The Effect of Small Molecule Pharmacological Agents on the Triterpenoid Saponin Induced Endolysosomal Escape of Saporin and a Saporin-Based Immunotoxin in Target Human Lymphoma Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.1.1. Cell Lines
2.1.2. Saponinum Album
2.1.3. Saporin
2.1.4. Immunotoxin
2.2. Methods
2.2.1. Fluorescent Labeling of Saporin and OKT10-SAP
2.2.2. Cell Culture
2.2.3. XTT Cytotoxicity Assay
2.2.4. Flow Cytometry
3. Results
3.1. Investigation of the Effects of Inhibitors of Endocytosis on the Endolysosomal Escape of SAP-AF and OKSAP-AF Measured by Pulse Shape Analysis
3.2. Effects of Small Molecule Pharmacological Agents on the Augmentation of OKT10-SAP and Saporin Cytotoxicity by SA
3.3. Comparison of the Effect of Pharmacological Agents on the SA-Mediated Augmentation of Cytotoxicity and Its Correlation with the Observed Endolysosomal Escape of Saporin and OKT10-SAP
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BAF | Bafilomycin A1 |
CME | Clathrin mediated endocytosis |
CQN | Chloroquine |
CPZ | Chlorpromazine |
CYT-D | Cytochalasin D |
EIPA | Ethylisopropylamiloride |
FCS | Foetal calf serum |
FITC | Fluorescein isothiocyanate |
FITC-H | Pulse Height of the signal recorded by a 525/40 nm bandpass filter |
FITC-W | Pulse Width of the signal recorded by a 525/40 nm bandpass filter |
IT | Immunotoxin |
NOC | Nocadazole |
OKSAP-AF | Alexa Fluor 488 conjugated OKT10-SAP |
PBS | Phosphate buffered saline |
R10 | RMPI-1640 medium supplemented with 10% FCS and 2 mM glutamine and 2 mM sodium pyruvate |
RIP | Ribosome inactivating protein |
RPMI | Roswell Park Memorial Institute Medium |
SA | Saponinum album |
SAP-AF | Alexa Fluor 488 conjugated Saponinum album |
XTT | 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5- Carboxanilide |
References
- Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J. 2006, 8, E532–E551. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.J.; Sausville, E.A.; Fay, J.W.; Headlee, D.; Collins, R.H.; Figg, W.D.; Stetler-Stevenson, M.; Jain, V.; Jaffe, E.S.; Solomon, D.; et al. A phase I study of bolus versus continuous infusion of the anti-CD19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lymphoma. Blood 1996, 88, 1188–1197. [Google Scholar] [CrossRef] [Green Version]
- Kreitman, R.J.; Stetler-Stevenson, M.; Margulies, I.; Noel, P.; FitzGerald, D.J.; Wilson, W.H.; Pastan, I. Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J. Clin. Oncol. 2009, 27, 2983–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avarbock, A.B.; Loren, A.W.; Park, J.Y.; Junkins-Hopkins, J.M.; Choi, J.; Litzky, L.A.; Rook, A.H. Lethal vascular leak syndrome after denileukin diftitox administration to a patient with cutaneous gamma/delta T-cell lymphoma and occult cirrhosis. Am. J. Hematol. 2008, 83, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.; Duvic, M.; Frankel, A.; Kim, Y.; Martin, A.; Vonderheid, E.; Jegasothy, B.; Wood, G.; Gordon, M.; Heald, P.; et al. Pivotal Phase III Trial of two dose levels of denileukin diftitox for the treatment of cutaneous t-cell lymphoma. J. Clin. Oncol. 2001, 19, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Vallera, D.A.; Kreitman, R.J. Immunotoxins targeting B cell malignancy—Progress and problems with immunogenicity. Biomedicines 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stirpe, F.; Gasperi-Campani, A.; Barbieri, L.; Falasca, A.; Abbondanza, A.; Stevens, W.A. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem. J. 1983, 216, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santanché, S.; Bellelli, A.; Brunori, M. The Unusual stability of Saporin, a candidate for the synthesis of immunotoxins. Biochem. Biophys. Res. Commun. 1997, 234, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, A.; Tazzari, P.L.; Tassi, C.; Gromo, G.; Gobbi, M.; Stirpe, F. A comparison of anti-lymphocyte immunotoxins containing different ribosome-inactivating proteins and antibodies. Clin. Exp. Immunol. 2008, 89, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Maras, B.; Ippoliti, R.; De Luca, E.; Lendaro, E.; Bellelli, A.; Barra, D.; Bossa, F.; Brunori, M. The amino acid sequence of a ribosome-inactivating protein from Saponaria officinalis seeds. Biochem. Int. 1990, 21, 831–838. [Google Scholar]
- Savino, C.; Federici, L.; Ippoliti, R.; Lendaro, E.; Tsernoglou, D. The crystal structure of Saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett. 2000, 470, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, L.; Sperti, S.; Mattioli, A.; Testoni, G.; Stirpe, F. Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem. J. 1975, 146, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, A.; Thakur, M.; von Mallinckrodt, B.; Beceren-Braun, F.; Gilabert-Oriol, R.; Wiesner, B.; Eichhorst, J.; Böttger, S.; Melzig, M.F.; Fuchs, H. Saponins modulate the intracellular trafficking of protein toxins. J. Control. Release 2012, 164, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Weng, A.; Pieper, A.; Mergel, K.; Von Mallinckrodt, B.; Gilabert-Oriol, R.; Görick, C.; Wiesner, B.; Eichhorst, J.; Melzig, M.F.; et al. Macromolecular interactions of triterpenoids and targeted toxins: Role of saponins charge. Int. J. Biol. Macromol. 2013, 61, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Heisler, I.; Sutherland, M.; Bachran, C.; Hebestreit, P.; Schnitger, A.; Melzig, M.F.; Fuchs, H. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. J. Control. Release 2005, 106, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Holmes, S.E.; Bachran, C.; Fuchs, H.; Weng, A.; Melzig, M.F.; Flavell, S.U.; Flavell, D.J. Triterpenoid saponin augmentation of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol. Immunotoxicol. 2014, 37, 42–55. [Google Scholar] [CrossRef]
- Weng, A.; Thakur, M.; Beceren-Braun, F.; Bachran, D.; Bachran, C.; Riese, S.B.; Jenett-Siems, K.; Gilabert-Oriol, R.; Melzig, M.F.; Fuchs, H. The toxin component of targeted anti-tumor toxins determines their efficacy increase by saponins. Mol. Oncol. 2012, 6, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachran, D.; Schneider, S.; Bachran, C.; Weng, A.; Melzig, M.F.; Fuchs, H. The endocytic uptake pathways of targeted toxins are influenced by synergistically acting Gypsophila Saponins. Mol. Pharm. 2011, 8, 2262–2272. [Google Scholar] [CrossRef]
- Smith, W.S.; Johnston, D.A.; Holmes, S.E.; Wensley, H.J.; Flavell, S.U.; Flavell, D.J. Augmentation of saporin-based immunotoxins for human leukaemia and lymphoma cells by triterpenoid saponins: The Modifying effects of small molecule pharmacological agents. Toxins 2019, 11, 127. [Google Scholar] [CrossRef] [Green Version]
- Wensley, H.J.; Johnston, D.A.; Smith, W.S.; Holmes, S.E.; Flavell, S.U.; Flavell, D.J. A Flow cytometric method to quantify the endosomal escape of a protein toxin to the cytosol of target cells. Pharm. Res. 2019, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.; Klein, G.; Nadkarni, J.S.; Nadkarni, J.J.; Wigzell, H.; Clifford, P. Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res. 1968, 28, 1300–1310. [Google Scholar] [PubMed]
- Adams, R.A.; Flowers, A.; Davis, B.J. Direct implantation and serial transplantation of human acute lymphoblastic leukemia in hamsters, SB-2. Cancer Res. 1968, 28, 1121–1125. [Google Scholar]
- Weng, A.; Görick, C.; Melzig, M.F. A brief communication: Enhancement of toxicity of saporin-based toxins by Gypsophila Saponins–kinetic of the saponin. Exp. Biol. Med. 2009, 234, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Flavell, D.; Flavell, S.; Boehm, D.; Emery, L.; Noss, A.; Ling, N.; Richardson, P.; Hardie, D.; Wright, D. Preclinical studies with the anti-CD19-saporin immunotoxin BU12-SAPORIN for the treatment of human-B-cell tumours. Br. J. Cancer 1995, 72, 1373–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 1988, 48, 4827–4833. [Google Scholar] [PubMed]
- McMahon, H.T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12, 517–533. [Google Scholar] [CrossRef]
- Wang, L.H.; Rothberg, K.G.; Anderson, R.G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 1993, 123, 1107–1117. [Google Scholar] [CrossRef]
- Lim, J.P.; Gleeson, P.A. Macropinocytosis: An endocytic pathway for internalising large gulps. Immunol. Cell Biol. 2011, 89, 836–843. [Google Scholar] [CrossRef]
- Rabinovitch, M. Professional and non-professional phagocytes: An introduction. Trends Cell Biol. 1995, 5, 85–87. [Google Scholar] [CrossRef]
- Bayer, N.; Schober, D.; Prchla, E.; Murphy, R.F.; Blaas, D.; Fuchs, R. Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: Implications for viral uncoating and infection. J. Virol. 1998, 72, 9645–9655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Duve, C.; De Barsy, T.; Poole, B.; Tulkens, P. Lysosomotropic agents. Biochem. Pharmacol. 1974, 23, 2495–2531. [Google Scholar] [CrossRef]
- Bowman, E.J.; Siebers, A.; Altendorf, K. Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 1988, 85, 7972–7976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliwa, M. Action of cytochalasin D on cytoskeletal networks. J. Cell Biol. 1982, 92, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, E.; McNee, G.; Allan, V.; Woodman, P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin. Cell Dev. Biol. 2014, 31, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Marshak, D.R.; Lukas, T.J.; Watterson, D.M. Drug-protein interactions: Binding of chlorpromazine to calmodulin, calmodulin fragments, and related calcium binding proteins. Biochemistry 1985, 24, 144–150. [Google Scholar] [CrossRef]
- Al Soraj, M.; He, L.; Peynshaert, K.; Cousaert, J.; Vercauteren, D.; Braeckmans, K.; De Smedt, S.C.; Jones, A.T. siRNA and pharmaco-logical inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat. J. Control. Release 2012, 161, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.I. Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful? Methods Mol. Biol. 2008, 440, 15–33. [Google Scholar] [PubMed]
- Ogiso, T.; Iwaki, M.; Mori, K. Fluidity of human erythrocyte membrane and effect of chlorpromazine on fluidity and phase sep-aration of membrane. Biochim. Biophys. Acta 1981, 649, 325–335. [Google Scholar] [CrossRef]
- Murata, T.; Maruoka, N.; Omata, N.; Takashima, Y.; Fujibayashi, Y.; Yonekura, Y.; Wada, Y. A comparative study of the plasma membrane permeabilization and fluidization induced by antipsychotic drugs in the rat brain. Int. J. Neuropsychopharmacol. 2006, 10, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giocondi, M.-C.; Mamdouh, Z.; Le Grimellec, C. Benzyl alcohol differently affects fluid phase endocytosis and exocytosis in renal epithelial cells. Biochim. Biophys. Acta Biomembr. 1995, 1234, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Walenga, R.W.; Opas, E.E.; Feinstein, M.B. Differential effects of calmodulin antagonists on phospholipases A2 and C in throm-bin-stimulated platelets. J. Biol. Chem. 1981, 256, 12523–12528. [Google Scholar] [CrossRef]
- Wells, A.; Ware, M.F.; Allen, F.D.; Lauffenburger, D.A. Shaping up for shipping out: PLCγ signaling of morphology changes in EGF-stimulated fibroblast migration. Cell Motil. Cytoskelet. 1999, 44, 227–233. [Google Scholar] [CrossRef]
- Amyere, M.; Payrastre, B.; Krause, U.; Smissen, P.V.D.; Veithen, A.; Courtoy, P.J. Constitutive macropinocytosis in onco-gene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol. Biol. Cell 2000, 11, 3453–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, M.; Spezzatti, B.; Chapman, J.; Battisti, C.; Baumann, N. Calmodulin antagonists chlorpromazine and W-7 inhibit exoge-nous cholesterol esterification and sphingomyelinase activity in human skin fibroblast cultures. Similarities between drug-induced and Niemann-Pick type C lipidoses. J. Neurosci. Res. 1992, 31, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Lange, Y.; Ye, J.; Steck, T.L. Activation mobilizes the cholesterol in the late endosomes-lysosomes of niemann pick Type C Cells. PLoS ONE 2012, 7, e30051. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.S.; Baker, E.J.; Holmes, S.E.; Koster, G.; Hunt, A.N.; Johnston, D.A.; Flavell, S.U.; Flavell, D.J. Membrane cholesterol is essential for triterpenoid saponin augmentation of a saporin-based immunotoxin directed against CD19 on human lymphoma cells. Biochim. Biophys. Acta Biomembr. 2017, 1859, 993–1007. [Google Scholar] [CrossRef]
- Koivusalo, M.; Welch, C.; Hayashi, H.; Scott, C.C.; Kim, M.; Alexander, T.; Touret, N.; Hahn, K.M.; Grinstein, S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010, 188, 547–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagana, A.; Vadnais, J.; Le, P.U.; Nguyen, T.N.; Laprade, R.; Nabi, I.R.; Noël, J. Regulation of the formation of tumor cell pseudopodia by the Na (+)/H (+) exchanger NHE1. J. Cell Sci. 2000, 113, 3649–3662. [Google Scholar] [PubMed]
- Boucrot, E.; Saffarian, S.; Massol, R.; Kirchhausen, T.; Ehrlich, M. Role of lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res. 2006, 312, 4036–4048. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, L.M.; Roth, R.; Heuser, J.E.; Schmid, S.L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 2000, 1, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Schober, D.; Huber, M.; Bayer, N.; Murphy, R.F.; Fuchs, R. Transferrin recycling and dextran transport to lysosomes is differentially affected by bafilomycin, nocodazole, and low temperature. Cell Tissue Res. 2005, 320, 99–113. [Google Scholar] [CrossRef]
- Weng, A.; Bachran, C.; Fuchs, H.; Melzig, M. Soapwort saponins trigger clathrin-mediated endocytosis of saporin, a type I ribosome-inactivating protein. Chem. Interact. 2008, 176, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Fuchs, R.; Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 1986, 55, 663–700. [Google Scholar] [CrossRef] [PubMed]
- Redmann, M.; Benavides, G.A.; Berryhill, T.F.; Wani, W.Y.; Ouyang, X.; Johnson, M.S.; Ravi, S.; Barnes, S.; Darley-Usmar, V.M.; Zhang, J. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol. 2017, 11, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, N.; Song, L.; Zhang, S.; Lin, W.; Cao, Y.; Xu, F.; Fang, Y.; Wang, Z.; Zhang, H.; Li, X.; et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lympho-blastic leukemia. Haematologica 2015, 100, 345–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polito, L.; Bortolotti, M.; Mercatelli, D.; Battelli, M.G.; Bolognesi, A. Saporin-S6: A useful tool in cancer therapy. Toxins 2013, 5, 1698–1722. [Google Scholar] [CrossRef] [PubMed]
- Lippincott-Schwartz, J.; Fambrough, D.M. Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: Kinetic and morphological analysis. Cell 1987, 49, 669–677. [Google Scholar] [CrossRef]
- Chapman, R.E.; Munro, S. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 1994, 13, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
Daudi | HSB-2 | ||||
---|---|---|---|---|---|
Abrogation of SA Mediated Augmentation of Saporin and OKT1-SAP | |||||
Inhibitor | Inhibitor of | Endolysosomal Escape | Cytotoxicity | Endolysosomal Escape | Cytotoxicity |
Chlorpromazine | CME | ++ | ++ | ++ | ++ |
EIPA | Macropinocytosis | ++ | ++ | ++ | ++ |
Cytochalasin-D | Actin polymerisation | - | + | ++ | ++ |
Nocadazole | Microtubules | - | - | - | - |
Chloroquine | Endosomal acidification | ++ | ++ | ++ | ++ |
Bafilomycin-A1 | Endosomal acidification | + | ++ | + | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wensley, H.J.; Smith, W.S.; Holmes, S.E.; Flavell, S.U.; Flavell, D.J. The Effect of Small Molecule Pharmacological Agents on the Triterpenoid Saponin Induced Endolysosomal Escape of Saporin and a Saporin-Based Immunotoxin in Target Human Lymphoma Cells. Biomedicines 2021, 9, 300. https://doi.org/10.3390/biomedicines9030300
Wensley HJ, Smith WS, Holmes SE, Flavell SU, Flavell DJ. The Effect of Small Molecule Pharmacological Agents on the Triterpenoid Saponin Induced Endolysosomal Escape of Saporin and a Saporin-Based Immunotoxin in Target Human Lymphoma Cells. Biomedicines. 2021; 9(3):300. https://doi.org/10.3390/biomedicines9030300
Chicago/Turabian StyleWensley, Harrison J., Wendy S. Smith, Suzanne E. Holmes, Sopsamorn U. Flavell, and David J. Flavell. 2021. "The Effect of Small Molecule Pharmacological Agents on the Triterpenoid Saponin Induced Endolysosomal Escape of Saporin and a Saporin-Based Immunotoxin in Target Human Lymphoma Cells" Biomedicines 9, no. 3: 300. https://doi.org/10.3390/biomedicines9030300
APA StyleWensley, H. J., Smith, W. S., Holmes, S. E., Flavell, S. U., & Flavell, D. J. (2021). The Effect of Small Molecule Pharmacological Agents on the Triterpenoid Saponin Induced Endolysosomal Escape of Saporin and a Saporin-Based Immunotoxin in Target Human Lymphoma Cells. Biomedicines, 9(3), 300. https://doi.org/10.3390/biomedicines9030300