How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring
Abstract
:1. Introduction
2. Patient- and Disease-Related Features at Diagnosis
2.1. Secondary Additional Genetic Abnormalities
2.2. Secondary Additional Chromosomal Abnormalities
3. MRD Monitoring in CBFB-MYH11 AML
4. ELN Recommendation for MRD Assessment
4.1. During the Treatment Phase, We Recommend Molecular MRD Assessment at Diagnosis
4.2. After Two Cycles of Standard Induction/Consolidation Chemotherapy
4.3. And after the End of Treatment
4.4. During Follow-Up of Patients with PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11, Mutated NPM1, and Other Molecular Markers, We Recommend Molecular MRD Assessment Every 3 Months for 24 Months after the End of Treatment
4.5. In BM and in PB. Alternatively, PB May Be Assessed Every 4–6 Weeks
4.6. MRD Should Be Assessed Pre Transplant. MRD Should Be Performed Post Transplant
5. Novel Therapies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood 2017, 129, 424–448. [Google Scholar] [CrossRef] [Green Version]
- De Bruijn, M.F.T.R.; Speck, N.A. Core-Binding Factors in Hematopoiesis and Immune Function. Oncogene 2004, 23, 4238–4248. [Google Scholar] [CrossRef] [Green Version]
- Speck, N.A.; Gilliland, D.G. Core-Binding Factors in Haematopoiesis and Leukaemia. Nat. Rev. Cancer 2002, 2, 502–513. [Google Scholar] [CrossRef]
- Byrd, J.; Mrózek, K.; Dodge, R.; Carroll, A. Pretreatment Cytogenetic Abnormalities Are Predictive Ofinduction Success, Cumulative Incidence Ofrelapse, and Overall Survival in Adult Patients with de Novo Acute Myeloid Leukemia: Results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002, 100, 4325–4336. [Google Scholar] [CrossRef]
- Byrd, J.C.; Ruppert, A.S.; Mrózek, K.; Carroll, A.J.; Edwards, C.G.; Arthur, D.C.; Pettenati, M.J.; Stamberg, J.; Koduru, P.R.K.; Moore, J.O.; et al. Repetitive Cycles of High-Dose Cytarabine Benefit Patients with Acute Myeloid Leukemia and Inv(16)(P13q22) or t(16;16)(P13;Q22): Results from CALGB 8461. J. Clin. Oncol. 2004, 22, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, G.; Mrózek, K.; Ruppert, A.S.; Maharry, K.; Kolitz, J.E.; Moore, J.O.; Mayer, R.J.; Pettenati, M.J.; Powell, B.L.; Edwards, C.G.; et al. Prognostic Factors and Outcome of Core Binding Factor Acute Myeloid Leukemia Patients with t(8;21) Differ from Those of Patients with Inv(16): A Cancer and Leukemia Group B Study. J. Clin. Oncol. 2005, 23, 5705–5717. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, F.R.; Kopecky, K.J.; Tallman, M.S.; Slovak, M.L.; Gundacker, H.M.; Kim, H.T.; Dewald, G.W.; Kantarjian, H.M.; Pierce, S.R.; Estey, E.H. The Clinical Spectrum of Adult Acute Myeloid Leukaemia Associated with Core Binding Factor Translocations. Br. J. Haematol. 2006, 135, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.F.; Benner, A.; Krauter, J.; Büchner, T.; Sauerland, C.; Ehninger, G.; Schaich, M.; Mohr, B.; Niedenwieser, D.; Krahl, R.; et al. Individual Patient Data-Based Meta-Analysis of Patients Aged 16 to 60 Years with Core Binding Factor Acute Myeloid Leukemia: A Survey of the German Acute Myeloid Leukemia Intergroup. J. Clin. Oncol. 2004, 22, 3741–3750. [Google Scholar] [CrossRef]
- Kundu, M.; Liu, P.P. Function of the Inv(16) Fusion Gene CBFB-MYH11. Curr. Opin. Hematol. 2001, 8, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, J.; Vey, N.; Leblanc, T.; Fenaux, P.; Rigal-Huguet, F.; Witz, F.; Lamy, T.; Auvrignon, A.; Blaise, D.; Pigneux, A.; et al. Prognosis of Inv(16)/t(16;16) Acute Myeloid Leukemia (AML): A Survey of 110 Cases from the French AML Intergroup. Blood 2003, 102, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Tallman, M.S.; Hakimian, D.; Shaw, J.M.; Lissner, G.S.; Russell, E.J.; Variakojis, D. Granulocytic Sarcoma Is Associated with the 8;21 Translocation in Acute Myeloid Leukemia. J. Clin. Oncol. 1993, 11, 690–697. [Google Scholar] [CrossRef]
- Boissel, N.; Leroy, H.; Brethon, B.; Philippe, N.; de Botton, S.; Auvrignon, A.; Raffoux, E.; Leblanc, T.; Thomas, X.; Hermine, O.; et al. Incidence and Prognostic Impact of C-Kit, FLT3, and Ras Gene Mutations in Core Binding Factor Acute Myeloid Leukemia (CBF-AML). Leukemia 2006, 20, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Qiao, C.; Xiao, M.; Geng, Z.; Shang, Z.; He, J.; Huang, M.; Yang, Y.; Zhang, N.; Liu, Y.; et al. Integrative Analysis of Prognostic Factors in Chinese Core Binding Factor Leukemia. Biochem. Biophys. Res. Commun. 2012, 428, 411–415. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.J.; Ahn, H.K.; Jung, C.W.; Moon, J.H.; Park, C.H.; Lee, K.O.; Kim, S.H.; Kim, Y.K.; Kim, H.J.; et al. KIT D816 Mutation Associates with Adverse Outcomes in Core Binding Factor Acute Myeloid Leukemia, Especially in the Subgroup with RUNX1/RUNX1T1 Rearrangement. Ann. Hematol. 2013, 92, 163–171. [Google Scholar] [CrossRef]
- Allen, C.; Hills, R.K.; Lamb, K.; Evans, C.; Tinsley, S.; Sellar, R.; O’Brien, M.; Yin, J.L.; Burnett, A.K.; Linch, D.C.; et al. The Importance of Relative Mutant Level for Evaluating Impact on Outcome of KIT, FLT3 and CBL Mutations in Core-Binding Factor Acute Myeloid Leukemia. Leukemia 2013, 27, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, E.; Boissel, N.; Chevret, S.; Delabesse, E.; Renneville, A.; Cornillet, P.; Blanchet, O.; Cayuela, J.-M.M.; Recher, C.; Raffoux, E.; et al. Prospective Evaluation of Gene Mutations and Minimal Residual Disease in Patients with Core Binding Factor Acute Myeloid Leukemia. Blood 2013, 121, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Hoyos, M.; Nomdedeu, J.F.; Esteve, J.; Duarte, R.; Ribera, J.M.; Llorente, A.; Escoda, L.; Bueno, J.; Tormo, M.; Gallardo, D.; et al. Core Binding Factor Acute Myeloid Leukemia: The Impact of Age, Leukocyte Count, Molecular Findings and Minimal Residual Disease. Eur. J. Haematol. 2013, 91, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Cairoli, R.; Beghini, A.; Turrini, M.; Bertani, G.; Nadali, G.; Rodeghiero, F.; Castagnola, C.; Lazzaroni, F.; Nichelatti, M.; Ferrara, F.; et al. Old and New Prognostic Factors in Acute Myeloid Leukemia with Deranged Core-Binding Factor Beta. Am. J. Hematol. 2013, 88, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Paschka, P.; Du, J.; Schlenk, R.F.; Gaidzik, V.I.; Bullinger, L.; Corbacioglu, A.; Späth, D.; Kayser, S.; Schlegelberger, B.; Krauter, J.; et al. Secondary Genetic Lesions in Acute Myeloid Leukemia with Inv(16) or t(16;16): A Study of the German-Austrian AMLStudy Group (AMLSG). Blood 2013, 121, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.H.; Kim, H.J.; Kim, J.W.; Jeon, Y.W.; Shin, S.H.; Lee, S.E.; Cho, B.S.; Eom, K.S.; Kim, Y.J.; Lee, S.; et al. Identification of Molecular and Cytogenetic Risk Factors for Unfavorable Core-Binding Factor-Positive Adult AML with Post-Remission Treatment Outcome Analysis Including Transplantation. Bone Marrow Transpl. 2014, 49, 1466–1474. [Google Scholar] [CrossRef]
- Jung, H.A.; Maeng, C.H.; Park, S.; Kim, S.J.; Kim, K.; Jang, J.H.; Jung, C.W. Prognostic Factor Analysis in Core-Binding Factor-Positive Acute Myeloid Leukemia. Anticancer Res. 2014, 34, 1037–1046. [Google Scholar] [PubMed]
- Brunner, A.M.; Blonquist, T.M.; Sadrzadeh, H.; Perry, A.M.; Attar, E.C.; Amrein, P.C.; Ballen, K.K.; Chen, Y.B.; Neuberg, D.S.; Fathi, A.T. Population-Based Disparities in Survival among Patients with Core-Binding Factor Acute Myeloid Leukemia: A SEER Database Analysis. Leuk. Res. 2014, 38, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Mosna, F.; Papayannidis, C.; Martinelli, G.; Di Bona, E.; Bonalumi, A.; Tecchio, C.; Candoni, A.; Capelli, D.; Piccin, A.; Forghieri, F.; et al. Complex Karyotype, Older Age, and Reduced First-Line Dose Intensity Determine Poor Survival in Core Binding Factor Acute Myeloid Leukemia Patients with Long-Term Follow-Up. Am. J. Hematol. 2015, 90, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Yui, S.; Kurosawa, S.; Yamaguchi, H.; Kanamori, H.; Ueki, T.; Uoshima, N.; Mizuno, I.; Shono, K.; Usuki, K.; Chiba, S.; et al. D816 Mutation of the KIT Gene in Core Binding Factor Acute Myeloid Leukemia Is Associated with Poorer Prognosis than Other KIT Gene Mutations. Ann. Hematol. 2017, 96, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Prabahran, A.; Tacey, M.; Fleming, S.; Wei, A.; Tate, C.; Marlton, P.; Wight, J.; Grigg, A.; Tuckfield, A.; Szer, J.; et al. Prognostic Markers in Core-Binding Factor AML and Improved Survival with Multiple Consolidation Cycles of Intermediate-/High-Dose Cytarabine. Eur. J. Haematol. 2018, 101, 174–184. [Google Scholar] [CrossRef]
- Shin, H.-J.; Min, W.-S.; Min, Y.H.; Cheong, J.-W.; Lee, J.-H.; Kim, I.-H.; Hong, D.S.; Ahn, J.-S.; Kim, H.-J.; Lee, W.-S.; et al. Different Prognostic Effects of Core-Binding Factor Positive AML with Korean AML Registry Data. Ann. Hematol. 2019, 98, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Opatz, S.; Bamopoulos, S.A.; Metzeler, K.H.; Herold, T.; Ksienzyk, B.; Bräundl, K.; Tschuri, S.; Vosberg, S.; Konstandin, N.P.; Wang, C.; et al. The Clinical Mutatome of Core Binding Factor Leukemia. Leukemia 2020, 34, 1553–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, Y.; Kawashima, N.; Atsuta, Y.; Sugiura, I.; Sawa, M.; Dobashi, N.; Yokoyama, H.; Doki, N.; Tomita, A.; Kiguchi, T.; et al. Prospective Evaluation of Prognostic Impact of KIT Mutations on Acute Myeloid Leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv. 2020, 4, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Ustun, C.; Morgan, E.A.; Ritz, E.M.; Vestergaard, H.; Pullarkat, S.; Kluin, P.M.; Ohgami, R.; Baughn, L.B.; Kim, Y.; Ku, N.K.; et al. Core-Binding Factor Acute Myeloid Leukemia with Inv(16): Older Age and High White Blood Cell Count Are Risk Factors for Treatment Failure. Int. J. Lab. Hematol. 2020, 43, e19–e25. [Google Scholar] [CrossRef]
- Jahn, N.; Terzer, T.; SträngStr, E.; Dolnik, A.; Cocciardi, S.; Panina, E.; Corbacioglu, A.; Herzig, J.; Weber, D.; Schrade, A.; et al. Genomic Heterogeneity in Core-Binding Factor Acute Myeloid Leukemia and Its Clinical Implication. Blood Adv. 2020, 4, 6342–6352. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Liu, X.; Jia, J.; Wang, J.; Gong, L.; Jiang, Q.; Zhao, T.; Wang, Y.; Zhang, X.; Xu, L.; et al. The Loss or Absence of Minimal Residual Disease of at Any Time after Two Cycles of <0·1% Consolidation Chemotherapy in CBFB–MYH11 -positive Acute Myeloid Leukaemia Indicates Poor Prognosis. Br. J. Haematol. 2021, 192, 265–271. [Google Scholar] [CrossRef]
- Duan, W.; Liu, X.; Zhao, X.; Jia, J.; Wang, J.; Gong, L.; Jiang, Q.; Zhao, T.; Wang, Y.; Zhang, X.; et al. Both the Subtypes of KIT Mutation and Minimal Residual Disease Are Associated with Prognosis in Core Binding Factor Acute Myeloid Leukemia: A Retrospective Clinical Cohort Study in Single Center. Ann. Hematol. 2021, 100, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Mrózek, K.; Voutsinas, J.; Wu, Q.; Morgan, E.A.; Vestergaard, H.; Ohgami, R.; Kluin, P.M.; Kristensen, T.K.; Pullarkat, S.; et al. Secondary Cytogenetic Abnormalities in Core-Binding Factor AML Harboring Inv(16) vs t(8;21). Blood Adv. 2021, 5, 2481–2489. [Google Scholar] [CrossRef]
- Fröhling, S.; Schlenk, R.F.; Kayser, S.; Morhardt, M.; Benner, A.; Döhner, K.; Döhner, H. Cytogenetics and Age Are Major Determinants of Outcome in Intensively Treated Acute Myeloid Leukemia Patients Older than 60 Years: Results from AMLSG Trial AML HD98-B. Blood 2006, 108, 3280–3288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimwade, D.; Hills, R.K.; Moorman, A.V.; Walker, H.; Chatters, S.; Goldstone, A.H.; Wheatley, K.; Harrison, C.J.; Burnett, A.K.; National Cancer Research Institute Adult Leukaemia Working Group. Refinement of Cytogenetic Classification in Acute Myeloid Leukemia: Determination of Prognostic Significance of Rare Recurring Chromosomal Abnormalities among 5876 Younger Adult Patients Treated in the United Kingdom Medical Research Council Trials. Blood 2010, 116, 354–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelbaum, F.R.; Gundacker, H.; Head, D.R.; Slovak, M.L.; Willman, C.L.; Godwin, J.E.; Anderson, J.E.; Petersdorf, S.H. Age and Acute Myeloid Leukemia. Blood 2006, 107, 3481–3485. [Google Scholar] [CrossRef]
- Sekeres, M.A.; Stone, R.M. The Challenge of Acute Myeloid Leukemia in Older Patients. Curr. Opin. Oncol. 2002, 14, 24–30. [Google Scholar] [CrossRef]
- Schoch, C.; Kern, W.; Schnittger, S.; Büchner, T.; Hiddemann, W.H.T. The Influence of Age on Prognosis of de Novo Acute Myeloid Leukemia Differs According to Cytogenetic Subgroups. Haematologica 2004, 89, 1082–1090. [Google Scholar]
- Farag, S.S.; Archer, K.J.; Mrózek, K.; Ruppert, A.S.; Carroll, A.J.; Vardiman, J.W.; Pettenati, M.J.; Baer, M.R.; Qumsiyeh, M.B.; Koduru, P.R.; et al. Pretreatment Cytogenetics Add to Other Prognostic Factors Predicting Complete Remission and Long-Term Outcome in Patients 60 Years of Age or Older with Acute Myeloid Leukemia: Results from Cancer and Leukemia Group B 8461. Blood 2006, 108, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, G.; Barragan, E.; Bolufer, P.; Chillon, C.; Garcia-Sanz, R.; Gomez, T.; Brunet, S.; Gonzalez, M.; Sanz, M.A. Relevance of Presenting White Blood Cell Count and Kinetics of Molecular Remission in the Prognosis of Acute Myeloid Leukemia with CBFβ/MYH11 Rearrangement. Haematologica 2000, 85, 699–703. [Google Scholar]
- Cairoli, R.; Beghini, A.; Grillo, G.; Nadali, G.; Elice, F.; Ripamonti, C.B.; Colapietro, P.; Nichelatti, M.; Pezzetti, L.; Lunghi, M.; et al. Prognostic Impact of C-KIT Mutations in Core Binding Factor Leukemias: An Italian Retrospective Study. Blood 2006, 107, 3463–3468. [Google Scholar] [CrossRef]
- Nguyen, S.; Leblanc, T.; Fenaux, P.; Witz, F.; Blaise, D.; Pigneux, A.; Thomas, X.; Rigal-Huguet, F.; Lioure, B.; Auvrignon, A.; et al. A White Blood Cell Index as the Main Prognostic Factor in t(8;21) Acute Myeloid Leukemia (AML): A Survey of 161 Cases from the French AML Intergroup. Blood 2002, 99, 3517–3523. [Google Scholar] [CrossRef] [Green Version]
- Paschka, P.; Marcucci, G.; Ruppert, A.S.; Mrózek, K.; Chen, H.; Kittles, R.A.; Vukosavljevic, T.; Perrotti, D.; Vardiman, J.W.; Carroll, A.J.; et al. Adverse Prognostic Significance of KIT Mutations in Adult Acute Myeloid Leukemia with Inv(16) and t(8;21): A Cancer and Leukemia Group B Study. J. Clin. Oncol. 2006, 24, 3904–3911. [Google Scholar] [CrossRef]
- Gilliland, D.G. Molecular Genetics of Human Leukemias: New Insights into Therapy. Semin. Hematol. 2002, 39, 6–11. [Google Scholar] [CrossRef]
- Duployez, N.; Willekens, C.; Marceau-Renaut, A.; Boudry-Labis, E.; Preudhomme, C. Prognosis and Monitoring of Core-Binding Factor Acute Myeloid Leukemia: Current and Emerging Factors. Expert Rev. Hematol. 2015, 8, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.; Kim, H.J.; Jung, C.W.; Kim, H.J.; Kim, S.H.; Kim, Y.K.; Kim, H.J.; Shin, M.G.; Moon, J.H.; Sohn, S.K.; et al. A Genome-Wide Single-Nucleotide Polymorphism-Array Can Improve the Prognostic Stratification of the Core Binding Factor Acute Myeloid Leukemia. Am. J. Hematol. 2012, 87, 961–968. [Google Scholar] [CrossRef]
- Qin, Y.Z.; Zhu, H.H.; Jiang, Q.; Jiang, H.; Zhang, L.P.; Xu, L.P.; Wang, Y.; Liu, Y.R.; Lai, Y.Y.; Shi, H.X.; et al. Prevalence and Prognostic Significance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Comprehensive Large-Scale Study from a Single Chinese Center. Leuk. Res. 2014, 38, 1435–1440. [Google Scholar] [CrossRef]
- Care, R.S.; Valk, P.J.M.; Goodeve, A.C.; Abu-Duhier, F.M.; Geertsma-Kleinekoort, W.M.C.; Wilson, G.A.; Gari, M.A.; Peake, I.R.; Löwenberg, B.; Reilly, J.T. Incidence and Prognosis of C-KIT and FLT3 Mutations in Core Binding Factor (CBF) Acute Myeloid Leukaemias. Br. J. Haematol. 2003, 121, 775–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Chi, H.S.; Min, S.K.; Park, B.G.; Jang, S.; Park, C.J. Prognostic Impact of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia. Leuk. Res. 2011, 35, 1376–1383. [Google Scholar] [CrossRef]
- Schwind, S.; Edwards, C.G.; Nicolet, D.; Mrózek, K.; Maharry, K.; Wu, Y.Z.; Paschka, P.; Eisfeld, A.K.; Hoellerbauer, P.; Becker, H.; et al. Inv(16)/t(16;16) Acute Myeloid Leukemia with Non-Type A CBFB-MYH11 Fusions Associate with Distinct Clinical and Genetic Features and Lack KIT Mutations. Blood 2013, 121, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschka, P. Core Binding Factor Acute Myeloid Leukemia. Semin. Oncol. 2008, 35, 410–417. [Google Scholar] [CrossRef]
- Paschka, P.; Döhner, K. Core-Binding Factor Acute Myeloid Leukemia: Can We Improve on HiDAC Consolidation? Hematol. Am. Soc. Hematol. Educ. Program 2013, 2013, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Marková, J.; Trnková, Z.; Michková, P.; Maaloufová, J.; Starý, J.; Cetkovský, P.; Schwarz, J. Monitoring of Minimal Residual Disease in Patients with Core Binding Factor Acute Myeloid Leukemia and the Impact of C-KIT, FLT3, and JAK2 Mutations on Clinical Outcome. Leuk. Lymphoma 2009, 50, 1448–1460. [Google Scholar] [CrossRef]
- Riera, L.; Marmont, F.; Toppino, D.; Frairia, C.; Sismondi, F.; Audisio, E.; Di Bello, C.; D’Ardia, S.; Di Celle, P.F.; Messa, E.; et al. Core Binding Factor Acute Myeloid Leukaemia and C-KIT Mutations. Oncol. Rep. 2013, 29, 1859–1866. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Lee, H.J.; Kim, I.S.; Kang, J.E.; Lee, E.Y.; Kim, H.J.; Kim, Y.K.; Won, J.H.; Bang, S.M.; Kim, H.; et al. Incidences and Prognostic Impact of C-KIT, WT1, CEBPA, and CBL Mutations, and Mutations Associated with Epigenetic Modification in Core Binding Factor Acute Myeloid Leukemia: A Multicenter Study in a Korean Population. Ann. Lab. Med. 2015, 35, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Ustun, C.; Marcucci, G. Emerging Diagnostic and Therapeutic Approaches in Core Binding Factor Acute Myeloid Leukaemia. Curr. Opin. Hematol. 2015, 22, 85–91. [Google Scholar] [CrossRef]
- Buccisano, F.; Maurillo, L.; Del Principe, M.I.; Di Veroli, A.; De Bellis, E.; Biagi, A.; Zizzari, A.; Rossi, V.; Rapisarda, V.; Amadori, S.; et al. Minimal Residual Disease as a Biomarker for Outcome Prediction and Therapy Optimization in Acute Myeloid Leukemia. Expert Rev. Hematol. 2018, 11, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, G.; Schuurhuis, G.J. MRD in AML: Does It Already Guide Therapy Decision-Making? Hematology 2016, 2016, 356–365. [Google Scholar] [CrossRef]
- Ossenkoppele, G.; Schuurhuis, G.J. MRD in AML: Time for Redefinition of CR? Blood 2013, 121, 2166–2168. [Google Scholar] [CrossRef] [PubMed]
- Liu Yin, J.A.; Frost, L. Monitoring AML1-ETO and CBFΒ-MYH11 Transcripts in Acute Myeloid Leukemia. Curr. Oncol. Rep. 2003, 5, 399–404. [Google Scholar] [CrossRef]
- Buonamici, S.; Ottaviani, E.; Testoni, N.; Montefusco, V.; Visani, G.; Bonifazi, F.; Amabile, M.; Terragna, C.; Ruggeri, D.; Piccaluga, P.P.; et al. Real-Time Quantitation of Minimal Residual Disease in Inv(16)-Positive Acute Myeloid Leukemia May Indicate Risk for Clinical Relapse and May Identify Patients in a Curable State. Blood 2002, 99, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, P.; Short, M.; Jack, A.; Norfolk, D.; Child, J.; Shiach, C.; Davies, F.; Tobal, K.; Yin, J.L.; Morgan, G. Detection and Quantitation of the CBFβ/MYH11 Transcripts Associated with the Inv(16) in Presentation and Follow-up Samples from Patients with AML. Leukemia 1997, 11, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laczika, K.; Novak, M.; Hilgarth, B.; Mitterbauer, M.; Mitterbauer, G.; Scheidel-Petrovic, A.; Scholten, C.; Thalhammer-Scherrer, R.; Brugger, S.; Keil, F.; et al. Competitive CBFbeta/MYH11 Reverse-Transcriptase Polymerase Chain Reaction for Quantitative Assessment of Minimal Residual Disease during Postremission Therapy in Acute Myeloid Leukemia with Inversion(16): A Pilot Study. J. Clin. Oncol. 1998, 16, 1519–1525. [Google Scholar] [CrossRef]
- Van Dongen, J.J.M.; Seriu, T.; Panzer-Grümayer, E.R.; Biondi, A.; Pongers-Willemse, M.J.; Corral, L.; Stolz, F.; Schrappe, M.; Masera, G.; Kamps, W.A.; et al. Prognostic Value of Minimal Residual Disease in Acute Lymphoblastic Leukaemia in Childhood. Lancet 1998, 352, 1731–1738. [Google Scholar] [CrossRef]
- Olavarria, E.; Kanfer, E.; Szydlo, R.; Kaeda, J.; Rezvani, K.; Cwynarski, K.; Pocock, C.; Dazzi, F.; Craddock, C.; Apperley, J.F.; et al. Early Detection of BCR-ABL Transcripts by Quantitative Reverse Transcriptase-Polymerase Chain Reaction Predicts Outcome after Allogeneic Stem Cell Transplantation for Chronic Myeloid Leukemia. Blood 2001, 97, 1560–1565. [Google Scholar] [CrossRef] [Green Version]
- Ehinger, M.; Pettersson, L. Measurable Residual Disease Testing for Personalized Treatment of Acute Myeloid Leukemia. APMIS 2019, 127, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Mosna, F.; Capelli, D.; Gottardi, M. Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress? J. Clin. Med. 2017, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béne, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/Measurable Residual Disease in AML: A Consensus Document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [Green Version]
- Short, N.J.; Ravandi, F. How Close Are We to Incorporating Measurable Residual Disease into Clinical Practice for Acute Myeloid Leukemia? Haematologica 2019, 104, 1532–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dix, C.; Lo, T.-H.; Clark, G.; Abadir, E. Measurable Residual Disease in Acute Myeloid Leukemia Using Flow Cytometry: A Review of Where We Are and Where We Are Going. J. Clin. Med. 2020, 9, 1714. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Tang, J.-L.; Tien, F.-M.; Kuo, Y.-Y.; Wu, D.-C.; Lin, C.-C.; Tseng, M.-H.; Peng, Y.-L.; Hou, M.-F.; Chuang, Y.-K.; et al. Clinical Implications of Sequential MRD Monitoring by NGS at 2 Time Points after Chemotherapy in Patients with AML. Blood Adv. 2021, 5, 2456–2466. [Google Scholar] [CrossRef]
- Ouyang, J.; Goswami, M.; Peng, J.; Zuo, Z.; Daver, N.; Borthakur, G.; Tang, G.; Medeiros, L.J.; Jorgensen, J.L.; Ravandi, F.; et al. Comparison of Multiparameter Flow Cytometry Immunophenotypic Analysis and Quantitative RT-PCR for the Detection of Minimal Residual Disease of Core Binding Factor Acute Myeloid Leukemia. Am. J. Clin. Pathol. 2016, 145, 769–777. [Google Scholar] [CrossRef]
- Perea, G.; Lasa, A.; Aventín, A.; Domingo, A.; Villamor, N.; Paz Queipo de Llano, M.; Llorente, A.; Juncà, J.; Palacios, C.; Fernández, C.; et al. Prognostic Value of Minimal Residual Disease (MRD) in Acute Myeloid Leukemia (AML) with Favorable Cytogenetics [t(8;21) and Inv(16)]. Leukemia 2006, 20, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Marcucci, G.; Caligiuri, M.; Döhner, H.; Archer, K.; Schlenk, R.; Döhner, K.; Maghraby, E.; Bloomfield, C. Quantification of CBFβ/MYH11 Fusion Transcript by Real Time RT-PCR in Patients with INV(16) Acute Myeloid Leukemia. Leukemia 2001, 15, 1072–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrasio, A.; Pilatrino, C.; De Micheli, D.; Cilloni, D.; Serra, A.; Gottardi, E.; Parziale, A.; Marmont, F.; Diverio, D.; Divona, M.; et al. Assessment of Minimal Residual Disease (MRD) in CBFbeta/MYH11-Positive Acute Myeloid Leukemias by Qualitative and Quantitative RT-PCR Amplification of Fusion Transcripts. Leukemia 2002, 16, 1176–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauter, J.; Görlich, K.; Ottmann, O.; Lübbert, M.; Döhner, H.; Heit, W.; Kanz, L.; Ganser, A.; Heil, G. Prognostic Value of Minimal Residual Disease Quantification by Real-Time Reverse Transcriptase Polymerase Chain Reaction in Patients with Core Binding Factor Leukemias. J. Clin. Oncol. 2003, 21, 4413–4422. [Google Scholar] [CrossRef] [PubMed]
- Schnittger, S.; Weisser, M.; Schoch, C.; Hiddemann, W.; Haferlach, T.; Kern, W. New Score Predicting for Prognosis in PML-RARA, AML1-ETO, or CBFB-MYH11 Acute Myeloid Leukemia Based on Quantification of Fusion Transcripts. Blood 2003, 102, 2746–2755. [Google Scholar] [CrossRef] [Green Version]
- Stentoft, J.; Hokland, P.; Østergaard, M.; Hasle, H.; Nyvold, C.G. Minimal Residual Core Binding Factor AMLs by Real Time Quantitative PCR-Initial Response to Chemotherapy Predicts Event Free Survival and Close Monitoring of Peripheral Blood Unravels the Kinetics of Relapse. Leuk. Res. 2006, 30, 389–395. [Google Scholar] [CrossRef]
- Lane, S.; Saal, R.; Mollee, P.; Jones, M.; Grigg, A.; Taylor, K.; Seymour, J.; Kennedy, G.; Williams, B.; Grimmett, K.; et al. A ≥1 Log Rise in RQ-PCR Transcript Levels Defines Molecular Relapse in Core Binding Factor Acute Myeloid Leukemia and Predicts Subsequent Morphologic Relapse. Leuk. Lymphoma 2008, 49, 517–523. [Google Scholar] [CrossRef]
- Guièze, R.; Renneville, A.; Cayuela, J.-M.; Abdelali, R.B.; Boissel, N.; de Botton, S.; Rubio, M.-T.; Mazingue, F.; Macintyre, E.A.; Cheok, M.; et al. Prognostic Value of Minimal Residual Disease by Real-Time Quantitative PCR in Acute Myeloid Leukemia with CBFB-MYH11 Rearrangement: The French Experience. Leukemia 2010, 24, 1386–1388. [Google Scholar] [CrossRef] [Green Version]
- Corbacioglu, A.; Scholl, C.; Schlenk, R.F.; Eiwen, K.; Du, J.; Bullinger, L.; Fröhling, S.; Reimer, P.; Rummel, M.; Derigs, H.-G.; et al. Prognostic Impact of Minimal Residual Disease in CBFB-MYH11-Positive Acute Myeloid Leukemia. J. Clin. Oncol. 2010, 28, 3724–3729. [Google Scholar] [CrossRef]
- Yin, J.A.L.; O’brien, M.A.; Hills, R.K.; Daly, S.B.; Wheatley, K.; Burnett, A.K. Minimal Residual Disease Monitoring by Quantitative RT-PCR in Core Binding Factor AML Allows Risk Stratification and Predicts Relapse: Results of the United Kingdom MRC AML-15 Trial. Blood 2012, 120, 2826–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Gao, L.; Xu, S.; Gong, S.; Liu, M.; Qiu, H.; Xu, X.; Ni, X.; Chen, L.; Lu, S.; et al. High Prognostic Value of Minimal Residual Disease Detected by Flow-Cytometry-Enhanced Fluorescence in Situ Hybridization in Core-Binding Factor Acute Myeloid Leukemia (CBF-AML). Ann. Hematol. 2014, 93, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-Z.Z.; Xu, L.-P.P.; Chen, H.; Jiang, Q.; Wang, Y.; Jiang, H.; Zhang, X.-H.H.; Han, W.; Chen, Y.-H.H.; Wang, F.-R.R.; et al. Allogeneic Stem Cell Transplant May Improve the Outcome of Adult Patients with Inv(16) Acute Myeloid Leukemia in First Complete Remission with Poor Molecular Responses to Chemotherapy. Leuk. Lymphoma 2015, 56, 3116–3123. [Google Scholar] [CrossRef] [PubMed]
- Puckrin, R.; Atenafu, E.G.; Claudio, J.O.; Chan, S.; Gupta, V.; Maze, D.; McNamara, C.; Murphy, T.; Shuh, A.C.; Yee, K.; et al. Measurable Residual Disease Monitoring Provides Insufficient Lead-Time to Prevent Morphologic Relapse in the Majority of Patients with Core-Binding Factor Acute Myeloid Leukemia. Haematologica 2021, 106, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Löwenberg, B.; Pabst, T.; Vellenga, E.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Biemond, B.J.; Gratwohl, A.; et al. Cytarabine Dose for Acute Myeloid Leukemia. N. Engl. J. Med. 2011, 364, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Löwenberg, B. Sense and Nonsense of High-Dose Cytarabine for Acute Myeloid Leukemia. Blood 2013, 121, 26–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, G.; Ottaviani, E.; Testoni, N.; Montefusco, V.; Buonamici, S.; Tura, S. Long-Term Disease-Free Acute Myeloblastic Leukemia with Inv(16) Is Associated with PCR Undetectable CBFbeta/MYH11 Transcript This. Haematologica 2000, 85, 552–555. [Google Scholar]
- Elmaagacli, A.H.; Beelen, D.W.; Kroll, M.; Trzensky, S.; Stein, C.; Schaefer, U.W. Detection of CBFβ/MYH11 Fusion Transcripts in Patients with Inv(16) Acute Myeloid Leukemia after Allogeneic Bone Marrow or Peripheral Blood Progenitor Cell Transplantation. Bone Marrow Transpl. 1998, 21, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Tobal, K.; Johnson, P.R.E.; Saunders, M.J.; Harrison, C.J.; Yin, J.A.L. Detection of CBFB/MYH11 Transcripts in Patients with Inversion and Other Abnormalities of Chromosome 16 at Presentation and Remission. Br. J. Haematol. 1995, 91, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Claxton, D.F.; Liu, P.; Hsu, H.B.; Marlton, P.; Hester, J.; Collins, F.; Deisseroth, A.B.; Rowley, J.D.; Siciliano, M.J. Detection of Fusion Transcripts Generated by the Inversion 16 Chromosome in Acute Myelogenous Leukemia. Blood 1994, 83, 1750–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Lu, C.; Wang, J.; McLellan, M.D.; Johnson, K.J.; Wendl, M.C.; McMichael, J.F.; Schmidt, H.K.; Yellapantula, V.; Miller, C.A.; et al. Age-Related Mutations Associated with Clonal Hematopoietic Expansion and Malignancies. Nat. Med. 2014, 20, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Costello, R.; Sainty, D.; Blaise, D.; Gastaut, J.A.; Gabert, J.; Poirel, H.; Buzyn- Veil, A.; Macintyre, E. Prognosis Value of Residual Disease Monitoring by Polymerase Chain Reaction in Patients with CBFβ/MYH11-Positive Acute Myeloblastic Leukemia. Blood 1997, 89, 2222–2223. [Google Scholar] [CrossRef]
- Yalniz, F.F.; Patel, K.P.; Bashir, Q.; Marin, D.; Ahmed, S.; Alousi, A.M.; Chen, J.; Ciurea, S.O.; Rezvani, K.; Popat, U.R.; et al. Significance of Minimal Residual Disease Monitoring by Real-time Quantitative Polymerase Chain Reaction in Core Binding Factor Acute Myeloid Leukemia for Transplantation Outcomes. Cancer 2020, 126, 2183–2192. [Google Scholar] [CrossRef]
- Biernacki, M.A.; Rongvaux, A.; Bleakley, M. CBFB-MYH11 Fusion Neoantigen Enables T Cell Recognition and Killing of Acute Myeloid Leukemia The Journal of Clinical Investigation. J. Clin. Investig. 2020, 130, 5127–5141. [Google Scholar] [CrossRef] [PubMed]
- Dillon, R.; Potter, N.; Freeman, S.; Russell, N. How We Use Molecular Minimal Residual Disease (MRD) Testing in Acute Myeloid Leukaemia (AML). Br. J. Haematol. 2021, 193, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Ommen, H.B.; Schnittger, S.; Jovanovic, J.V.; Ommen, I.B.; Hasle, H.; Østergaard, M.; Grimwade, D.; Hokland, P. Strikingly Different Molecular Relapse Kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 Acute Myeloid Leukemias. Blood 2010, 115, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skou, A.S.; Juul-Dam, K.L.; Ommen, H.B.; Hasle, H. Peripheral Blood Molecular Measurable Residual Disease Is Sufficient to Identify Patients with Acute Myeloid Leukaemia with Imminent Clinical Relapse. Br. J. Haematol. 2021. [Google Scholar] [CrossRef]
- Ivey, A.; Hills, R.K.; Simpson, M.A.; Jovanovic, J.V.; Gilkes, A.; Grech, A.; Patel, Y.; Bhudia, N.; Farah, H.; Mason, J.; et al. Assessment of Minimal Residual Disease in Standard-Risk AML. N. Engl. J. Med. 2016, 374, 422–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeckx, N.; De Roover, J.; van der Velden, V.H.J.; Maertens, J.; Uyttebroeck, A.; Vandenberghe, P.; van Dongen, J.J.M. Quantification of CBFB-MYH11 Fusion Gene Levels in Paired Peripheral Blood and Bone Marrow Samples by Real-Time PCR. Leukemia 2005, 19, 1988–1990. [Google Scholar] [CrossRef] [Green Version]
- Halaburda, K.; Labopin, M.; Mailhol, A.; Socié, G.; Craddock, C.; Aljurf, M.; Beelen, D.; Cornelissen, J.J.; Bourhis, J.-H.; Labussière-Wallet, H.; et al. Allogeneic Stem Cell Transplantation in Second Complete Remission for Core Binding Factor Acute Myeloid Leukemia: A Study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2020, 105, 1723–1730. [Google Scholar] [CrossRef]
- Gorin, N.C.; Labopin, M.; Frassoni, F.; Milpied, N.; Attal, M.; Blaise, D.; Meloni, G.; Iori, A.P.; Michallet, M.; Willemze, R.; et al. Identical Outcome after Autologous or Allogeneic Genoidentical Hematopoietic Stem-Cell Transplantation in First Remission of Acute Myelocytic Leukemia Carrying Inversion 16 or t(8;21): A Retrospective Study from the European Cooperative Group for Blood An. J. Clin. Oncol. 2008, 26, 3183–3188. [Google Scholar] [CrossRef]
- Kuwatsuka, Y.; Miyamura, K.; Suzuki, R.; Kasai, M.; Maruta, A.; Ogawa, H.; Tanosaki, R.; Takahashi, S.; Koda, K.; Yago, K.; et al. Hematopoietic Stem Cell Transplantation for Core Binding Factor Acute Myeloid Leukemia: T(8;21) and Inv(16) Represent Different Clinical Outcomes. Blood 2009, 113, 2096–2103. [Google Scholar] [CrossRef] [Green Version]
- Koreth, J.; Schlenk, R.; Kopecky, K.J.; Honda, S.; Sierra, J.; Djulbegovic, B.J.; Wadleigh, M.; DeAngelo, D.J.; Stone, R.M.; Sakamaki, H.; et al. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia in First Complete Remission: Systematic Review and Meta-Analysis of Prospective Clinical Trials. JAMA 2009, 301, 2349–2361. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Zhang, G.; Liang, C.; Li, G.; Chen, X.; Ma, Q.; Zhai, W.; Yang, D.; He, Y.; Jiang, E.; et al. Combination of Cytogenetic Classification and MRD Status Correlates with Outcome of Autologous versus Allogeneic Stem Cell Transplantation in Adults with Primary Acute Myeloid Leukemia in First Remission. Leuk. Res. 2017, 55, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, H.J.; Sohn, S.K.; Min, Y.H.; Won, J.H.; Kim, I.; Yoon, H.J.; Lee, J.H.; Jo, D.Y.; Joo, Y.D.; et al. Re-Analysis of the Outcomes of Post-Remission Therapy for Acute Myeloid Leukemia with Core Binding Factor According to Years of Patient Enrolment. Jpn. J. Clin. Oncol. 2010, 40, 556–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, S.A.; Wood, B.L.; Othus, M.; Hourigan, C.S.; Ustun, C.; Linden, M.A.; DeFor, T.E.; Malagola, M.; Anthias, C.; Valkova, V.; et al. Minimal Residual Disease Prior to Allogeneic Hematopoietic Cell Transplantation in Acute Myeloid Leukemia: A Meta-Analysis. Haematologica 2017, 102, 865–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.S.; Qin, Y.Z.; Liu, Y.R.; Chang, Y.J.; Xu, L.P.; Zhang, X.H.; Huang, X.J. The Impact of Minimal Residual Disease Prior to Unmanipulated Haploidentical Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia in Complete Remission. Leuk. Lymphoma 2017, 58, 1135–1143. [Google Scholar] [CrossRef]
- Chang, Y.J.; Wang, Y.; Liu, Y.R.; Xu, L.P.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; et al. Haploidentical Allograft Is Superior to Matched Sibling Donor Allograft in Eradicating Pre-Transplantation Minimal Residual Disease of AML Patients as Determined by Multiparameter Flow Cytometry: A Retrospective and Prospective Analysis. J. Hematol. Oncol. 2017, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Xiaosu, Z.; Leqing, C.; Yazhen, Q.; Yu, W.; Xiaohui, Z.; Lanping, X.; Xiaojun, H.; Yingjun, C. Classifying AML Patients with Inv(16) into High-Risk and Low-Risk Relapsed Patients Based on Peritransplantation Minimal Residual Disease Determined by CBFβ/MYH11 Gene Expression. Ann. Hematol. 2019, 98, 73–81. [Google Scholar] [CrossRef]
- Walter, R.B.; Gooley, T.A.; Wood, B.L.; Milano, F.; Fang, M.; Sorror, M.L.; Estey, E.H.; Salter, A.I.; Lansverk, E.; Chien, J.W.; et al. Impact of Pretransplantation Minimal Residual Disease, as Detected by Multiparametric Flow Cytometry, on Outcome of Myeloablative Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. J. Clin. Oncol. 2011, 29, 1190–1197. [Google Scholar] [CrossRef] [Green Version]
- Klyuchnikov, E.; Christopeit, M.; Badbaran, A.; Bacher, U.; Fritzsche-Friedland, U.; von Pein, U.M.; Wolschke, C.; Kröger, N. Role of Pre-Transplant MRD Level Detected by Flow Cytometry in Recipients of Allogeneic Stem Cell Transplantation with AML. Eur. J. Haematol. 2021, 106, 606–615. [Google Scholar] [CrossRef]
- Buccisano, F.; Maurillo, L.; Piciocchi, A.; Del Principe, M.I.; De Angelis, G.; Di Veroli, A.; Cerretti, R.; Cefalo, M.; Ditto, C.; Picardi, A.; et al. Variable Outcome of Allogeneic Stem Cell Transplant According to the Different Levels of Pre-Transplant Minimal Residual Disease, in Adult Patients with Acute Myeloid Leukemia. Blood 2015, 126, 3230. [Google Scholar] [CrossRef]
- Zhang, W.P.; Yang, D.; Song, X.M.; Ni, X.; Chen, J.; Chen, L.; Yang, J.M.; Zhou, H.; Cheng, H.; Liu, B.H.; et al. Allogeneic Peripheral Blood Stem Cell Transplantation Is a Promising and Safe Choice for the Treatment of Refractory/Relapsed Acute Myelogenous Leukemia, Even with a Higher Leukemia Burden. Biol. Blood Marrow Transpl. 2013, 19, 653–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.F.; Xu, L.P.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Han, W.; Wang, Y.; Yan, C.H.; Sun, Y.Q.; Mo, X.D.; et al. Monitoring of Post-Transplant CBFB-MYH11 as Minimal Residual Disease, Rather than KIT Mutations, Can Predict Relapse after Allogeneic Haematopoietic Cell Transplantation in Adults with Inv(16) Acute Myeloid Leukaemia. Br. J. Haematol. 2018, 180, 448–451. [Google Scholar] [CrossRef]
- Borthakur, G.; Cortes, J.E.; Estey, E.E.; Jabbour, E.; Faderl, S.; O’Brien, S.; Garcia-Manero, G.; Kadia, T.M.; Wang, X.; Patel, K.; et al. Gemtuzumab Ozogamicin with Fludarabine, Cytarabine, and Granulocyte Colony Stimulating Factor (FLAG-GO) as Front-Line Regimen in Patients with Core Binding Factor Acute Myelogenous Leukemia. Am. J. Hematol. 2014, 89, 964–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottardi, M.; Mosna, F.; De Angeli, S.; Papayannidis, C.; Candoni, A.; Clavio, M.; Tecchio, C.; Piccin, A.; Dell’Orto, M.C.; Benedetti, F.; et al. Clinical and Experimental Efficacy of Gemtuzumab Ozogamicin in Core Binding Factor Acute Myeloid Leukemia. Hematol. Rep. 2017, 9, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.; Pautas, C.; Terré, C.; Raffoux, E.; Turlure, P.; Caillot, D.; Legrand, O.; Thomas, X.; Gardin, C.; Gogat-Marchant, K.; et al. Gemtuzumab Ozogamicin for de Novo Acute Myeloid Leukemia: Final Efficacy and Safety Updates from the Open-Label, Phase III ALFA-0701 Trial. Haematologica 2019, 104, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surapally, S.; Tenen, D.G.; Pulikkan, J.A. Emerging Therapies for Inv(16) AML. Blood 2021, 137, 2579–2584. [Google Scholar] [CrossRef]
- Van der Kouwe, E.; Heller, G.; Czibere, A.; Pulikkan, J.A.; Agreiter, C.; Castilla, L.H.; Delwel, R.; Di Ruscio, A.; Ebralidze, A.K.; Forte, M.; et al. Core Binding Factor Leukemia Hijacks T-Cell Prone PU.1 Antisense Promoter. Blood 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Awada, H.; Durmaz, A.; Gurnari, C.; Kishtagari, A.; Meggendorfer, M.; Kerr, C.M.; Kuzmanovic, T.; Durrani, J.; Shreve, J.; Nagata, Y.; et al. Machine Learning Integrates Genomic Signatures for Subclassification Beyond Primary and Secondary Acute Myeloid Leukemia. Blood 2021. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Rotchanapanya, W.; Hokland, P.; Tunsing, P.; Owattanapanich, W. Clinical Outcomes Based on Measurable Residual Disease Status in Patients with Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. J. Pers. Med. 2020, 10, 250. [Google Scholar] [CrossRef] [PubMed]
Reference; Design of Study | N. of Patients with inv(16) | Median Age, Years (Range); Median Follow-Up, Months | Survival Outcome | Factors of Prognostic Relevance | |
---|---|---|---|---|---|
Patient’s Characteristics and Clinical Features | Genetic Features (Other than KIT Mutations) | ||||
Delaunay et al. [10], Blood 2003 retrospective | 110 | 34 (0.7–64) 68.4 | CR 93% 3-y OS 58% 3-y DFS 48% 3-y CIR 42% | UVA—WBC > 120 × 109/L: lower CR PLT < 30 × 109/L: lower CR, OS in CR Age >35: lower 3-y DFS, OS in CR; higher CIR MVA—WBC > 120 × 109/L: lower CR PLT < 30 × 109/L lower OS in CR Age > 35: lower 3-y DFS, OS in CR | +22: lower CR |
Schlenk et al. [8], J. Clin. Oncol. 2004 prospective | 201 | 42 (17–60) 36 | CR 89% CR2 78% 3-y OS 74% 3-y RFS 58% | Older age, higher WBC: increased early/hypoplastic death | +22: higher RFS |
Marcucci et al. [6], J. Clin. Oncol. 2005 prospective | 168 | 40 (17–77) 76.8 | CR 87% 5-y OS 54% 5-y CIR 57% | Lower PLT, hepatomegaly: lower CR Older age, lower PLT: lower OS Older age: lower OS after relapse In younger than 60, sex (male): lower CIR | +22: lower RR In younger than 60, secondary chromosome abnormalities: lower CIR |
Boissel et al. [12], Leukemia 2006; retrospective | 47 | 33 (1–75) * 52.8 * | CR 89% 6-y OS 71% 6-y EFS 60% | NA | FLT3mut: lower CR, OS, EFS * |
Appelbaum et al. [7], Br. J. Haematol. 2006; retrospective | 196 | 41 (16–83) 108 | CR 85% 5-y OS 50% 5-y RFS 44% | UVA—Older age, secondary AML: lower CR * UVA—Older age, PB and BM blast %: lower OS * MVA/UVA—Older age, PB blast%: lower RFS * | −7/7q-: higher RD * +8, complex abnormality: lower OS * |
Wang et al. [13], Biochem. Biophys. Res. Commun. 2012 | 11 | 28 (16–64) | CR 81.8% | WBC >100 × 109: lower CR and OS * | NA |
Kim et al. [14], Ann. Hematol. 2013 retrospective | 39 | 38 (18–69) 27 | CR 100% 2-y OS 57.1% 2-y EFS 47.5% | MVA—Older age: lower EFS | NA |
Allen et al. [15], Leukemia 2013 retrospective | 155 | 39 (15–70) * 99.6 * | 10-y OS 54% | NA | FLT3-TKDHIGH: lower RR, higher OS FLT3-ITDHIGH: higher RR, lower OS * CBLHIGH: higher OS * |
Jourdan et al. [16], Blood 2013 prospective | 102 | 42 (18–60) 32 | 3-y RFS 61% 3-y CIR 34% 3-y OS 86% | UVA—Higher WBC: higher SHR * Older age, BM blast %: lower OS * MVA—3-log MRD2 reduction or MRD2 < 0.1%: lower CIR, higher RFS, higher OS from CR * | RTKmut: higher CIR, lower RFS * |
Hoyos et al. [17], Eur. J. Haematol. 2013 prospective | 76 | 42 (18–68) 55 | CR 84% 5-y CIR 29% 5-y DFS 58% 5-y OS 64% | Age > 50: lower CR, lower OS* WBC > 20 × 109/L: higher CIR, lower DFS, lower OS * High copies at diagnosis: higher CIR, lower DFS, lower OS * High MRD after induction: higher CIR, lower DFS, lower OS High MRD after consolidation: higher CIR, lower DFS, lower OS | BAALC and MN1 overexpression: higher CIR, lower DFS |
Cairoli et al. [18], Am. J. Hematol. 2013 prospective | 58 | 42 (15–60) 50 | CR 96.5%; CR2 74% 5-y RI 48.4% 5-y OS 69.2% | UVA—Age > 43: lower OS MVA—Age > 43: lower OS Higher WBC: higher RI | NA |
Paschka et al. [19], Blood 2013 prospective | 176 | 41 (18–74) 72.4 | CR 90% 6-y RFS 52% 6-y OS 66% | MVA—Higher WBC: lower RFS Older age: lower OS | UVA—+22: higher RFS +8, FLT3 mutation: lower OS MVA—+8, FLT3 mutation: lower OS |
Yoon et al. [20], Bone Marrow Transplant. 2014 retrospective | 71 | 39 (18–89) * 61.8 * | NA | UVA—Age > 40: lower OS, higher CIR * Post-induction MRD reduction < or =3-log: lower OS * MRD after final treatment undetectable: higher OS | NK mosaicism: higher OS, higher EFS § UVA—additional chromosome > or =2: lower OS, higher CIR * |
Jung et al. [21], Anticancer Res. 2014 retrospective | 16 | 47 (18–75) NA | CR 92.3% * Median OS 80.6 months * Median RFS 68.4 months * | PLT < 20 × 109/L, PB blasts > 50%, BM blasts > 50%: lower OS * PLT < 20 × 109/L, BM blasts >50%: lower LFS * | Y deletion: higher OS and LFS * |
Brunner et al. [22], Leuk. Res. 2014 retrospective | 320 | 54 (15–84) * NA | 1-y OS 71.9% 3-y OS 57.3% 5-y OS 46.9% | Older age: higher early death rate, lower OS * Black ethnicity, year of diagnosis before 2003: lower OS * | NA |
Mosna et al. [23], Am. J. Hematol. 2015 retrospective | 112 | 45.1 (15–73) 73.4 | CR 93.8% § 5-y OS 67% * 10-y OS 63.9% * 5-y DFS 58.2% * 10-y DFS 54.8% * 5-y EFS 53.9% * 10-y EFS 49.9% * | UVA—PLT ≤ 20 × 103/mm3, failure to achieve CR1 after induction therapy: lower OS MVA—Age > 60, PLT ≤ 20 × 103/mm3: lower OS | +22, +8: higher OS and DFS * Additional cytogenetic abnormalities > or =3: lower DFS, EFS and OS * |
Yui et al. [24], Ann. Hematol. 2017 retrospective | 28 | 45 (15–80) * NA | 3-y RFS 48.6% * 3-y OS 69.9% * 3-y CIR 46.7% * | Age > 60, no HDAC as post-remission therapy: lower OS and RFS * | NA |
Prabahran et al. [25], Eur. J. Haematol. 2018 retrospective | 30 | 46.5 (17–73) 31.4 | CR 97% * 5-y OS 71% * 5-y RFS 39% § 5-y RR 57% § | UVA and MVA—age > 50: lower OS * UVA—WBC > 40 × 109/L: lower RFS * | RTKmut: no impact on OS, RFS |
Shin et al. [26], Ann. Hematol. 2019 retrospective | 111 | 45 (17–85) NA | 3-y EFS 47.1% 3-y OS 59.9% | UVA—Age > 60, number of induction cht > 1, not CR after first induction, not CR before SCT: lower OS MVA—not CR before SCT: lower OS | del(7q): higher OS (NS) |
Opatz et al. [27], Leukemia 2020 | 162 | 44 (17–83) 43.2 | CR 97.1% | UVA—Age > 60: lower OS | UVA—+8, +22: higher OS (NS) |
Ishikawa et al. [28], Blood Adv. 2020 prospective | 67 | 37 (17–64) 52.2 | 2-y RFS 59.6% | MVA—MRD ≥ 50 copies/μg RNA after 3 courses of consolidation: lower RFS | MVA—Loss of X/Y, NRAS mutation: lower RFS |
Ustun et al. [29], Int. J. Lab. Hematol. 2020 retrospective | 290 | 49 (5–78) NA | Median EFS 25.5 m Median DFS 29.5 m | MVA—Age > or =43: lower EFS, DFS, OS WBC ≥ 98 × 109/L: lower EFS, DFS | NA |
Jahn et al. [30], Blood Adv. 2020 prospective | 160 | 46 (18–77) 51.6 | CR 92% | Age: lower OS WBC, t-AML: lower RFS | +8, FLT3-ITD, TET2, DNMT3A: lower OS * WT1wt: higher OS * NRASwt: higher OS (NS) * |
Duan et al. [31], Br. J. Haematol. 2021 retrospective | 58 | 38 (17–66) 29.8 | CR 98.3% 3-y CIR 29.4% 3-y CIM 24.4% | Age > 41: lower RFS MRD > 0.1% after 2 courses of consolidation: lower RFS, EFS | NA |
Duan et al. [32], Ann. Hematol. 2021 retrospective | 68 | 39 (15–70) * 26 * | CR 99.5% * 3-y CIR 29.4% * 3-y CIM 27% * | MRD < 0.1% after 2 course of consolidation: higher RFS, OS | NA |
Han et al. [33], Blood Adv. 2021 retrospective | 290 | 50 (5–81) 39.6 | CR 93% 5-y OS 68% 5-y DFS 47% | UVA—Age: lower OS, DFS | UVA—Hyperdiploidy, +8, secondary chromosomal abnormalities: higher DFS MVA—Chromosomal abnormalities other than +8: lower OS +8: higher OS |
Reference | N. | Median Age, Years (Range) | KIT Exons Analyzed | Proportion of Patients with KIT Mutations, % | Prognostic Relevance of KIT Mutations |
---|---|---|---|---|---|
Care et al. [48], Br. J. Haematol. 2003 | 63 | 43.9 (15–74) | 8, 17 | 32 (20/63) | Higher RR with KIT exon 8 mutation |
Boissel et al. [12], Leukemia 2006 | 47 | 33 (1–75) * | 8, 17 | 22 (10/46) | No impact on OS, RFS, EFS In t(8;21): negative impact on OS, RFS, EFS and association to higher WBC |
Cairoli et al. [41], Blood 2006 | 25 | 51 (17–88) | 8, 11, 17 | 48 (12/25) | No impact on RI, OS In t(8;21): negative impact on OS, RFS, EFS for D816 and association to higher WBC and extramedullary leukemia |
Paschka et al. [43], J. Clin. Oncol. 2006 | 61 | NA | 8, 17 | 29.5 (18/61) | Higher CIR in mutKIT patients, mainly in exon 17 mutations (six times RR) Inferior OS in MVA in mutKIT patients Association to higher PB blast percentage and older age |
Marková et al. [53], Leuk. Lymphoma 2009 | 26 | 29.3 (1.6–72.2) * | 8, 9, 10, 11, 17, 18 | 50 (13/26) | No impact on RFS, OS |
Park et al. [49], Leuk. Res. 2011 | 38 | NA | 8, 17 | 34 (13/38) | Lower CR with KIT exon 8 mutation; no impact on EFS, OS In t(8;21): negative impact on OS, EFS with KIT exon 17 mutation |
Wang et al. [13], Biochem. Biophys. Res. Commun. 2012 | 11 | 28 (16–64) | 8, 17 | 28.9 (22/76) * | Lower CR with KIT exon 17 mutation * Lower OS, RFS in mutKIT patients * |
Huh et al. [46], Am. J. Hematol. 2012 | 35 | 41 (15–75) * | 8, 10, 11, 12, 13, 17 | 23 (21/91) * | No impact on OS In t(8;21): negative impact on OS, EFS, LFS with KIT exon 17 mutation (D816) |
Kim et al. [14], Ann. Hematol. 2013 | 39 | 38 (18–69) | 8, 10, 11, 12, 13, 17 | 26.4 (32/121) * | No impact on OS, EFS In t(8;21): negative impact on OS, EFS with KIT exon 17 mutation (D816) |
Allen et al. [15], Leukemia 2013 | 155 | 39 (15–70) * | 8,9, 10, 11, 17, 18 | 35 (54/155) | No impact on CIR, OS in MVA In t(8;21): negative impact on CIR for KITHIGH mutant level |
Jourdan et al. [16], Blood 2013 | 102 | 42 (18–60) | 8, 17 | 18 (18/102) | Negative impact on CIR (p = 0.057) * |
Hoyos et al. [17], Eur. J. Haematol. 2013 | 76 | 42 (18–68) | 8, 17 | 49 (19/39) | No impact on CIR, DFS, OS In t(8;21): negative impact on CIR |
Cairoli et al. [18], Am. J. Hematol. 2013 | 58 | 42 (15–60) 50 | 2, 8, 10, 11, 17 | 25.9 (15/58) | No impact on CR, RI, OS |
Paschka et al. [19], Blood 2013 | 176 | 41 (18–74) | 8, 10, 11, 17 | 37 (65/175) | Lower RFS with KIT exon 8 mutation Association to higher WBC and PB blast % |
Riera et al. [54], Oncol. Rep. 2013 | 14 | 42.7 (19–64) * | 8, 9, 10, 11, 13, 14, 17 | 28.6 (4/14) | No impact on CR, OS, DFS Association to higher lactate dehydrogenase level |
Schwind et al. [50], Blood 2013 | 208 | 41 (17–74) | 8, 17 | 24 (48/208) | Lower OS, EFS |
Yoon et al. [20], Bone Marrow Transplant. 2014 | 71 | 39 (18–89) * | 17 | 25 (6/24) | Lower OS |
Park et al. [55], Ann. Lab. Med. 2015 | 21 | 47 (16–82) | 8, 17 | 14.3 (3/21) | No impact on DFS, OS In t(8;21): negative impact on DFS, OS |
Qin et al. [47], Leuk. Res. 2014 | 98 | (0.5–73) | 8, 17 | 29.6 (29/98) | No impact on CIR, DFS, OS Less reduction in fusion transcript levels after first induction therapy In t(8;21): negative impact on OS, DFS, CIR |
Mosna et al. [23], Am. J. Hematol. 2015 | 112 | 45.1 (15–73) | 8 | 10.2 (4/39) | No impact on OS In t(8;21): negative impact on OS |
Yui et al. [24], Ann. Hematol. 2017 | 28 | 45 (15–80) * | 8, 17 | 16 (10/28) | Lower OS, RFS with KIT exon 17 mutation (D816) |
Prabahran et al. [25], Eur. J. Haematol. 2018 | 30 | 46.5 (17–73) | NA | 58 (7/12) | No impact on OS, RFS |
Shin et al. [26], Ann. Hematol. 2019 | 111 | 45 (17–85) | 17 | NA | No impact on OS, EFS In t(8;21): negative impact on OS, EFS with KIT exon 17 mutation (D816) |
Opatz et al. [27], Leukemia 2020 | 162 | 44 (17–83) | 17 | 26 (41/162) | No impact on RFS, OS In t(8;21): negative impact on RFS with KIT exon 17 mutation (D816) |
Ishikawa et al. [28], Blood Adv. 2020 | 67 | 37 (17–64) | 8, 10, 11, 17 | 31.3 (21/67) | No impact on OS, RFS In t(8;21): negative impact on OS, RFS with KIT exon 17 mutation; association to higher WBC and BM blast %; association to MRD level after consolidation |
Jahn et al. [30], Blood Adv. 2020 | 160 | 46 (18–77) | 8, 17 | 26 | In t(8;21): negative impact on OS with KIT exon 17 mutation |
Duan et al. [31], Br. J. Haematol. 2021 | 58 | 38 (17–66) | 8, 17 | 27.5 (16/58) | Lower RFS |
Duan et al. [32], Ann. Hematol. 2021 | 68 | 39 (15–70) * | 8, 17 | 27.9 (19/68) | Lower RFS, OS with KIT mutation, especially with KIT exon 17 mutation (D816, D820) * |
Han et al. [33], Blood Adv. 2021 retrospective | 290 | 50 (5–81) | 17 | 13 | In t(8;21): negative impact on OS, DFS with KIT exon 17 (D816) mutation |
Reference | N. of Patients; Median Age, Years | Median Follow-Up, Months; Outcomes | Timepoint | PB or BM | Prognostic Transcript Level Cutoff or Trend of MRD Dynamics | Associated Risk | Sensitivity of the Assay |
---|---|---|---|---|---|---|---|
Marcucci et al. [74], Leukemia 2001 | 16 NA | NA CR 100% | At the end of treatment | BM | CBFB-MYH11/18S × 106 >10 copies | Shorter CR duration and higher risk of relapse for CBFB-MYH11/18S × 106 >10 copies | 10−4 |
Buonamici et al. [61], Blood 2002 | 2149 | 51 CR1 72% 3-y DFS 63% 3-y OS 82% | Any time during CR | PB/BM | CBFB-MYH11/ABL < 0.12% CBFB-MYH11/ABL > 0.25% | High probability of durable remission for CBFB-MYH11/ABL < 0.12% High risk of relapse for CBFB-MYH11/ABL > 0.25% | 10−5 |
Guerrasio et al. [75], Leukemia 2002 | 36 35 | 27.5 NA | After induction | BM | CBFB-MYH11/ABL × 104 > 100 copies | High risk of relapse for CBFB-MYH11/ABL × 104 >100 copies | 10−5 |
After consolidation | BM | CBFB-MYH11/ABL × 104 > 10 copies | High risk of relapse for CBFB-MYH11/ABL × 104 >10 copies | ||||
At any time during CR | BM | CBFB-MYH11/ABL × 104 < 1 copy | Higher probability of CCR | ||||
Krauter et al. [76], J. Clin. Oncol. 2003 | 15 § 39 * | 19 * NA | At least at one time point after induction | BM | CBFB-MYH11:GAPDH in CR/CBFB-MYH11:GAPDH at diagnosis > or = 1% | Shorter RFS * | 10−5 |
Schnittger et al. [77], Blood 2003 | 122 § 48.9 § | 17.7 § NA | At diagnosis AND after consolidation | BM | CBFB-MYH11/ABL × 102 < 75th percentile at diagnosis AND CBFB-MYH11/ABL < 0.014 after consolidation | 2-y OS 100% (vs. 69% if initial level >75th percentile and/or more than 0.014 after consolidation) § 2-y EFS 100% (vs. 40% if initial level > 75th percentile and/or more than 0.014 after consolidation) § | 10−5 |
Perea et al. [73], Leukemia 2006 | 35 § 43 § | 34 * 2-y LFS 50% § 2-y OS 64% § CR 84% * | After induction | BM | CBFB-MYH11/ABL × 104 < or = 100 copies | 2-y CIR 35% (vs. 58% >100 copies) * (NS) | 10−5 |
After intensification | BM | CBFB-MYH11/ABL × 104 < or = 10 copies | 2-y CIR 36% (vs. 70% >10 copies) * (NS) | ||||
At the end of treatment | BM | CBFB-MYH11/ABL × 104 < or = 10 copies | 2-y CIR 26% (vs. 100% >10 copies) § | ||||
At follow-up | BM | CBFB-MYH11/ABL × 104 < or = 10 copies | 2-y CIR 13% (vs. 78% >10 copies) * | ||||
Stentoft et al. [78], Leuk. Res. 2006 | 13 § 39 * | NA | After induction | PB/BM | <2-log reduction of the fusion transcript level | Shorter EFS (p < 0.014) * | 10−4 |
Lane et al. [79], Leuk. Lymphoma 2008 | 17 § 35 § | 34 * NA | At follow-up | BM | > or = 1-log rise in transcript levels in consecutive samples in CR | Predictive for imminent morphological relapse and shorter LFS (p = 0.008) * | 10−6 |
Guièze et al. [80], Leukemia 2010 | 59 36 | 26.5 2-y CCR 63% 2-y OS 88% | At CR achievement | PB/BM | CBFB-MYH11/ABL < 0.5% | 2-y CCR 76% (vs. 36% > 0.5%) | NA |
After 1st consolidation (MRD2) | PB/BM | CBFB-MYH11/ABL < 0.1% | 2-y CCR 74% (vs. 40% > 0.1%) | ||||
PB/BM | MRD2 transcript level/ CBFB-MYH11 transcript level at diagnosis (deltaMRD2) decrease >3 log | 2-y CCR 83% (vs. 28% if deltaMRD2 decrease < 3 log) 2-y OS 100% (vs. 67% if deltaMRD2 decrease < 3 log) | |||||
At the end of consolidation | PB | CBFB-MYH11/ABL undetectable | 2-y CCR 85% (vs. 13% for detectable MRD) | ||||
Corbacioglu et al. [81], J. Clin. Oncol. 2010 | 52 NA | 47 NA | From 1st consolidation until up to 4 weeks after last consolidation (checkpoint I) | BM | At least 1 PCR negative sample | 2-y RFS 79% (vs. 54% for patients who never achieved PCR negativity during consolidation) | 10−4 |
From 1st consolidation until up to 3 months after last consolidation (checkpoint II) | PB/BM | At least 2 PCR negative samples | 2-y RFS 91% Longer OS | ||||
At follow-up | BM | Conversion of PCR negativity to positivity (>10 copies/B2M × 106) | High risk of relapse | ||||
Yin et al. [82], Blood 2012 | 115 § 38 § | 36 * CR 92% § 5-y CIR 23% § | At remission after induction | PB | CBFB-MYH11/ABL × 105 < 10 copies | 5-y CIR 21% (vs. 56% 10–500 copies) § 5-y survival after CR 89% (vs. 45% 10–500 copies) § | 10−5 |
After courses 3 and 4 | PB | CBFB-MYH11/ABL × 105 < 10 copies | 5-y CIR 36% (vs. 78% > 10 copies) § | ||||
At follow-up (4 weeks after last treatment) | PB | CBFB-MYH11/ABL × 105 < 10 copies | 5-y EoR 7% (vs. 97% > 10 copies) § 5-y EoS 91% (vs. 57% > 10 copies) § | ||||
BM | CBFB-MYH11/ABL × 105 < 50 copies | 5-y EoR 10% (vs. 100% > 50 copies) § 5-y EoS 100% (vs. 25% > 50 copies) § | |||||
Jourdan et al. [16], Blood 2013 | 102 § 42 § | 32 * 3-y RFS 61% § 3-y CIR 34% § 3-y OS 86% § | Before 2nd consolidation (MRD2) | BM | > or = 3-log MRD2 reduction | 3-y CIR 22% (vs. 54% for patients who did not achieve a 3-log MRD2 reduction) * 3-y RFS 73% (vs. 44% for patients who did not achieve a 3-log MRD2 reduction) * 3-y OS 90% (vs. 71% for patients who did not achieve a 3-log MRD2 reduction) (NS) * | NA |
MRD2 < or = 0.1% | Lower CIR and longer RFS | ||||||
Hoyos et al. [17], Eur. J. Haematol. 2013 | 76 § 42 § | 55 * CR 84% § 5-y CIR 29% § 5-y DFS 58% § 5-y OS 64% § | After induction | BM | CBFB-MYH11/ABL < 100 copies | DFS 66% (vs. 34% > 100 copies) § OS 82% (vs. 33% > 100 copies) § | NA |
After consolidation | BM | CBFB-MYH11/ABL < 82 copies | CIR 32% (vs. 75% > 82 copies) § DFS 64% (vs. 25% > 82 copies) § OS 86% (vs. 25% > 82 copies) § | ||||
Yoon et al. [20], Bone Marrow Transplant. 2014 | 71 § 39 * | 61.8 * NA | After induction | BM | MRD qPCR reduction > or = 3 log | Longer OS * | NA |
At the end of treatment | BM | MRD qPCR undetectable | Longer OS * | ||||
Wang et al. [83], Ann. Hematol. 2014 | 10 § 40 § | 11.2 * CR 70% § | 4 weeks after 3rd consolidation | BM | CBFB-MYH11/ABL × 106 < or = 0.1% | 2-y RFS 56.8% (vs. 15.8% > 0.1%) * | NA |
4 weeks after last consolidation | BM | CBFB-MYH11/ABL × 106 < or = 0.1% | 2-y RFS 55.8%(vs. 25.4% > 0.1%) * | ||||
At follow-up | BM | CBFB-MYH11/ABL × 106 < or = 0.1% | 2-y RFS 75% (vs. 0% > 0.1%) * | ||||
Qin et al. [84]., Leuk. Lymphoma 2015 | 86 34 | 25 CR 95.3% 3-y CIR 33.7% 3-y DFS 62.2% 3-y OS 72.9% | After course 1 induction | BM | CBFB-MYH11 transcript levels > 2.0% (corresponding to <2-log reduction) | 3-y CIR 68.5% (vs. 43.3% if CBFB-MYH11 levels < or = 2.0%) 3-y DFS 31.5% (vs. 56.7% if CBFB-MYH11 levels < or = 2.0%) | NA |
After achieving CR by induction | BM | CBFB-MYH11 transcript levels > 2.0% (corresponding to <2-log reduction) | 3-y CIR 77.6% (vs. 40.5% if CBFB-MYH11 levels < 2.0%) 3-y DFS 22.4% (vs. 59.5% if CBFB-MYH11 levels < 2.0%) | ||||
After course 1 consolidation | BM | CBFB-MYH11 transcript levels > or = 0.2% (corresponding to < or = 3-log reduction) | 3-y CIR 69.8% (vs. 7.1% if CBFB-MYH11 levels < 2.0%) 3-y DFS 30.2% (vs. 92.9% if CBFB-MYH11 levels < 2.0%) 3-y OS 48.9% (vs. 100% if CBFB-MYH11 levels < 2.0%) | ||||
After course 2 consolidation | BM | CBFB-MYH11 transcript levels > 0.2% (corresponding to < or = 3-log reduction) | 3-y CIR 88.3% (vs. 26.9% if CBFB-MYH11 levels < or = 0.2%) 3-y DFS 11.7% (vs. 73.1% if CBFB-MYH11 levels < or = 0.2%) 3-y OS 26.9% (vs. 88.3% if CBFB-MYH11 levels < or = 0.2%) | ||||
Ishikawa et al. [28], Blood Adv. 2020 | 67 § 37 § | 52.2 * 2-y RFS 59.6% § | At the end of consolidation | BM | CBFB-MYH11 transcripts > or = 50 copies/μg RNA | Lower RFS § | NA |
Duan et al. [31], Br. J. Haematol. 2021 | 58 38 | 29.8 CR 98.3% 3-y CIR 29.4% 3-y CIM 24.4% | After 2nd consolidation | BM | CBFB–MYH11/ABL < 0.1% | 3-y RFS 100% (vs. 31.4% if CBFB–MYH11/ABL > 0.1%) 3-y EFS 100% (vs. 33.1% if CBFB–MYH11/ABL > 0.1%) | NA |
Puckrin et al. [85], Haematologica 2021 | 47 § 46.5 * | 44.4 * CR 99.1% * | At the end of consolidation | PB/BM | CBFB-MYH11 transcripts reduction > or = 3 log | RFS 61.1% (vs. 33.7% if CBFB-MYH11 transcripts reduction < 3 log) * | 10−4 |
At the end of treatment | PB/BM | CBFB-MYH11 transcripts reduction > or = 4 log | RFS 51.2% (vs. 29.3% if CBFB-MYH11 transcripts reduction < 4 log) * | ||||
Duan et al. [32], Ann. Hematol. 2021 | 68 § 39 * | 26 * CR 99.5% * 3-y CIR 29.4% * 3-y CIM 27% * | After 2nd consolidation | BM | CBFB–MYH11/ABL < 0.1% | 3-y RFS 96.3% (vs. 34.6% if CBFB–MYH11/ABL > 0.1%) * 3-y OS 94.1% (vs. 51.3% if CBFB–MYH11/ABL > 0.1%) * | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talami, A.; Bettelli, F.; Pioli, V.; Giusti, D.; Gilioli, A.; Colasante, C.; Galassi, L.; Giubbolini, R.; Catellani, H.; Donatelli, F.; et al. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021, 9, 953. https://doi.org/10.3390/biomedicines9080953
Talami A, Bettelli F, Pioli V, Giusti D, Gilioli A, Colasante C, Galassi L, Giubbolini R, Catellani H, Donatelli F, et al. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines. 2021; 9(8):953. https://doi.org/10.3390/biomedicines9080953
Chicago/Turabian StyleTalami, Annalisa, Francesca Bettelli, Valeria Pioli, Davide Giusti, Andrea Gilioli, Corrado Colasante, Laura Galassi, Rachele Giubbolini, Hillary Catellani, Francesca Donatelli, and et al. 2021. "How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring" Biomedicines 9, no. 8: 953. https://doi.org/10.3390/biomedicines9080953
APA StyleTalami, A., Bettelli, F., Pioli, V., Giusti, D., Gilioli, A., Colasante, C., Galassi, L., Giubbolini, R., Catellani, H., Donatelli, F., Maffei, R., Martinelli, S., Barozzi, P., Potenza, L., Marasca, R., Trenti, T., Tagliafico, E., Comoli, P., Luppi, M., & Forghieri, F. (2021). How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines, 9(8), 953. https://doi.org/10.3390/biomedicines9080953