Nutritional Supplements for the Treatment of Neuropathic Pain
Abstract
:1. Introduction
2. Zinc for Neuropathic Pain
3. Magnesium for Neuropathic Pain
4. Vitamin D for Neuropathic Pain
5. Vitamin B for Neuropathic Pain
6. Curcumin for Neuropathic Pain
7. St. Johns’ Wort for the Treatment of Neuropathic Pain
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jensen, T.S.; Baron, R.; Haanpaa, M.; Kalso, E.; Loeser, J.; Rice, A.; Treede, R.-D. A new definition of neuropathic pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Moisset, D.; Bouhassira, J.; Avez Couturier, H.; Alchaar, S.; Conradi, M.H.; Delmotte, M.; Lanteri-Minet, J.P.; Lefaucheur, G.; Mick, V.; Piano, G.; et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef] [PubMed]
- Gormsen, L.; Rosenberg, R.; Bach, F.W.; Jensen, T.S. Depression, anxiety, health-related quality of life and pain in patients with chronic fibromyalgia and neuropathic pain. Eur. J. Pain 2010, 14, 127.e1–127.e8. [Google Scholar] [CrossRef] [PubMed]
- Cherif, F.; Zouari, H.G.; Cherif, W.; Hadded, M.; Cheour, M.; Damak, R. Depression Prevalence in Neuropathic Pain and Its Impact on the Quality of Life. Pain Res. Manag. 2020. [Google Scholar] [CrossRef] [PubMed]
- Fornasari, D. Pharmacotherapy for Neuropathic Pain: A Review. Pain Ther. 2017, 6, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attal, N.; Cruccu, G.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Nurmikko, T.; Sampaio, C.; Sindrup, S.; Wiffen, P. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol. 2010, 17, 1113-e88. [Google Scholar] [CrossRef]
- Arnstein, P. Chronic neuropathic pain: Issues in patient education. Pain Manag. Nurs. 2004, 5, 34–41. [Google Scholar] [CrossRef]
- Meerwijk, E.L.; Larson, M.J.; Schmidt, E.M.; Adams, R.S.; Bauer, M.R.; Ritter, G.A.; Buckenmaier, C., III; Harris, A.H.S. Nonpharmacological Treatment of Army Service Members with Chronic Pain Is Associated with Fewer Adverse Outcomes after Transition to the Veterans Health Administration. J. Gen. Int. Med. 2020, 35, 775–783. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Santini, A. Nutraceuticals in Human Health. Foods 2020, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Casale, R.; Symeonidou, Z.; Ferfeli, S.; Micheli, F.; Scarsella, P.; Paladini, A. Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain Ther. 2021, 10, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.-H.; Vederas, J.C. Drug Discovery and Natural Products: End of an Era or an Endless Frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; The International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Jaggi, A.S.; Jain, V.; Singh, N. Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 2011, 25, 1–28. [Google Scholar] [CrossRef]
- Palandi, J.; Bobinski, F.; de Oliveira, G.M.; Ilha, I. Neuropathic pain after spinal cord injury and physical exercise in animal models: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 108, 781–795. [Google Scholar] [CrossRef]
- Cardozo, L.F.M.F.; Mafra, D. Don’t forget the zinc. Nephrol. Dial. Transplant. 2020, 35, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.; Morel, V.; Simen, E.; Cardot, J.-M.; Moustafa, F.; Delage, N.; Picard, P.; Eschalier, S.; Boulliau, S.; Dubray, C. Oral magnesium treatment in patients with neuropathic pain: A randomized clinical trial. Magnes. Res. 2011, 24, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997.
- Fox, C.; Ramsoomair, D.; Carter, C. Magnesium: Its proven and potential clinical significance. S. Med. J. 2001, 94, 1195–1202. [Google Scholar] [CrossRef]
- Kutsal, E.; Aydemir, C.; Eldes, N.; Demirel, F.; Polat, R.; Taspnar, O.; Kulah, E. Severe Hypermagnesemia as a Result of Excessive Cathartic Ingestion in a Child Without Renal Failure. Pediatr. Emerg. Care 2007, 23, 570. [Google Scholar] [CrossRef]
- Lamberg-Allardt, C. Vitamin D in foods and as supplements. Prog. Biophys. Mol. Biol. 2006, 92, 33–38. [Google Scholar] [CrossRef]
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D Toxicity–A Clinical Perspective. Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, R. Comparative analysis of nutritional guidelines for vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–480. [Google Scholar] [CrossRef]
- Krawinkel, M.B.; Strohm, D.; Weissenborn, A.; Watzi, B.; Eichholzer, M.; Barlocher, K.; Elmadfa, I.; Leschik-Bonnet, E.; Heseker, H. Revised D-A-CH intake recommendations for folate: How much is needed? Eur. J. Clin. Nutr. 2014, 68, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Caballero, B.H.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Lippincott Williams and Wilkins: Hagerstown, MD, USA, 2012. [Google Scholar]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate; Vitamins, O.B.; Choline, A. Vitamin B12. In Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: New York, NY, USA, 1998. [Google Scholar]
- Gille, D.; Schmid, A. Vitamin B12 in meat and dairy products. Nutr. Rev. 2015, 73, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Lao, C.D.; Ruffin, M.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar]
- Sindrup, S.H.; Madsen, C.; Bach, F.W.; Gram, L.F.; Jensen, T.S. St. John’s wort has no effect on pain in polyneuropathy. Pain 2001, 91, 361–365. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nozaki, C.; Vergnano, A.M.; Filliol, D.; Ouagazzal, A.-M.; Goff, A.L.; Carvalho, S.; Reiss, D.; Gaveriaux-Ruff, C.; Neyton, J.; Paoletti, P.; et al. Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat. Neurosci. 2011, 14, 1017–1022. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.M.; Moynahan, E.J. Zinc Deficiency in Acrodermatitis Enteropathica: Multiple Dietary Intolerance Treated with Synthetic Diet. Proc. R. Soc. Med. 1973, 66, 327–329. [Google Scholar] [CrossRef] [Green Version]
- Van Wouwe, J.P. Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur. J. Pediatr. 1989, 149, 2–8. [Google Scholar] [CrossRef]
- Kuliyev, E.; Zhang, C.; Sui, D.; Hu, J. Zinc transporter mutations linked to acrodermatitis enteropathica disrupt function and cause mistrafficking. J. Biol. Chem. 2021, 296. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.R. The Antioxidant Properties of Zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef] [Green Version]
- Hennigar, S.; Kelley, A.; Anderson, B.; Armstrong, N.; McClung, H.; Berryman, C.; McClung, J. Sensitivity and reliability of zinc transporter and metallothionein gene expression in peripheral blood mononuclear cells as indicators of zinc status: Responses to ex vivo zinc exposure and habitual zinc intake in humans. Br. J. Nutr. 2021, 125, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Tal, M. A Role for Inflammation in Chronic Pain. Curr. Rev. Pain 1999, 3, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Malcangio, M. Role of the immune system in neuropathic pain. Scand. J. Pain 2020, 20, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Safieh-Garabedian, B.; Poole, S.; Allchorne, A.; Kanaan, S.; Saade, N.; Woolf, C.J. Zinc reduces the hyperalgesia and upregulation of NGF and IL-1 beta produced by peripheral inflammation in the rat. Neuropharmacology 1996, 35, 599–603. [Google Scholar] [CrossRef]
- Woolf, C.J.; Safieh-Garabedian, B.; Ma, Q.P.; Crilly, P.; Winter, J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 1994, 62, 327–331. [Google Scholar] [CrossRef]
- Barker, P.A.; Mantyh, P.; Arendt-Nielsen, L.; Viktrup, L.; Tive, L. Nerve Growth Factor Signaling and Its Contribution to Pain. J. Pain Res. 2020, 13, 1223–1241. [Google Scholar] [CrossRef]
- Kessler, J.A.; Black, I.B. Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc. Natl. Acad. Sci. USA 1980, 77, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Lowe, E.M.; Anand, P.; Terenghi, G.; Williams-Chestnut, R.E.; Sinicropi, D.V.; Osborne, J.L. Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br. J. Urol. 1997, 79, 572–577. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Ho, H.C.; Wu, Y.H.; Kuo, H.C. Urine biomarkers in ESSIC type 2 interstitial cystitis/bladder pain syndrome and overactive bladder with developing a novel diagnostic algorithm. Sci. Rep. 2021, 11, 914. [Google Scholar] [CrossRef]
- Russell, I.J.; Orr, M.D.; Littman, B.; Vipraio, G.A.; Alboukrek, D.; Michalek, J.E.; Lopez, Y.; MacKillip, F. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum. 1994, 37, 1593–1601. [Google Scholar] [CrossRef]
- Skeggs, L.T.; Marsh, W.H.; Kahn, J.R.; Shumway, N.P. The Purification of Hypertensin I. J. Exp. Med. 1954, 100, 363–370. [Google Scholar] [CrossRef]
- Liu, T.; Walker, J.S.; Tracey, D.J. Zinc alleviates thermal hyperalgesia due to partial nerve injury. Neuroreport 1999, 10, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Bavencoffe, A.; Yang, P.; Feng, J.; Yin, S.; Qian, A.; Yu, W.; Liu, S.; Gong, X.; Cai, T.; et al. Zinc Inhibits TRPV1 to Alleviate Chemotherapy-Induced Neuropathic Pain. J. Neurosci. 2018, 38, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Velázquez, R.A.; Cai, Y.; Shi, Q.; Larson, A.A. The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. J. Neurosci. 1999, 19, 2288–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, A.-J.; Wang, K.; Zhang, H.; Liu, A.; Ma, X.; Liang, Q.; Cao, D.; Wood, J.N.; He, D.Z.; Ding, Y.Q.; et al. ZBTB20 regulates nociception and pain sensation by modulating TRP channel expression in nociceptivesensory neurons. Nat. Commun. 2014, 5, 4984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, H.-S.; Ryu, J.-H.; Do, S.-H. The role of magnesium in pain. In Magnesium in the Central Nervous System; Vink, R., Nechifor, M., Eds.; University of Adelaide Press: Adelaide, Australia, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507245/ (accessed on 1 June 2021).
- Morel, V.; Pickering, M.-E.; Goubayon, J.; Djobo, M.; Macian, N.; Pickering, G. Magnesium for Pain Treatment in 2021? State of the Art. Nutrients 2021, 13, 1397. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Chen, S.-R.; Pan, H.-L. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert Rev. Clin. Pharmacol. 2011, 4, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.; Wang, L.; Fu, T.; Papasergi, M.; Yule, D.L.; Xia, H. Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons. Mol. Neurobio. 2020, 57, 2539–2550. [Google Scholar] [CrossRef] [PubMed]
- Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 1999, 51, 7–61. [Google Scholar]
- Xu, X.; Tao, X.; Huang, P.; Lin, F.; Liu, Q.; Xu, L.; Xu, I.; Huang, Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav. Immun. 2020, 87, 579–590. [Google Scholar] [CrossRef]
- Rondón, L.J.; Privat, A.M.; Daulhac, L.; Davin, N.; Mazur, A.; Fialip, J.; Eschalier, A.; Courteix, C. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J. Physiol. 2010, 588, 4205–4215. [Google Scholar] [CrossRef] [PubMed]
- Brill, S.; Sedgwick, P.M.; Hamann, W.; di Vadi, P.P. Efficacy of intravenous magnesium in neuropathic pain. BJA Br. J. Anaesth. 2002, 89, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Felsby, S.; Nielsen, J.; Arendt-Nielsen, L.; Jensen, T.S. NMDA receptor blockade in chronic neuropathic pain: A comparison of ketamine and magnesium chloride. PAIN 1996, 64, 283–291. [Google Scholar] [CrossRef]
- Pickering, G.; Pereira, B.; Morel, V.; Corriger, A.; Giron, F.; Marcaillou, F.; Bidar-Beauvallot, A.; Chandeze, E.; Lambert, C.; Bernard, L.; et al. Ketamine and Magnesium for Refractory Neuropathic Pain: A Randomized, Double-blind, Crossover Trial. Anesthesiology 2020, 133, 154–164. [Google Scholar] [CrossRef]
- Yousef, A.A.; Al-deeb, A.E. A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Anaesthesia 2013, 68, 260–266. [Google Scholar] [CrossRef]
- Crosby, V.; Wilcock, A.; Mrcp, D.; Corcoran, R. The Safety and Efficacy of a Single Dose (500 mg or 1 g) of Intravenous Magnesium Sulfate in Neuropathic Pain Poorly Responsive to Strong Opioid Analgesics in Patients with Cancer. J. Pain Symptom Manag. 2000, 19, 35–39. [Google Scholar] [CrossRef]
- Farsi, L.; Zadeh, M.N.; Afshari, K.; Norouzi-Javidan, A.; Ghajarzadeh, M.; Naghshband, Z.; Keshavarz, M. Effects of Combining Methylprednisolone with Magnesium Sulfate on Neuropathic Pain and Functional Recovery Following Spinal Cord Injury in Male Rats. Acta Med. Iran. 2015, 53, 149–157. [Google Scholar] [PubMed]
- Scott, D.; Ebeling, P.R. Vitamin D and Public Health. Int. J. Environ. Res. Public. Health 2019, 16, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, A.M.; Nagi, K.; Thillaiappan, N.B.; Sukumaran, V.; Akhtar, S. Vitamin D and Its Potential Interplay with Pain Signaling Pathways. Front Immunol. 2020, 11, 820. [Google Scholar] [CrossRef] [PubMed]
- Atherton, K.; Berry, D.J.; Parsons, T.; Macfarlane, G.J.; Power, C.; Hypponen, E. Vitamin D and chronic widespread pain in a white middle-aged British population: Evidence from a cross-sectional population survey. Ann. Rheum. Dis. 2009, 68, 817. [Google Scholar] [CrossRef]
- Momi, S.K.; Fabiane, S.M.; Lachance, G.; Livshits, G.; Williams, F.M.K. Neuropathic pain as part of chronic widespread pain: Environmental and genetic influences. Pain 2015, 156, 2100–2106. [Google Scholar] [CrossRef]
- Xiaohua, G.; Dongdong, L.; Xiaoting, N.; Shuoping, C.; Feixia, S.; Huajun, Y.; Qi, Z.; Zimiao, C. Severe Vitamin D Deficiency Is Associated with Increased Expression of Inflammatory Cytokines in Painful Diabetic Peripheral Neuropathy. Front Nutr. 2021, 8, 612068. [Google Scholar] [CrossRef]
- Isaia, G.; Giorgino, R.; Adami, S. High Prevalence of Hypovitaminosis D in Female Type 2 Diabetic Population. Diabetes Care 2001, 24, 1496. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.H.; Kim, Y.B.; Choi, H.S.; Jeong, T.D.; Kim, J.T.; Sung, Y.A. Association of Vitamin D Deficiency with Diabetic Nephropathy. Endocrinol. Metab. 2021, 36, 106–113. [Google Scholar] [CrossRef]
- Straube, S.; Moore, A.; Derry, R.S.; McQuay, H.J. Vitamin D and chronic pain. Pain 2009, 141, 10–13. [Google Scholar] [CrossRef]
- Bilir, B.; Tulubas, F.; Bilir, B.E.; Atile, N.S.; Kara, S.P.; Yildirim, T.; Gumustas, S.A.; Topcu, B.; Kaymaz, O.; Aydin, M. The association of vitamin D with inflammatory cytokines in diabetic peripheral neuropathy. J. Phys. Ther. Sci. 2016, 28, 2159–2163. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Fei, J.; Tan, Z.-X.; Chen, Y.-H.; Hu, B.; Xiang, H.-X.; Zhao, H.; Xu, D.-X. Low Vitamin D Status Is Associated with Inflammation in Patients with Chronic Obstructive Pulmonary Disease. J. Immunol. 2021, 206, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Chen, R. Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain. Arch. Intern. Med. 2008, 168, 771–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basit, A.; Basit, K.A.; Fawwad, A.; Shaheen, F.; Fatima, N.; Petropoulos, I.N.; Alam, U.; Malik, R.A. Vitamin D for the treatment of painful diabetic neuropathy. BMJ Open Diabetes Res. Care 2016, 4, e000148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, A.E.; Arnspiger, S.A. Diffuse Musculoskeletal Pain Is Not Associated with Low Vitamin D Levels or Improved by Treatment with Vitamin D. JCR J. Clin. Rheumatol. 2008, 14, 12–16. [Google Scholar] [CrossRef]
- Sari, A.; Altun, Z.A.; Karaman, C.A.; Kaya, B.B.; Durmus, B. Does Vitamin D Affect Diabetic Neuropathic Pain and Balance? J. Pain Res. 2020, 13, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 2006, 163, 94–112. [Google Scholar] [CrossRef]
- Depeint, F.; Bruce, W.R.; Shangari, N.; Mehta, R.; O’Brien, P.J. Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways. Chem. Biol. Interact. 2006, 163, 113–132. [Google Scholar] [CrossRef]
- Axelrod, A.E. Role of the B Vitamins in the Immune Response. In Diet and Resistance to Disease; Phillips, M., Baetz, A., Eds.; Springer: New York, NY, USA, 1981; pp. 93–106. [Google Scholar] [CrossRef]
- Stein, J.; Geisel, J.; Obeid, R. Association between neuropathy and B-vitamins: A systematic review and meta-analysis. Eur. J. Neurol. 2021, 28, 2054–2064. [Google Scholar] [CrossRef]
- Zarabian, K.; Wannon, A.; Chin, M.; Kogan, M. The intersection between integrative medicine and neuropathic pain: A case report. Explore 2021, 1550–8307. [Google Scholar] [CrossRef]
- Cg, J.; Mizisin, L.M.; Nelson, A.; Cunha, J.M.; Ramos, K.M.; Bonke, D.; Calcutt, N.A. B vitamins alleviate indices of neuropathic pain in diabetic rats. Eur. J. Pharmacol. 2009, 612, 41–47. [Google Scholar]
- Sun, Y.; Lai, M.-S.; Lu, C.-J. Effectiveness of vitamin B12 on diabetic neuropathy: Systematic review of clinical controlled trials. Acta Neurol Taiwan 2005, 14, 48–54. [Google Scholar]
- Abbas, Z.G.; Swai, A.B. Evaluation of the efficacy of thiamine and pyridoxine in the treatment of symptomatic diabetic peripheral neuropathy. E. Afr. Med. J. 1997, 74, 803–808. [Google Scholar]
- Negrão, L.; Nunes, P.; Portuguese Group for the Study of Peripheral Neuropathy. Uridine monophosphate, folic acid and vitamin B12 in patients with symptomatic peripheral entrapment neuropathies. Pain Manag. 2016, 6, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.A.; Lavery, L.A.; Thethi, T.K.; Daoud, Y.; DeSouza, C.; Ovalle, F.; Denham, D.S.; Bottiglieri, T.; Sheehan, P.; Rosenstock, J. Metanx in Type 2 Diabetes with Peripheral Neuropathy: A Randomized Trial. Am. J. Med. 2013, 126, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Shevalye, H.; Watcho, P.; Stavniichuk, R.; Dyukova, E.; Lupachyk, S.; Obrosova, I.G. Metanx Alleviates Multiple Manifestations of Peripheral Neuropathy and Increases Intraepidermal Nerve Fiber Density in Zucker Diabetic Fatty Rats. Diabetes 2012, 61, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, S.; Sloan, G. Diabetic Polyneuropathy-Advances in Diagnosis and Intervention Strategies. Eur. Endocrinol. 2020, 16, 15–20. [Google Scholar] [CrossRef]
- Botez, M.I.; Peyronnard, J.-M.; Bachevalier, J.; Charron, L. Polyneuropathy and Folate Deficiency. Arch. Neurol. 1978, 35, 581–584. [Google Scholar] [CrossRef]
- Manzoor, M.; Runcie, J. Folate-Responsive Neuropathy: Report of 10 Cases. Br. Med. J. 1976, 1, 1176–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranpuri, G.S.; Meethal, S.V.; Sampene, E.; Chopra, A.; Buttar, S.; Nacht, C.; Moreno, N.; Patel, K.; Liu, L.; Singh, A.; et al. Folic Acid Modulates Matrix Metalloproteinase-2 Expression, Alleviates Neuropathic Pain, and Improves Functional Recovery in Spinal Cord-Injured Rats. Ann. Neurosci. 2017, 24, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Lucock, M. Folic acid: Nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab. 2000, 71, 121–138. [Google Scholar] [CrossRef]
- Steele, J.W.; Kim, S.-E.; Finnell, R.H. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects? Biochimie 2020, 173, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Xu, K.; Liu, L.; Zhang, K.; Xia, L.; Zhang, M.; Teng, C.; Tong, H.; He, Y.; Xue, Y. Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Didangelos, T.; Karlafti, E.; Kotzakioulafi, E.; Margariti, E.; Giannoulaki, P.; Batanis, G.; Tesfaye, S.; Kantartzis, K. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 395. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Aggarwal, B.B., Surh, Y.-J., Shishodia, S., Eds.; Springer: New York, NY, USA, 2007; pp. 105–125. [Google Scholar]
- Yang, Q.-Q.; Cheng, L.-Z.; Zhang, T.; Yaron, S.; Jiang, H.-X.; Sui, Z.-Q.; Corke, H. Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Ind. Crop. Prod. 2020, 152, 112561. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, W.; Lee, J.-S.; Youn, S.J.; Lee, H.; Baik, M.-Y. Enhanced Antioxidant Capacity of Puffed Turmeric (Curcuma longa L.) by High Hydrostatic Pressure Extraction (HHPE) of Bioactive Compounds. Foods 2020, 9, 1690. [Google Scholar] [CrossRef]
- Suh, H.-W.; Kang, S.; Kwon, K.-S. Curcumin attenuates glutamate-induced HT22 cell death by suppressing MAP kinase signaling. Mol. Cell. Biochem. 2007, 298, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Azeez, T.B.; Lunghar, J. Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale). In Inflammation and Natural Products; Gopi, S., Amalraj, A., Kunnumakkara, A., Thomas, S., Eds.; Academic Press: New York, NY, USA, 2021; pp. 127–146. [Google Scholar]
- Sharma, S.; Kulkarni, S.K.; Agrewala, J.N.; Chopra, K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol. 2006, 536, 256–261. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Zhang, M.T.; Mao-Ying, Q.L.; Hu, L.Y.; Wu, G.C.; Mi, W.L.; Wang, Y.Q. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci. Rep. 2016, 6, 28956. [Google Scholar] [CrossRef]
- Jeon, Y.; Kim, C.E.; Jung, D.; Kwak, K.; Park, S.; Lim, D.; Kim, S.; Baek, W. Curcumin Could Prevent the Development of Chronic Neuropathic Pain in Rats with Peripheral Nerve Injury. Curr. Ther. Res. Clin. Exp. 2013, 74, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Pierro, F.D.; Settembre, R. Safety and efficacy of an add-on therapy with curcumin phytosome and piperine and/or lipoic acid in subjects with a diagnosis of peripheral neuropathy treated with dexibuprofen. J. Pain Res. 2013, 6, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawvere, S.; Mahoney, M.C. St. John’s Wort. Am. Fam. Physician 2005, 72, 2249–2254. [Google Scholar] [PubMed]
- Nicolussi, S.; Drewe, J.; Butterweck, V.; Meyer zu Schwabedissen, H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol. 2020, 177, 1212–1226. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.; Nguyen, H. St. John’s Wort; Updated 2021 January 29; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Galeotti, N.; Maidecchi, A.; Mattoli, L.; Burico, M.; Ghelardini, C. St. John’s Wort seed and feverfew flower extracts relieve painful diabetic neuropathy in a rat model of diabetes. Fitoterapia 2014, 92, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galeotti, N.; Vivoli, E.; Bilia, A.R.; Vincieri, F.F.; Ghelardini, C. St. John’s Wort reduces neuropathic pain through a hypericin-mediated inhibition of the protein kinase C γ and ɛ activity. Biochem. Pharmacol. 2010, 79, 1327–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanna, M.D.; Ghelardini, C.; Galeotti, N. St. John’s Wort Potentiates anti-Nociceptive Effects of Morphine in Mice Models of Neuropathic Pain. Pain Med. 2017, 18, 1334–1344. [Google Scholar] [CrossRef] [Green Version]
- Apaydin, E.A.; Maher, A.R.; Shanman, R.; Booth, M.S.; Miles, J.N.V.; Sorbero, M.E.; Hempel, S. A systematic review of St. John’s wort for major depressive disorder. Syst. Rev. 2016, 5, 148. [Google Scholar] [CrossRef] [Green Version]
- Butterweck, V. Mechanism of Action of St John’s Wort in Depression. CNS Drugs 2003, 17, 539–562. [Google Scholar] [CrossRef]
- Fujihashi, A.; Ramesh, S.; Govindarajulu, M.; Almaghrabi, M.; Nadar, R.M.; Deruiter, J.; Moore, T.; Pondugula, S.; Agrawal, D.C.; Dhanasekaran, M. St. John’s Wort: A Therapeutic Herb to Be Cautioned for Its Potential Neurotoxic Effects and Major Drug Interactions. In Medicinal Herbs and Fungi; Agrawal, D.C., Dhanasekaran, M., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Halat, K.M.; Dennehy, C.E. Botanicals and Dietary Supplements in Diabetic Peripheral Neuropathy. J. Am. Board Fam. Pract. 2003, 16, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Galeotti, N.; Farzad, M.; Bianchi, E.; Ghelardini, C. PKC-mediated potentiation of morphine analgesia by St. John’s Wort in rodents and humans. J. Pharmacol. Sci. 2014, 124, 409–417. [Google Scholar] [CrossRef]
- Raak, C.; Büssing, A.; Gassmann, G.; Boehm, K.; Ostermann, T. A systematic review and meta-analysis on the use of Hypericum perforatum (St. John’s Wort) for pain conditions in dental practice. Homeopathy 2012, 101, 204–210. [Google Scholar] [CrossRef]
- Assiri, K.; Alyami, Y.; Uyanik, J.M.; Romero-Reyes, M. Hypericum perforatum (St. John’s Wort) as a possible therapeutic alternative for the management of trigeminal neuralgia (TN)—A case report. Complement. Ther. Med. 2017, 30, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Knüppel, L.; Linde, K. Adverse effects of St. John’s Wort: A systematic review. J. Clin. Psychiatry 2004, 65, 1470–1479. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A. Drug interactions with St. John’s Wort (Hypericum perforatum): A review of the clinical evidence. Int. J. Clin. Pharmacol. Ther. 2004, 42, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Sewell, R.D.E. Neuropathic pain models and outcome measures: A dual translational challenge. Ann. Transl. Med. 2018, 6. [Google Scholar] [CrossRef]
Supplement | Recommended Dietary Allowance | Toxicity Level | Natural Sources | Supplement Doses Available at | Tested Dosages | Ref | |
---|---|---|---|---|---|---|---|
Male | Female | ||||||
Zinc | 11 mg/d | 8 mg/d | 100 mg/d | Red meat, poultry, oysters, beans, nuts | 30–50 mg | Not tested | [17,18] |
Magnesium | 400–420 mg/d | 310–320 mg/d | 5000 mg/d | Leafy vegetables, legumes, nuts, meats | 250–500 mg | 300 mg orally | [19,20,21,22] |
Vitamin D | 600–800 IU/d | 600–800 IU/d | 10,000 IU/d | Egg yolk, fish, liver, UV radiation | 400–5000 IU | 2000 IU orally | [23,24,25] |
Vitamin B9 | 400 mcg/d dietary folate units (DFE) | 400 mcg/dDFE | N/A | Leafy vegetables, nuts, beans, seafood, dairy, grains | 400–1000 mcg DFE | Not tested alone | [26,27] |
Vitamin B12 | 2.4 mcg/d | 2.4 mcg/d | N/A | Fish, red meat, poultry, eggs, dairy | 500–1000 mcg | Not tested alone | [28,29] |
Curcumin | N/A | N/A | 8000 g/d | Turmeric | 500–1000 mg | Not tested alone | [30] |
St. John’s Wort | N/A | N/A | Risk of drug interactions | Hypericum Perforatum | 100–900 mg | 2700 μg | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, K.M.; Hackshaw, K.V. Nutritional Supplements for the Treatment of Neuropathic Pain. Biomedicines 2021, 9, 674. https://doi.org/10.3390/biomedicines9060674
Abdelrahman KM, Hackshaw KV. Nutritional Supplements for the Treatment of Neuropathic Pain. Biomedicines. 2021; 9(6):674. https://doi.org/10.3390/biomedicines9060674
Chicago/Turabian StyleAbdelrahman, Khaled M., and Kevin V. Hackshaw. 2021. "Nutritional Supplements for the Treatment of Neuropathic Pain" Biomedicines 9, no. 6: 674. https://doi.org/10.3390/biomedicines9060674
APA StyleAbdelrahman, K. M., & Hackshaw, K. V. (2021). Nutritional Supplements for the Treatment of Neuropathic Pain. Biomedicines, 9(6), 674. https://doi.org/10.3390/biomedicines9060674