Angiotensin Signaling in Normal Pregnancy and Preeclampsia. Semin. Nephrol. 2011, 31, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard, S.E.; Karumanchi, S.A. Angiogenic Factors and Preeclampsia. Semin. Nephrol. 2011, 31, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Anton, L.; Merrill, D.C.; Neves, L.A.; Gruver, C.; Moorefield, C.; Brosnihan, K.B. Angiotensin II and Angiotensin-(1-7) Decrease SFlt1 Release in Normal but Not Preeclamptic Chorionic Villi: An in Vitro Study. Reprod. Biol. Endocrinol. 2010, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Hubel, C.A.; Wallukat, G.; Wolf, M.; Herse, F.; Rajakumar, A.; Roberts, J.M.; Markovic, N.; Thadhani, R.; Luft, F.C.; Dechend, R. Agonistic Angiotensin II Type 1 Receptor Autoantibodies in Postpartum Women with a History of Preeclampsia. Hypertension 2007, 49, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irani, R.A.; Zhang, Y.; Zhou, C.C.; Blackwell, S.C.; Hicks, M.J.; Ramin, S.M.; Kellems, R.E.; Xia, Y. Autoantibody-Mediated Angiotensin Receptor Activation Contributes to Preeclampsia Through Tumor Necrosis Factor-α Signaling. Hypertension 2010, 55, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.C.; Ahmad, S.; Mi, T.; Abbasi, S.; Xia, L.; Day, M.-C.; Ramin, S.M.; Ahmed, A.; Kellems, R.E.; Xia, Y. Autoantibody From Women With Preeclampsia Induces Soluble Fms-Like Tyrosine Kinase-1 Production via Angiotensin Type 1 Receptor and Calcineurin/Nuclear Factor of Activated T-Cells Signaling. Hypertension 2008, 51, 1010–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maigaard, S.; Forman, A.; Andersson, K.-E. Differential Effects of Angiotensin, Vasopressin and Oxytocin on Various Smooth Muscle Tissues within the Human Uteroplacental Unit. Acta Physiol. Scand. 1986, 128, 23–31. [Google Scholar] [CrossRef]
- Svane, D.; Kahr, O.; Hansen, V.B.; Holm-Nielsen, P.; Forman, A. Angiotensin-Converting Enzyme Activity and Contractile Effects of Angiotensin I and II in Human Uteroplacental Arteries. Am. J. Obstet. Gynecol. 1995, 172, 991–997. [Google Scholar] [CrossRef]
- Takeda-Matsubara, Y.; Iwai, M.; Cui, T.-X.; Shiuchi, T.; Liu, H.-W.; Okumura, M.; Ito, M.; Horiuchi, M. Roles of Angiotensin Type 1 and 2 Receptors in Pregnancy-Associated Blood Pressure Change. Am. J. Hypertens. 2004, 17, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poston, L. The Control of Blood Flow to the Placenta. Exp. Physiol. 1997, 82, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Kalenga, M.K.; de Gasparo, M.; Thomas, K.; De Hertogh, R. Angiotensin II Induces Human Placental Lactogen and Pregnancy-Specific Β1-Glycoprotein Secretion via an Angiotensin AT1 Receptor. Eur. J. Pharmacol. Mol. Pharmacol. 1994, 268, 231–236. [Google Scholar] [CrossRef]
- Petit, A.; Guillon, G.; Tence, M.; Jard, S.; Gallo-Payet, N.; Bellabarba, D.; Lehoux, J.-G.; Belisle, S. Angiotensin II Stimulates Both Inositol Phosphate Production and Human Placental Lactogen Release from Human Trophoblastic Cells. J. Clin. Endocrinol. Metab. 1989, 69, 280–286. [Google Scholar] [CrossRef]
- Kalenga, M.K.; De Gasparo, M.; Thomas, K.; De Hertogh, R. Angiotensin-II Stimulates Estradiol Secretion from Human Placental Explants through AT1 Receptor Activation. J. Clin. Endocrinol. Metab. 1995, 80, 1233–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lager, S.; Powell, T.L. Regulation of Nutrient Transport across the Placenta. J. Pregnancy 2012, 2012, 179827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibata, E.; Powers, R.W.; Rajakumar, A.; von Versen-Höynck, F.; Gallaher, M.J.; Lykins, D.L.; Roberts, J.M.; Hubel, C.A. Angiotensin II Decreases System a Amino Acid Transporter Activity in Human Placental Villous Fragments through AT1 Receptor Activation. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1009–E1016. [Google Scholar] [CrossRef] [Green Version]
- Nonn, O.; Güttler, J.; Forstner, D.; Maninger, S.; Zadora, J.; Balogh, A.; Frolova, A.; Glasner, A.; Herse, F.; Gauster, M. Placental CX3CL1 Is Deregulated by Angiotensin II and Contributes to a Pro-Inflammatory Trophoblast-Monocyte Interaction. Int. J. Mol. Sci. 2019, 20, 641. [Google Scholar] [CrossRef] [Green Version]
- Delforce, S.J.; Wang, Y.; Van-Aalst, M.E.; Corbisier de Meaultsart, C.; Morris, B.J.; Broughton-Pipkin, F.; Roberts, C.T.; Lumbers, E.R.; Pringle, K.G. Effect of Oxygen on the Expression of Renin-Angiotensin System Components in a Human Trophoblast Cell Line. Placenta 2016, 37, 1–6. [Google Scholar] [CrossRef]
- Ueki, N.; Takeda, S.; Koya, D.; Kanasaki, K. The Relevance of the Renin-Angiotensin System in the Development of Drugs to Combat Preeclampsia. Int. J. Endocrinol. 2015, 2015, 572713. [Google Scholar] [CrossRef]
- Delforce, S.J.; Lumbers, E.R.; Morosin, S.K.; Wang, Y.; Pringle, K.G. The Angiotensin II Type 1 Receptor Mediates the Effects of Low Oxygen on Early Placental Angiogenesis. Placenta 2019, 75, 54–61. [Google Scholar] [CrossRef]
- Goyal, R.; Leitzke, A.; Goyal, D.; Gheorghe, C.P.; Longo, L.D. Antenatal Maternal Hypoxic Stress: Adaptations in Fetal Lung Renin-Angiotensin System. Reprod. Sci. 2011, 18, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.; Lister, R.; Leitzke, A.; Goyal, D.; Gheorghe, C.P.; Longo, L.D. Antenatal Maternal Hypoxic Stress: Adaptations of the Placental Renin-Angiotensin System in the Mouse. Placenta 2011, 32, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lumbers, E.R.; Arthurs, A.L.; Corbisier de Meaultsart, C.; Mathe, A.; Avery-Kiejda, K.A.; Roberts, C.T.; Pipkin, F.B.; Marques, F.Z.; Morris, B.J.; et al. Regulation of the Human Placental (pro)Renin Receptor-Prorenin-Angiotensin System by MicroRNAs. Mol. Hum. Reprod. 2018, 24, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Morosin, S.K.; Delforce, S.J.; Lumbers, E.R.; Pringle, K.G. The (pro)Renin Receptor (ATP6AP2) Does Not Play a Role in Syncytialisation of Term Human Primary Trophoblast Cells. Placenta 2020, 97, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Marques, F.Z.; Pringle, K.G.; Conquest, A.; Hirst, J.J.; Markus, M.A.; Sarris, M.; Zakar, T.; Morris, B.J.; Lumbers, E.R. Molecular Characterization of Renin-Angiotensin System Components in Human Intrauterine Tissues and Fetal Membranes from Vaginal Delivery and Cesarean Section. Placenta 2011, 32, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pringle, K.G.; Sykes, S.D.; Marques, F.Z.; Morris, B.J.; Zakar, T.; Lumbers, E.R. Fetal Sex Affects Expression of Renin-Angiotensin System Components in Term Human Decidua. Endocrinology 2012, 153, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Delforce, S.J.; Lumbers, E.R.; Ellery, S.J.; Murthi, P.; Pringle, K.G. Dysregulation of the Placental Renin-Angiotensin System in Human Fetal Growth Restriction. Reproduction 2019, 158, 237–245. [Google Scholar] [CrossRef]
- Herse, F.; LaMarca, B. Angiotensin II Type 1-Receptor Autoantibody (AT1-AA)-Mediated Pregnancy Hypertension. Am. J. Reprod. Immunol. 2013, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.C.; Irani, R.A.; Zhang, Y.; Blackwell, S.; Mi, T.; Wen, J.; Shelat, H.; Geng, Y.-J.; Ramin, S.M.; Kellems, R.E.; et al. Angiotensin Receptor Agonistic Autoantibody-Mediated TNF-α Induction Contributes to Increased Soluble Endoglin Production in Preeclampsia. Circulation 2010, 121, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechend, R.; Viedt, C.; Müller, D.N.; Ugele, B.; Brandes, R.P.; Wallukat, G.; Park, J.-K.; Janke, J.; Barta, P.; Theuer, J.; et al. AT1 Receptor Agonistic Antibodies from Preeclamptic Patients Stimulate NADPH Oxidase. Circulation 2003, 107, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Verdonk, K.; Visser, W.; Van Den Meiracker, A.H.; Danser, A.H.J. The Renin–Angiotensin–Aldosterone System in Pre-Eclampsia: The Delicate Balance between Good and Bad. Clin. Sci. 2014, 126, 537–544. [Google Scholar] [CrossRef]
- Hutcheon, J.A.; Lisonkova, S.; Joseph, K.S. Epidemiology of Pre-Eclampsia and the Other Hypertensive Disorders of Pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 391–403. [Google Scholar] [CrossRef]
- Lo, J.O.; Mission, J.F.; Caughey, A.B. Hypertensive Disease of Pregnancy and Maternal Mortality. Curr. Opin. Obstet. Gynecol. 2013, 25, 124–132. [Google Scholar] [CrossRef]
- Purde, M.-T.; Baumann, M.; Wiedemann, U.; Nydegger, U.; Risch, L.; Surbek, D.; Risch, M. Incidence of Preeclampsia in Pregnant Swiss Women. Swiss Med. Wkly. 2015, 145, w14175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ 2019, l2381. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, I.R.C.; Silva, W.B.M.; Cerqueira, G.S.G.; Novo, N.F.; Almeida, F.A.; Novo, J.L.V.G. Maternal and Fetal Outcome in Women with Hypertensive Disorders of Pregnancy: The Impact of Prenatal Care. Ther. Adv. Cardiovasc. Dis. 2015, 9, 140–146. [Google Scholar] [CrossRef]
- Shin, D.; Song, W.O. Prepregnancy Body Mass Index Is an Independent Risk Factor for Gestational Hypertension, Gestational Diabetes, Preterm Labor, and Small- and Large-for-Gestational-Age Infants. J. Matern. Fetal Neonatal Med. 2015, 28, 1679–1686. [Google Scholar] [CrossRef]
- Burton, G.J.; Woods, A.W.; Jauniaux, E.; Kingdom, J.C.P. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsheikh, A.; Creatsas, G.; Mastorakos, G.; Milingos, S.; Loutradis, D.; Michalas, S. The Renin-Aldosterone System during Normal and Hypertensive Pregnancy. Arch. Gynecol. Obstet. 2001, 264, 182–185. [Google Scholar] [CrossRef]
- Gant, N.F.; Daley, G.L.; Chand, S.; Whalley, P.J.; MacDonald, P.C. A Study of Angiotensin II Pressor Response throughout Primigravid Pregnancy. J. Clin. Investig. 1973, 52, 2682–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.M. Angiotensin-1 Receptor Autoantibodies: A Role in the Pathogenesis of Preeclampsia? Circulation 2000, 101, 2335–2337. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, M.; van Bezu, J.; van Abel, D.; Dunk, C.; Blankenstein, M.A.; Oudejans, C.B.M.; Lye, S.J. The STOX1 Genotype Associated with Pre-Eclampsia Leads to a Reduction of Trophoblast Invasion by α-T-Catenin Upregulation. Hum. Mol. Genet. 2010, 19, 2658–2667. [Google Scholar] [CrossRef] [Green Version]
- Ducat, A.; Couderc, B.; Bouter, A.; Biquard, L.; Aouache, R.; Passet, B.; Doridot, L.; Cohen, M.-B.; Ribaux, P.; Apicella, C.; et al. Molecular Mechanisms of Trophoblast Dysfunction Mediated by Imbalance between STOX1 Isoforms. iScience 2020, 23, 101086. [Google Scholar] [CrossRef]
- Parchem, J.G.; Kanasaki, K.; Lee, S.B.; Kanasaki, M.; Yang, J.L.; Xu, Y.; Earl, K.M.; Keuls, R.A.; Gattone, V.H.; Kalluri, R. STOX1 Deficiency Is Associated with Renin-Mediated Gestational Hypertension and Placental Defects. JCI Insight 2020, 6, e141588. [Google Scholar] [CrossRef]
- Knock, A.; Sullivan, H.F.; Elder, G.; Polak, M. Angiotensin II (AT1) Vascular Binding Sites in Human Placentae from Normal-Term, Preeclamptic and Growth Retarded Pregnancies. J. Pharmacol. Exp. Ther. 1994, 271, 9. [Google Scholar]
- Benoit, C.; Zavecz, J.; Wang, Y. Vasoreactivity of Chorionic Plate Arteries in Response to Vasoconstrictors Produced by Preeclamptic Placentas. Placenta 2007, 28, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.C.; Ahmad, S.; Mi, T.; Xia, L.; Abbasi, S.; Hewett, P.W.; Sun, C.; Ahmed, A.; Kellems, R.E.; Xia, Y. Angiotensin II Induces Soluble Fms-Like Tyrosine Kinase-1 Release via Calcineurin Signaling Pathway in Pregnancy. Circ. Res. 2007, 100, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepan, H.; Herraiz, I.; Schlembach, D.; Verlohren, S.; Brennecke, S.; Chantraine, F.; Klein, E.; Lapaire, O.; Llurba, E.; Ramoni, A.; et al. Implementation of the SFlt-1/PlGF Ratio for Prediction and Diagnosis of Pre-Eclampsia in Singleton Pregnancy: Implications for Clinical Practice. Ultrasound Obstet. Gynecol. 2015, 45, 241–246. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the SFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.R.; Karumanchi, S.A.; Brown, N.J.; Royle, C.M.; McElrath, T.F.; Seely, E.W. Increased Sensitivity to Angiotensin II Is Present Postpartum in Women with a History of Hypertensive Pregnancy. Hypertension 2010, 55, 1239–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdonk, K.; Saleh, L.; Lankhorst, S.; Smilde, J.I.; van Ingen, I.M.; Garrelds, I.M.; Friesema, E.C.H.; Russcher, H.; van den Meiracker, A.H.; Visser, W.; et al. Association Studies Suggest a Key Role for Endothelin-1 in the Pathogenesis of Preeclampsia and the Accompanying Renin–Angiotensin–Aldosterone System Suppression. Hypertension 2015, 65, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Lami, R.A.; Algburi, A.M.A. Letter to the Editor: The Placenta and COVID-19. Placenta 2021, 104, 304–305. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yart, L.; Roset Bahmanyar, E.; Cohen, M.; Martinez de Tejada, B. Role of the Uteroplacental Renin–Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021, 9, 1332. https://doi.org/10.3390/biomedicines9101332
Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin–Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines. 2021; 9(10):1332. https://doi.org/10.3390/biomedicines9101332
Chicago/Turabian StyleYart, Lucile, Edith Roset Bahmanyar, Marie Cohen, and Begoña Martinez de Tejada. 2021. "Role of the Uteroplacental Renin–Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis" Biomedicines 9, no. 10: 1332. https://doi.org/10.3390/biomedicines9101332
APA StyleYart, L., Roset Bahmanyar, E., Cohen, M., & Martinez de Tejada, B. (2021). Role of the Uteroplacental Renin–Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines, 9(10), 1332. https://doi.org/10.3390/biomedicines9101332