Relevance and Recommendations for the Application of Cardioplegic Solutions in Cardiopulmonary Bypass Surgery in Pigs
Abstract
:1. Introduction
2. Clinical Relevance of Data Analyzing Cardioplegic Solutions in Pig Models
3. Comparability of the Heart Anatomy and Physiology in Pig Models and Humans
4. Investigations in Adult Pig Models
5. Investigations in Pediatric Models
6. Impact of Breeds, Strains, Age, and Sex
7. Refinement Strategies
8. Limitations of Pig Models
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seyboldt-Epting, W. Kardioplegie: Myokardschutz Während Extrakorporaler Zirkulation; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Gravlee, G.P. Cardiopulmonary Bypass: Principles and Practice; Wolters Kluwer Health/Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Donnelly, A.J.; Djuric, M. Cardioplegia solutions. Am. J. Hosp. Pharm. 1991, 48, 2444–2460. [Google Scholar] [CrossRef]
- Hoyer, A.; Kiefer, P.; Borger, M. Cardioplegia and myocardial protection: Time for a reassessment? J. Thorac. Dis. 2019, 11, e76–e78. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, Z.G.; Yarborough, D.E.; Jarvis, B.L.; Sistino, J.J. Evidence-based medicine and myocardial protection-where is the evidence? Perfusion 2015, 30, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Wegscheider, K. Deutscher Herzbericht 2016; Deutsche Herzstiftung: Frankfurt am Main, Germany, 2016; ISBN 978-3-9817032-5-2. [Google Scholar]
- Holers, V.M.; Thurman, J.M. The alternative pathway of complement in disease: Opportunities for therapeutic targeting. Mol. Immunol. 2004, 41, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Cavarocchi, N.C.; England, M.D.; Schaff, H.; Russo, P.; Orszulak, T.A.; Schnell, W.A.; O’Brien, J.F.; Pluth, J.R. Oxygen free radical generation during cardiopulmonary bypass: Correlation with complement activation. Circulation 1986, 74, 130–133. [Google Scholar]
- Janeway, C.A.; Travers, P.; Walport, M.; Shlomchik, M. Immunologie; Spektrum Akademischer Verlag: Heidelberg, Germany, 2002. [Google Scholar]
- Cheluvappa, R.; Scowen, P.; Eri, R. Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation. Pharmacol. Res. Perspect. 2017, 5, e00332. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; De Vries, R.; Leenaars, M.; Curfs, J.; Ritskes-Hoitinga, M. Improving planning, design, reporting and scientific quality of animal experiments by using the Gold Standard Publication Checklist, in addition to the ARRIVE guidelines. Br. J. Pharmacol. 2011, 162, 1259–1260. [Google Scholar] [CrossRef] [PubMed]
- Crick, S.J.; Sheppard, M.N.; Ho, S.Y.; Gebstein, L.; Anderson, R.H. Anatomy of the pig heart: Comparisons with normal human cardiac structure. J. Anat. 1998, 193, 105–119. [Google Scholar] [CrossRef]
- Nguyen, P.K.; Wu, J.C. Large Animal Models of Ischemic Cardiomyopathy: Are They Enough to Bridge the Translational Gap? J. Nucl. Cardiol. 2015, 22, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonhardt, H. Anatomie des Menschen. Band II: Innere Organe; Georg Thieme Verlag: Stuttgart, Germany, 1987. [Google Scholar]
- Sim, E.K.; Muskawad, S.; Lim, C.-S.; Yeo, J.H.; Lim, K.H.; Grignani, R.T.; Durrani, A.; Lau, G.; Duran, C. Comparison of human and porcine aortic valves. Clin. Anat. 2003, 16, 193–196. [Google Scholar] [CrossRef]
- Garg, S.; Singh, P.; Sharma, A.; Gupta, G. A Gross Comparative Anatomical Study of Hearts in Human Cadavers and Pigs. Int. J. Med. Dent. Sci. 2013, 2, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Lelovas, P.P.; Kostomitsopoulos, N.; Xanthos, T.T. A Comparative Anatomic and Physiologic Overview of the Porcine Heart. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 432–438. [Google Scholar]
- Hannon, J.P.; Bossone, C.A.; Wade, C.E. Normal physiological values for conscious pigs used in biomedical research. Lab. Anim. Sci. 1990, 40, 293–298. [Google Scholar] [PubMed]
- Gallegos, R.P.; Rivard, A.L.; Bianco, R.W. Animal models for cardiac research. In Handbbok of Cardiac Anatomy, Physiology and Devices; Springer: Berlin, Germany, 2005. [Google Scholar]
- Hiebl, B.; Mrowietz, C.; Ploetze, K.; Matschke, K.; Jung, F. Critical hematocrit and oxygen partial pressure in the beating heart of pigs. Microvasc. Res. 2010, 80, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Santer, D.; Kramer, A.; Kiss, A.; Aumayr, K.; Hackl, M.; Heber, S.; Chambers, D.J.; Hallström, S.; Podesser, B.K. St Thomas’ Hospital polarizing blood cardioplegia improves hemodynamic recovery in a porcine model of cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2019, 158, 1543–1554. [Google Scholar] [CrossRef] [PubMed]
- Aass, T.; Stangeland, L.; Moen, C.A.; Solholm, A.; Dahle, G.O.; Chambers, D.J.; Urban, M.; Nesheim, K.; Haaverstad, R.; Matre, K.; et al. Left ventricular dysfunction after two hours of polarizing or depolarizing cardioplegic arrest in a porcine model. Perfusion 2019, 34, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aass, T.; Stangeland, L.; Chambers, D.J.; Hallström, S.; Rossmann, C.; Podesser, B.K.; Urban, M.; Nesheim, K.; Haaverstad, R.; Matre, K.; et al. Myocardial energy metabolism and ultrastructure with polarizing and depolarizing cardioplegia in a porcine model. Eur. J. Cardio-Thorac. Surg. 2017, 52, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Aass, T.; Stangeland, L.; Moen, C.A.; Salminen, P.-R.; Dahle, G.O.; Chambers, D.J.; Markou, T.; Eliassen, F.; Urban, M.; Haaverstad, R.; et al. Myocardial function after polarizing versus depolarizing cardiac arrest with blood cardioplegia in a porcine model of cardiopulmonary bypass. Eur. J. Cardio-Thorac. Surg. 2016, 50, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Feirer, N.; Dieterlen, M.T.; Klaeske, K.; Kiefer, P.; Oßmann, S.; Salameh, A.; Borger, M.A.; Hoyer, A. Impact of Custodiol-N cardioplegia on acute kidney injury after cardiopulmonary bypass. Clin. Exp. Pharmacol. Physiol. 2020, 47, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, A.; Bergh, F.T.; Klaeske, K.; Lehmann, S.; Misfeld, M.; Borger, M.; Dieterlen, M.T. Custodiol-N™ cardioplegia lowers cerebral inflammation and activation of hypoxia-inducible factor-1α. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 884–892. [Google Scholar] [CrossRef]
- Aarsaether, E.; Stenberg, T.A.; Jakobsen, Ø.; Busund, R. Mechanoenergetic function and troponin T release following cardioplegic arrest induced by St Thomas’ and histidine-tryptophan-ketoglutarate cardioplegia‒an experimental comparative study in pigs. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Dong, P.; Chen, C.; Yang, J.; Hou, X. The myocardial protection of polarizing cardioplegia combined with delta-opioid receptor agonist in swine. Ann. Thorac. Surg. 2011, 91, 1914–1920. [Google Scholar] [CrossRef]
- Jakobsen, Ø.; Muller, S.; Aarsæther, E.; Steensrud, T.; Sørlie, D.G. Adenosine instead of supranormal potassium in cardioplegic solution improves cardioprotection. Eur. J. Cardio-Thorac. Surg. 2007, 32, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Vähäsilta, T.; Virtanen, J.; Saraste, A.; Luotolahti, M.; Pulkki, K.; Valtonen, M.; Voipio-Pulkki, L.M.; Savunen, T. Adenosine in myocardial protection given through three windows of opportunity. An experimental study with pigs. Scand. Cardiovasc. J. 2001, 35, 409–414. [Google Scholar] [CrossRef]
- Hoyer, A.A.; Klaeske, K.; Garnham, J.; Kiefer, P.; Salameh, A.; Witte, K.; Borger, M.; Dieterlen, M.T. Cyclosporine A-enhanced cardioplegia preserves mitochondrial basal respiration after ischemic arrest. Perfusion 2021. [Google Scholar] [CrossRef]
- Ryou, M.-G.; Flaherty, D.C.; Hoxha, B.; Gurji, H.; Sun, J.; Hodge, L.M.; Olivencia-Yurvati, A.H.; Mallet, R.T. Pyruvate-enriched cardioplegia suppresses cardiopulmonary bypass-induced myocardial inflammation. Ann. Thorac. Surg. 2010, 90, 1529–1535. [Google Scholar] [CrossRef]
- Ryou, M.-G.; Flaherty, D.C.; Hoxha, B.; Sun, J.; Gurji, H.; Rodriguez, S.; Bell, G.; Olivencia-Yurvati, A.H.; Mallet, R.T. Pyruvate-fortified cardioplegia evokes myocardial erythropoietin signaling in swine undergoing cardiopulmonary bypass. Am. J. Physiol. Circ. Physiol. 2009, 297, H1914–H1922. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.; Morita, K.; Nagahori, R.; Kinouchi, K.; Shinohara, G.; Kagawa, H.; Hashimoto, K. Myocardial cyclic AMP augmentation with high-dose PDEIII inhibitor in terminal warm blood cardioplegia. Ann. Thorac. Cardiovas.c Surg. 2009, 15, 311–317. [Google Scholar]
- Bechtel, J.F.; Eichler, W.; Toerber, K.; Weidtmann, B.; Hernandez, M.; Klotz, K.F.; Sievers, H.H.; Bartels, C. The Na+/H+ exchange inhibitor cariporide is washed out of the myocardium by crystalloid cardioplegia. Thorac. Cardiovasc. Surg. 2006, 54, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Klass, O.; Fischer, U.M.; Perez, E.; Easo, J.; Bosse, M.; Fischer, J.H.; Tossios, P.; Mehlhorn, U. Effect of the Na+/H+ exchange inhibitor eniporide on cardiac performance and myocardial high energy phosphates in pigs subjected to cardioplegic arrest. Ann. Thorac. Surg. 2004, 77, 658–663. [Google Scholar] [CrossRef]
- Khan, T.A.; Bianchi, C.; Araujo, E.; Voisine, P.; Xu, S.H.; Feng, J.; Li, J.; Sellke, F.W. Aprotinin preserves cellular junctions and reduces myocardial edema after regional ischemia and cardioplegic arrest. Circulation 2005, 112, 196–201. [Google Scholar] [CrossRef]
- Khan, T.A.; Bianchi, C.; Voisine, P.; Feng, J.; Baker, J.; Hart, M.; Takahashi, M.; Stahl, G.; Sellke, F.W. Reduction of myocardial reperfusion injury by aprotinin after regional ischemia and cardioplegic arrest. J. Thorac. Cardiovasc. Surg. 2004, 128, 602–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steensrud, T.; Nordhaug, D.; Elvenes, O.; Korvald, C.; Sørlie, D. Superior myocardial protection with nicorandil cardioplegia. Eur. J. Cardio-Thorac. Surg. 2003, 23, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Osipov, R.M.; Robich, M.P.; Feng, J.; Chan, V.; Clements, R.T.; Deyo, R.J.; Szabo, C.; Sellke, F.W. Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypass. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, S.R.; Nelson, R.L.; Finnerty, J.; Alexander, D.; Pottanat, G.; Kooker, K.; Schiff, R.J.; Moyse, J.; Teichberg, S.; Tortolani, A.J. Zinc-bis-histidinate preserves cardiac function in a porcine model of cardioplegic arrest. Ann. Thorac. Surg. 1997, 64, 73–80. [Google Scholar] [CrossRef]
- Demeekul, K.; Sukumolanan, P.; Bootcha, R.; Panprom, C.; Petchdee, S. A Cardiac Protection of Germinated Brown Rice During Cardiopulmonary Bypass Surgery and Simulated Myocardial Ischemia. J. Inflamm. Res. 2021, 14, 3307–3319. [Google Scholar] [CrossRef]
- Suarez-Pierre, A.; Lui, C.; Zhou, X.; Kearney, S.; Jones, M.; Wang, J.; Thomas, R.P.; Gaughan, N.; Metkus, T.S.; Brady, M.B.; et al. Diazoxide preserves myocardial function in a swine model of hypothermic cardioplegic arrest and prolonged global ischemia. J. Thorac. Cardiovasc. Surg. 2020. [Google Scholar] [CrossRef]
- Steensrud, T.; Nordhaug, D.; Husnes, K.V.; Aghajani, E.; Sørlie, D.G. Replacing potassium with nicorandil in cold St. Thomas’ Hospital cardioplegia improves preservation of energetics and function in pig hearts. Ann. Thorac. Surg. 2004, 77, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Tofukuji, M.; Stamler, A.; Li, J.; Franklin, A.; Wang, S.Y.; Hariawala, M.D.; Sellke, F.W. Effects of magnesium cardioplegia on regulation of the porcine coronary circulation. J. Surg. Res. 1997, 69, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Vähäsilta, T.; Saraste, A.; Kytö, V.; Malmberg, M.; Kiss, J.; Kentala, E.; Kallajoki, M.; Savunen, T. Cardiomyocyte Apoptosis After Antegrade and Retrograde Cardioplegia. Ann. Thorac. Surg. 2005, 80, 2229–2234. [Google Scholar] [CrossRef]
- Uotila, P.; Saraste, A.; Vähäsilta, T.; Kentala, E.; Savunen, T. Stimulated expression of cyclooxygenase-2 in porcine heart after bypass circulation and cardioplegic arrest. Eur. J. Cardio-Thorac. Surg. 2001, 20, 992–995. [Google Scholar] [CrossRef] [Green Version]
- Curro, D.; Bombardieri, G.; Barilaro, C.; Di Francesco, P.; Varano, C.; Possati, G.; Pragliola, C. Time dependence of endothelium-mediated vasodilation by intermittent antegrade warm blood cardioplegia. Ann. Thorac. Surg. 1997, 64, 1354–1359. [Google Scholar] [CrossRef]
- Münch, F.; Purbojo, A.; Kellermann, S.; Janssen, C.; Cesnjevar, R.A.; Rüffer, A.; Czerny, M.; Reser, D.; Eggebrecht, H.; Janata, K.; et al. Improved contractility with tepid modified full blood cardioplegia compared with cold crystalloid cardioplegia in a piglet model. Eur. J. Cardio-Thorac. Surg. 2014, 48, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, J.; Li, S.; Yan, F.; Xue, Q.; Wang, H.; Sun, P.; Long, C. Histidine-Tryptophan-Ketoglutarate Solution with Added Ebselen Augments Myocardial Protection in Neonatal Porcine Hearts Undergoing Ischemia/Reperfusion. Artif. Organs 2015, 39, 126–133. [Google Scholar] [CrossRef]
- Kinouchi, K.; Morita, K.; Ko, Y.; Nagahori, R.; Shinohara, G.; Abe, T.; Hashimoto, K. Reversal of oxidant-mediated biochemical injury and prompt functional recovery after prolonged single-dose crystalloid cardioplegic arrest in the infantile piglet heart by terminal warm-blood cardioplegia supplemented with phosphodiesterase III inhibitor. Gen. Thorac. Cardiovasc. Surg. 2012, 60, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kinnear, C.; Hammel, J.M.; Zhu, W.; Hua, Z.; Mi, W.; Caldarone, C.A. Preservation of mitochondrial structure and function after cardioplegic arrest in the neonate using a selective mitochondrial KATP channel opener. Ann. Thorac. Surg. 2006, 81, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Murai, T.; Takahashi, Y. The effect of sivelestat sodium on post-cardiopulmonary bypass acute lung injury in a neonatal piglet model. Interact. Cardiovasc. Thorac. Surg. 2008, 7, 785–788. [Google Scholar] [CrossRef] [Green Version]
- Liuba, P.; Johansson, S.; Pesonen, E.; Odermarsky, M.; Kornerup-Hansen, A.; Forslid, A.; Aburawi, E.H.; Higgins, T.; Birck, M.; Perez-de-Sa, V. Coronary flow and reactivity, but not arrhythmia vulnerability, are affected by cardioplegia during cardiopulmonary bypass in piglets. J. Cardiothorac. Surg. 2013, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Wilson, K.; Koch, W.; Milano, C. Adenoviral gene transfer to the heart during cardiopulmonary bypass: Effect of myocardial protection technique on transgene expression. Eur. J. Cardio-Thorac. Surg. 2002, 21, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Sayk, F.; Krüger, S.; Bechtel, J.F.; Feller, A.C.; Sievers, H.H.; Bartels, C. Significant damage of the conduction system during cardioplegic arrest is due to necrosis not apoptosis. Eur J. Cardio-Thorac. Surg. 2004, 25, 801–806. [Google Scholar] [CrossRef]
- Portilla-de Buen, E.; Leal, C.; Garcia-Martinez, D.; Cornejo, A.; Zepeda, A.; Aburto, E. Pig heart preservation with antegrade intracellular crystalloid versus antegrade/retrograde miniplegia. J. Extra-Corpor. Technol. 2011, 43, 130–136. [Google Scholar]
- Janssen, C.; Kellermann, S.; Münch, F.; Purbojo, A.; Cesnjevar, R.A.; Rüffer, A. Myocardial Protection During Aortic Arch Repair in a Piglet Model: Beating Heart Technique Compared With Crystalloid Cardioplegia. Ann. Thorac. Surg. 2015, 100, 1758–1766. [Google Scholar] [CrossRef]
- Runge, M.; Hughes, P.; Gøtze, J.P.; Petersen, R.H.; Steinbrüchel, D.A. Evaluation of myocardial metabolism with microdialysis after protection with cold blood- or cold crystalloid cardioplegia. A porcine model. Scand. Cardiovasc. J. 2006, 40, 186–193. [Google Scholar] [CrossRef]
- Nakao, M.; Morita, K.; Shinohara, G.; Kunihara, T. Modified Del Nido Cardioplegia and Its Evaluation in a Piglet Model. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Morita, K.; Shinohara, G.; Kunihara, T. Excellent Restoration of Left Ventricular Compliance After Prolonged Del Nido Single-Dose Cardioplegia in an In Vivo Piglet Model. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 475–483. [Google Scholar] [CrossRef]
- Abe, T.; Morita, K.; Shinohara, G.; Hashimoto, K.; Nishikawa, M. Synergistic effects of remote perconditioning with terminal blood cardioplegia in an in vivo piglet model. Eur. J. Cardio-Thorac. Surg. 2017, 52, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Nakao, M.; Morita, K.; Shinohara, G.; Saito, S.; Kunihara, T. Superior restoration of left ventricular performance after prolonged single-dose del Nido cardioplegia in conjunction with terminal warm blood cardioplegic reperfusion. J. Thorac. Cardiovasc. Surg. 2020. [Google Scholar] [CrossRef]
- Dahle, G.O.; Salminen, P.-R.; Moen, C.A.; Eliassen, F.; Jonassen, A.K.; Haaverstad, R.; Matre, K.; Grong, K. Esmolol Added in Repeated, Cold, Oxygenated Blood Cardioplegia Improves Myocardial Function After Cardiopulmonary Bypass. J. Cardiothorac. Vasc. Anesthesia 2015, 29, 684–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvenes, O.P.; Korvald, C.; Myklebust, R.; Sørlie, D. Warm retrograde blood cardioplegia saves more ischemic myocardium but may cause a functional impairment compared to cold crystalloid. Eur. J. Cardio-Thorac. Surg. 2002, 22, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Pathi, V.L.; McPhaden, A.R.; Morrison, J.; Belcher, P.R.; Fenner, J.W.; Martin, W.; McQuiston, A.M.; Wheatley, D.J. The effects of cardioplegic arrest and reperfusion on the microvasculature of the heart. Eur J. Cardio-Thorac. Surg. 1997, 11, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Fannelop, T.; Dahle, G.O.; Salminen, P.-R.; Moen, C.A.; Matre, K.; Mongstad, A.; Eliassen, F.; Segadal, L.; Grong, K. Multidose Cold Oxygenated Blood Is Superior to a Single Dose of Bretschneider HTK-Cardioplegia in the Pig. Ann. Thorac. Surg. 2009, 87, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, M.; Ledee, D.R.; Olson, A.K.; Isern, N.G.; Robillard-Frayne, I.; Des Rosiers, C.; Portman, M.A. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. J. Cereb. Blood Flow Metab. 2016, 36, 1992–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, J.; Li, S.; Li, W.; Yan, F.; Sun, P.; Wang, H.; Long, C. Which is the better option during neonatal cardiopulmonary bypass: HTK solution or cold blood cardioplegia? ASAIO J. 2013, 59, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Gürtler, H. Mittelwerte und Streuungsbereiche diagnostisch nutzbarer Parameter. In Schweinekrankheiten, 3rd ed.; Neundorf, R., Seidel, H., Eds.; Ferdinand Enke Verlag: Stuttgart, Germany, 1987; pp. 84–132. [Google Scholar]
- Seutter, U. Einfluß von Rasse, Haltung, Fütterung, Management, Alter und Reproduktionsstadium auf hämatologische und Klinisch-chemische Parameter Beim Schwein; Ludwig-Maximilians-Universität: München, Germany, 1995. [Google Scholar]
Limitation | References |
---|---|
Animal number | |
limited number of animals | [21,27,28,29,31,35,36,49,57,58,59,60,61,62,63,64] |
Time limits | |
short cross clamping time | [23,24,49,58] |
short reperfusion/recovery time | [23,25,27,28,31,32,33,38,60,61,62,64,65,66] |
short observation period/no long-term follow up | [26,32,59,63,65] |
Randomization & blinding | |
no randomization | [60,63] |
surgeon/observer not blinded | [37,60,63] |
Comparability with clinical settings | |
use of young, healthy animals without clinically relevant pathology | [21,23,24,25,29,31,32,33,44,57,61,64] |
results not fully comparable with humans | [26,29,44,49,58,67,68] |
the use of neonatal piglets not allowed (animal protection requirements) | [49,58] |
standardization of interventions/no individual treatment | [21,23,24,25,26,31,32,46,49,64] |
model restricted to mild ischemia | [35,48,66] |
reperfusion phase departed from clinical normality | [66] |
Study endpoints | |
effect on study endpoint not fully reached | [36,69] |
endpoint not suited | [56,62] |
lack of measurement of end-point related parameters | [26,50,68] |
use of surrogate markers for endpoint measurement | [26] |
Missing data and measurements | |
missing control | [32,50] |
the number of tested factors in one study limited | [24,57,65] |
missing measurement/correlation with cardiac function | [56,61,69] |
myocardial temperature not monitored | [55] |
missing dose-response relationship for tested supplement | [50] |
missing pressure-volume measurements | [21] |
missing histological examination | [62] |
wrong time point of blood/biopsy withdrawal | [44,60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glöckner, A.; Ossmann, S.; Ginther, A.; Kang, J.; Borger, M.A.; Hoyer, A.; Dieterlen, M.-T. Relevance and Recommendations for the Application of Cardioplegic Solutions in Cardiopulmonary Bypass Surgery in Pigs. Biomedicines 2021, 9, 1279. https://doi.org/10.3390/biomedicines9091279
Glöckner A, Ossmann S, Ginther A, Kang J, Borger MA, Hoyer A, Dieterlen M-T. Relevance and Recommendations for the Application of Cardioplegic Solutions in Cardiopulmonary Bypass Surgery in Pigs. Biomedicines. 2021; 9(9):1279. https://doi.org/10.3390/biomedicines9091279
Chicago/Turabian StyleGlöckner, Anna, Susann Ossmann, Andre Ginther, Jagdip Kang, Michael A. Borger, Alexandro Hoyer, and Maja-Theresa Dieterlen. 2021. "Relevance and Recommendations for the Application of Cardioplegic Solutions in Cardiopulmonary Bypass Surgery in Pigs" Biomedicines 9, no. 9: 1279. https://doi.org/10.3390/biomedicines9091279