Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. Localization of Thiamine Transporters THTR1/2 and Sp1
2.3. Modulation of the Expression of Thiamine Transporters THTR1/2, Sp1, and TK
2.3.1. Quantitative Real Time PCR (qRT-PCR)
2.3.2. Western Blot Analysis
2.4. Intracellular Thiamine Uptake
2.5. Transketolase Activity
2.6. Permeability to Thiamine of HPC/HGEC Bilayers
2.7. Statistics
3. Results
3.1. Localization and Expression of Thiamine Transporters and Sp1 in Renal Cells in Physiological Conditions
3.2. Expression of Thiamine Transporters and Sp1 in Cocultured Renal Cells under Different Glucose Conditions
3.3. Expression of Thiamine Transporters and Sp1 in Renal Cells under Different Experimental Conditions
3.4. Intracellular Thiamine Uptake, Transketolase Activity, and Expression in Renal Cells
3.5. Permeability to Thiamine of HPC/HGEC Cocultures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DN | diabetic nephropathy |
DR | diabetic retinopathy |
HG | high D-glucose concentrations |
HGEC | human glomerular endothelial cells |
HMC | human mesangial cells |
HPC | human podocytes |
HPTEC | human renal proximal tubule epithelial cells |
HT | high thiamine concentrations |
intHG | intermittent high D-glucose concentrations |
NG | physiological D-glucose concentration |
ROS | reactive oxygen species |
SNP | single gene polymorphism(s) |
Sp1 | transcription factor specificity protein-1 |
TD | thiamine deficiency/deficient |
THTR1 | thiamine transporter-1 |
THTR2 | thiamine transporter-2 |
TK | transketolase |
TRMA | thiamine-responsive megaloblastic anemia |
References
- DCCT. The absence of a glycemic threshold for the development of long-term complications: The perspective of the Diabetes Control and Complications Trial. Diabetes 1996, 45, 1289–1298. [Google Scholar] [CrossRef]
- Zhang, L.; Krzentowski, G.; Albert, A.; Lefebvre, P.J. Risk of developing retinopathy in Diabetes Control and Complications Trial type 1 diabetic patients with good or poor metabolic control. Diabetes Care 2001, 24, 1275–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltramo, E.; Mazzeo, A.; Lopatina, T.; Trento, M.; Porta, M. Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy. Diabetes Vasc. Dis. Res. 2020, 17, 1479164119878427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Selva, M.; Beltramo, E.; Pagnozzi, F.; Bena, E.; Molinatti, P.A.; Molinatti, G.M.; Porta, M. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 1996, 39, 1263–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltramo, E.; Berrone, E.; Tarallo, S.; Porta, M. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol. 2008, 45, 131–141. [Google Scholar] [CrossRef]
- Hammes, H.P.; Du, X.; Edelstein, D.; Taguchi, T.; Matsumura, T.; Ju, Q.; Lin, J.; Bierhaus, A.; Nawroth, P.; Hannak, D.; et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med. 2003, 9, 294–299. [Google Scholar] [CrossRef]
- Berrone, E.; Beltramo, E.; Solimine, C.; Ape, A.U.; Porta, M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J. Biol. Chem. 2006, 281, 9307–9313. [Google Scholar] [CrossRef] [Green Version]
- Babaei-Jadidi, R.; Karachalias, N.; Ahmed, N.; Battah, S.; Thornalley, P.J. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003, 52, 2110–2120. [Google Scholar] [CrossRef] [Green Version]
- Thornalley, P.J.; Babaei-Jadidi, R.; Al Ali, H.; Rabbani, N.; Antonysunil, A.; Larkin, J.; Ahmed, A.; Rayman, G.; Bodmer, C.W. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 2007, 50, 2164–2170. [Google Scholar] [CrossRef] [Green Version]
- Gastaldi, G.; Cova, E.; Verri, A.; Laforenza, U.; Faelli, A.; Rindi, G. Transport of thiamin in rat renal brush border membrane vesicles. Kidney Int. 2000, 57, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Brown, G. Defects of thiamine transport and metabolism. J. Inherit. Metab. Dis. 2014, 37, 577–585. [Google Scholar] [CrossRef]
- Reidling, J.C.; Said, H.M. In vitro and in vivo characterization of the minimal promoter region of the human thiamin transporter SLC19A2. Am. J. Physiol. Cell Physiol. 2003, 285, C633–C641. [Google Scholar] [CrossRef]
- Nabokina, S.M.; Said, H.M. Characterization of the 5′-regulatory region of the human thiamin transporter SLC19A3: In vitro and in vivo studies. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G822–G829. [Google Scholar] [CrossRef]
- Larkin, J.R.; Zhang, F.; Godfrey, L.; Molostvov, G.; Zehnder, D.; Rabbani, N.; Thornalley, P.J. Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes. PLoS ONE 2012, 7, e53175. [Google Scholar] [CrossRef] [PubMed]
- Nabokina, S.M.; Subramanian, V.S.; Valle, J.E.; Said, H.M. Adaptive regulation of human intestinal thiamine uptake by extracellular substrate level: A role for THTR-2 transcriptional regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G593–G599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porta, M.; Toppila, I.; Sandholm, N.; Hosseini, S.M.; Forsblom, C.; Hietala, K.; Borio, L.; Harjutsalo, V.; Klein, B.E.; Klein, R.; et al. Variation in SLC19A3 and Protection from Microvascular Damage in Type 1 Diabetes. Diabetes 2016, 65, 1022–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, M.A.; O’Hare, M.J.; Reiser, J.; Coward, R.J.; Inward, C.D.; Farren, T.; Xing, C.Y.; Ni, L.; Mathieson, P.W.; Mundel, P. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 2002, 13, 630–638. [Google Scholar] [PubMed]
- Conaldi, P.G.; Biancone, L.; Bottelli, A.; Wade-Evans, A.; Racusen, L.C.; Boccellino, M.; Orlandi, V.; Serra, C.; Camussi, G.; Toniolo, A. HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J. Clin. Investig. 1998, 102, 2041–2049. [Google Scholar] [CrossRef]
- Chamberlain, B.R.; Buttery, J.E.; Pannall, P.R. A stable reagent mixture for the whole blood transketolase assay. Ann. Clin. Biochem. 1996, 33, 352–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eudy, J.D.; Spiegelstein, O.; Barber, R.C.; Wlodarczyk, B.J.; Talbot, J.; Finnell, R.H. Identification and characterization of the human and mouse SLC19A3 gene: A novel member of the reduced folate family of micronutrient transporter genes. Mol. Genet. Metab. 2000, 71, 581–590. [Google Scholar] [CrossRef]
- Rindi, G.; Laforenza, U. Thiamine intestinal transport and related issues: Recent aspects. Proc. Soc. Exp. Biol. Med. 2000, 224, 246–255. [Google Scholar] [CrossRef]
- Chalásová, K.; Pácal, L.; Pleskačová, A.; Knopfová, L.; Řehořová, J.; Tomandlová, M.; Tomandl, J.; Kaňková, K. Transketolase Activity but not Thiamine Membrane Transport Change in Response to Hyperglycaemia and Kidney Dysfunction. Exp. Clin. Endocrinol. Diabetes 2018, 126, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.S.; Mohammed, Z.M.; Molina, A.; Marchant, J.S.; Vaziri, N.D.; Said, H.M. Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: Mechanism and regulation. J. Physiol. 2007, 582, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, F.J.; Moradi, H.; Gollapudi, P.; Ju Kim, H.; Vaziri, N.D.; Said, H.M. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol. Dial. Transpl. 2011, 26, 2137–2144. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Huang, H.; Lu, X.; Golinski, M.; Comesse, S.; Watt, D.; Grossman, R.B.; Moscow, J.A. Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis. Mol. Cancer Res. 2003, 1, 665–673. [Google Scholar]
- Beltramo, E.; Berrone, E.; Tarallo, S.; Porta, M. Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine. Diabetes Metab. Res. Rev. 2009, 25, 566–576. [Google Scholar] [CrossRef]
- Quagliaro, L.; Piconi, L.; Assaloni, R.; Martinelli, L.; Motz, E.; Ceriello, A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: The role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 2003, 52, 2795–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neufeld, E.J.; Fleming, J.C.; Tartaglini, E.; Steinkamp, M.P. Thiamine-responsive megaloblastic anemia syndrome: A disorder of high-affinity thiamine transport. Blood Cells Mol. Dis. 2001, 27, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, C.J.; Minton, J.A.; Samuel, J.; Ariyawansa, I.; Wales, J.K.; Lo, I.F.; Barrett, T.G. Thiamine-responsive megaloblastic anaemia syndrome: Long-term follow-up and mutation analysis of seven families. Acta Paediatr. 2006, 95, 99–104. [Google Scholar] [CrossRef]
- Ozand, P.T.; Gascon, G.G.; Al Essa, M.; Joshi, S.; Al Jishi, E.; Bakheet, S.; Al Watban, J.; Al-Kawi, M.Z.; Dabbagh, O. Biotin-responsive basal ganglia disease: A novel entity. Brain 1998, 121, 1267–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, S.; Miyajima, H.; Yoshida, K.; Togawa, A.; Shirakawa, K.; Suzuki, H. Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N. Engl. J. Med. 2009, 360, 1792–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pácal, L.; Kuricová, K.; Kaňková, K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J. Diabetes 2014, 5, 288–295. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzeo, A.; Barutta, F.; Bellucci, L.; Trento, M.; Gruden, G.; Porta, M.; Beltramo, E. Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2. Biomedicines 2021, 9, 385. https://doi.org/10.3390/biomedicines9040385
Mazzeo A, Barutta F, Bellucci L, Trento M, Gruden G, Porta M, Beltramo E. Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2. Biomedicines. 2021; 9(4):385. https://doi.org/10.3390/biomedicines9040385
Chicago/Turabian StyleMazzeo, Aurora, Federica Barutta, Linda Bellucci, Marina Trento, Gabriella Gruden, Massimo Porta, and Elena Beltramo. 2021. "Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2" Biomedicines 9, no. 4: 385. https://doi.org/10.3390/biomedicines9040385
APA StyleMazzeo, A., Barutta, F., Bellucci, L., Trento, M., Gruden, G., Porta, M., & Beltramo, E. (2021). Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2. Biomedicines, 9(4), 385. https://doi.org/10.3390/biomedicines9040385