Association between Serum Lactate and Morbidity and Mortality in Neonates: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Mortality
Adverse Outcomes
3.2. Data Accuracy Test for Adverse Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHD | Congenital heart disease |
CI | Confidence interval |
NICU | Neonatal intensive care unit |
OR | Odds ratio |
RRT | Renal replacement therapy |
SD | Standard deviation |
SMD | Standard mean deviation |
Wk | Weeks |
References
- Bakker, J.; Postelnicu, R.; Mukherjee, V. Lactate: Where Are We Now? Crit. Care Clin. 2020, 36, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Levy, B. Lactate and shock state: The metabolic view. Curr. Opin. Crit. Care 2006, 12, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.E.; Miltiades, A.N.; Gaieski, D.F.; Goyal, M.; Fuchs, B.D.; Shah, C.V.; Bellamy, S.L.; Christie, J.D. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit. Care Med. 2009, 37, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.F.; Brou, L.; Deakyne, S.J.; Kempe, A.; Fairclough, D.L.; Bajaj, L. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017, 171, 249–255. [Google Scholar] [CrossRef]
- Noori, S.; Seri, I. Evidence-based versus pathophysiology-based approach to diagnosis and treatment of neonatal cardiovascular compromise. Semin. Fetal Neonatal Med. 2015, 20, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, F.Y.; Krebs, V.L.J.; de Carvalho, W.B. Neonatal Hypotension: What Is the Efficacy of Each Anti-Hypotensive Intervention? A Systematic Review. Curr. Treat. Options Pediatr. 2019, 5, 406–416. [Google Scholar] [CrossRef]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ 2015, 349, 1–25. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6; John Wiley & Sons: Chichester, UK, 2021. [Google Scholar]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; The Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2011. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.C.; Kerby, C.R.; Patel, A.; Cooper, N.J.; Quinn, T.; Sutton, A.J. Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA. BMC Med. Res. Methodol. 2019, 19, 81. [Google Scholar] [CrossRef] [PubMed]
- Charpie, J.; Dekeon, M.; Goldberg, C.; Mosca, R.; Bove, E.; Kulik, T. Seria blood lactate measurements predict early outcome after neonatal repair or palliation for complex congenital heart disease. J. Thorac. Cardiovasc. Surg. 2000, 120, 73–80. [Google Scholar] [CrossRef]
- Polackova, R.; Salounova, D.; Kantor, L. Lactate as an early predictor of psychomotor development in neonates with asphyxia receiving therapeutic hypothermia. Biomed. Pap. 2018, 162, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Lekhwani, S.; Shanker, V.; Gathwala, G.; Vaswani, N.D. Acid-base disorders in critically ill neonates. Indian J. Crit. Care Med. 2010, 14, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Tokuhisa, T.; Ibara, S.; Minakami, H.; Maede, Y.; Ishihara, C.; Matsui, T. Outcome of infants with hypoxic ischemic encephalopathy treated with brain hypothermia. J. Obstet. Gynaecol. Res. 2015, 41, 229–237. [Google Scholar] [CrossRef]
- Matsushita, F.Y.; Krebs, V.J.; De Carvalho, W.B.; Sato, S.A. Hemodynamic instability in the transitional period: A descriptive analysis of extremely low birth weight newborns. Pediatrics 2019, 144, 642. [Google Scholar] [CrossRef]
- Buijs, E.A.; Houmes, R.J.; Rizopoulos, D.; Wildschut, E.D.; Reiss, I.K.; Ince, C.; Tibboel, D. Arterial lactate for predicting mortality in children requiring extracorporeal membrane oxygenation. Minerva Anestesiol. 2014, 80, 1282–1293. [Google Scholar]
- Photiadis, J.; Asfour, B.; Sinzobahamvya, N.; Fink, C.; Schindler, E.; Brecher, A.M.; Urban, A.E. Improved hemodynamics and outcome after modified Norwood operation on the beating heart. Ann. Thorac. Surg. 2006, 81, 976–981. [Google Scholar] [CrossRef]
- Amirnovin, R.; Keller, R.L.; Herrera, C.; Hsu, J.H.; Datar, S.; Karl, T.R.; Adatia, I.; Oishi, P.; Fineman, J.R. B-type natriuretic peptide levels predict outcomes in infants undergoing cardiac surgery in a lesion-dependent fashion. J. Thorac. Cardiovasc. Surg. 2013, 145, 1279–1287. [Google Scholar] [CrossRef]
- Li, J.; Funato, M.; Tamai, H.; Wada, H.; Nishihara, M.; Iwamoto, H.; Okazaki, Y.; Shintaku, H. Predictors of neurological outcome in cooled neonates. Pediatr. Int. 2013, 55, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Shuhaiber, J.; Gauvreau, K.; Thiagarjan, R.; Bacha, E.; Mayer, J.; Del Nido, P.; Pigula, F. Congenital heart surgeon’s technical proficiency affects neonatal hospital survival. J. Thorac. Cardiovasc. Surg. 2012, 144, 1119–1124. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ito, Y.; Saito, S.; Mitsuda, N.; Hosono, S.; Yoda, H.; Cho, K.; Otsuki, K.; Ibara, S.; Terui, K.; et al. Incidence and prediction of outcome in hypoxic-ischemic encephalopathy in Japan. Pediatr. Int. 2014, 56, 215–221. [Google Scholar] [PubMed]
- Joffe, A.R.; Robertson, C.M.T.; Nettel-Aguirre, A.; Rebeyka, I.M.; Sauve, R.S. Mortality after neonatal cardiac surgery: Prediction from mean arterial pressure after rewarming in the operating room. J. Thorac. Cardiovasc. Surg. 2007, 134, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Manotas, H.; Troncoso, G.; Sánchez, J.; Molina, G. Description of a cohort of neonatal patients diagnosed with perinatal asphyxia and treated with therapeutic hypothermia. Perinatol. Reprod. Hum. 2018, 32, 70–77. [Google Scholar]
- Liu, X.; Hong, H.-F.; Zhang, H.-B.; Xu, Z.-M.; Liu, J.-F.; Zhang, H. Neonatal surgical outcomes after prenatal diagnosis of complex congenital heart disease: Experiences of a perinatal integrated diagnosis and treatment program. World J. Pediatr. 2020, 16, 494–501. [Google Scholar] [CrossRef]
- Ouellette, C.; Mejias, A.; Shimamura, M.; Marzec, L.; Salamon, D.; Leber, A.; Sanchez, P.J. Early predictors of mortality in neonatal disseminated herpes simplex virus infection. Open Forum Infect. Dis. 2019, 6, S803. [Google Scholar] [CrossRef]
- Miyamoto, T.; Sinzobahamvya, N.; Photiadis, J.; Brecher, A.M.; Asfour, B. Survival after surgery with cardiopulmonary bypass in low weight patients. Asian Cardiovasc. Thorac. Ann. 2008, 16, 115–119. [Google Scholar] [CrossRef]
- Rocha, T.S.; Silveira, A.S.; Botta, A.M.; Ricachinevsky, C.P.; Dalle Mulle, L.; Nogueira, A. Serum lactate as mortality and morbidity marker in infants after Jatene’s operation. Rev. Bras. Cir. Cardiovasc. 2010, 25, 350–358. [Google Scholar] [CrossRef]
- Howard, T.S.; Kalish, B.T.; Wigmore, D.; Nathan, M.; Kulik, T.J.; Kaza, A.K.; Williams, K.; Thiagarajan, R.R. Association of Extracorporeal Membrane Oxygenation Support Adequacy and Residual Lesions with Outcomes in Neonates Supported after Cardiac Surgery*. Pediatr. Crit. Care Med. 2016, 17, 1045–1054. [Google Scholar] [CrossRef]
- Groenendaal, F.; Lindemans, C.; Uiterwaal, C.; de Vries, L. Early arterial lactate and prediction of outcome in preterm neonates admitted to a neonatal intensive care unit. Biol. Neonate 2003, 83, 171–176. [Google Scholar] [CrossRef]
- Christmann, M.; Valsangiacomo Büchel, E.; Dave, H.; Klauwer, D.; Cavigelli-Brunner, A. Prognostic value of troponin in infants with hypoplastic left heart syndrome between Stage I and II of palliation. Ann. Pediatr. Cardiol. 2018, 11, 56–59. [Google Scholar] [CrossRef]
- Cheung, P.Y.; Finer, N.N. Plasma lactate concentration as a predictor of death in neonates with severe hypoxemia requiring extracorporeal membrane oxygenation. J. Pediatr. 1994, 125, 763–768. [Google Scholar] [CrossRef]
- Phillips, L.A.; Dewhurst, C.J.; Yoxall, C.W. The prognostic value of initial blood lactate concentration measurements in very low birthweight infants and their use in development of a new disease severity scoring system. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F275–F280. [Google Scholar] [CrossRef] [PubMed]
- Kessler, U.; Mungnirandr, A.; Nelle, M.; Nimmo, A.F.; Zachariou, Z.; Berger, S. A simple presurgical necrotizing enterocolitis-mortality scoring system. J. Perinatol. 2006, 26, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Abubacker, M.; Yoxall, C.; Lamont, G. Peri-operative blood lactate concentrations in pre-term babies with necrotising enterocolitis. Eur. J. Pediatr. Surg. 2003, 13, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, P.; Lisowski, L.; Wassink, S.; Visser, G.; Meijboom, E. Preoperative acidosis and infant development following surgery for congenital heart disease. Herz 2010, 35, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Takahashi, D.; Matsui, M.; Saito, R.; Morita, H.; Ishii, M.; Senjyu, A.; Morishita, T.; Takano, S.; Chiba, S.; et al. Brain hypothermia therapy for newborns with severe birth asphyxia: An experience from a single neonatal intensive care unit. J. UOEH 2010, 32, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Erdeve, O.; Okulu, E.; Tunc, G.; Celik, Y.; Kayacan, U.; Cetinkaya, M.; Buyukkale, G.; Ozkan, H.; Koksal, N.; Satar, M.; et al. An observational, prospective, multicenter study on rescue high-frequency oscillatory ventilation in neonates failing with conventional ventilation. PLoS ONE 2019, 14, e0217768. [Google Scholar]
- Chen, D.; Liu, X.; Li, J. Lactate levels and clearance rate in neonates undergoing mechanical ventilation in Tibet. J. Int. Med. Res. 2020, 48, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.; Etches, P.; Weardon, M.; Reynolds, A.; Finer, N.; Robertson, C. Use of plasma lactate to predict early mortality and adverse outcome after neonatal extracorporeal membrane oxygenation: A prospective cohort in early childhood. Crit. Care Med. 2002, 30, 2135–2139. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.; Chui, N.; Joffe, A.; Rebeyka, I.; Robertson, C. Postoperative lactate concentrations predict the outcome of infants aged 6 weeks or less after intracardiac surgery: A cohort follow-up to 18 months. J. Thorac. Cardiovasc. Surg. 2005, 130, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Reppucci, M.L.; Hersh, E.H.; Khetan, P.; Coakley, B.A. Predictors of Mortality Among Very Low Birth Weight Infants With Gastrointestinal Perforation. Am. Surg. 2020, 87, 1463–1467. [Google Scholar] [CrossRef]
- Grayck, E.; Meliones, J.; Kern, F.; Hansell, D.; Ungerleider, R.; Greeley, W. Elevated serum lactate correlates with intracranial hemorrhage in neonates treated with extracorporeal life support. Pediatrics 1995, 96, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.; Vieira, A.; Barbosa, A. The correlation between plasma lactate concentrations and early neonatal mortality. Rev. Bras. Ter. Intensiv. 2012, 24, 184–187. [Google Scholar] [CrossRef]
- Márquez-González, H.; Jiménez-Báez, M.V.; Munoz-Ramirez, C.M.; Yanez-Gutierrez, L.; Huelgas-Plaza, A.C.; Almeida-Gutierrez, E.; Villa-Romero, A.R. Development and validation of the Neonatal Mortality Score-9 Mexico to predict mortality in critically ill neonates. Arch. Argent Pediatr. 2015, 113, 213–220. [Google Scholar]
- Murtuza, B.; Wall, D.; Reinhardt, Z.; Stickley, J.; Stumper, O.; Jones, T.J.; Barron, D.J.; Brawn, W.J. The importance of blood lactate clearance as a predictor of early mortality following the modified Norwood procedure. Eur. J. Cardio-Thorac. Surg. 2011, 40, 1207–1214. [Google Scholar] [CrossRef]
- Okur, N.; Tayman, C.; Büyüktiryaki, M.; Kadıoğlu Şimşek, G.; Ozer Bekmez, B.; Altuğ, N. Can lactate levels be used as a marker of patent ductus arteriosus in preterm babies? J. Clin. Lab. Anal. 2019, 33, 1–5. [Google Scholar] [CrossRef]
- Tuten, A.; Dincer, E.; Topcuoglu, S.; Sancak, S.; Akar, S.; Hakyemez Toptan, H.; Özalkaya, E.; Gokmen, T.; Ovalı, F.; Karatekin, G. Serum lactate levels and perfusion index: Are these prognostic factors on mortality and morbidity in very low-birth weight infants? J. Matern. Neonatal Med. 2017, 30, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.; Platt, M. Association between blood lactate and acid-base status and mortality in ventilated babies. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 76, F15–F20. [Google Scholar] [CrossRef]
- Chilinda, G.K.; Gadama, L.A.; Stones, W. Point-of-care umbilical arterial lactate and newborn outcomes in a low resource setting: Cohort study. BMC Res. Notes 2018, 11, 477. [Google Scholar] [CrossRef]
- Haiju, Z.; Suyuan, H.; Xiufang, F.; Lu, Y.; Sun, R. The combined detection of umbilical cord nucleated red blood cells and lactate: Early prediction of neonatal hypoxic ischemic encephalopathy. J. Perinat. Med. 2008, 36, 240–247. [Google Scholar] [CrossRef]
- Neacsu, A.; Herghelegiu, C.G.; Voinea, S.; Dimitriu, M.C.T.; Ples, L.; Bohiltea, R.E.; Braila, A.D.; Nastase, L.; Bacalbasa, N.; Chivu, L.I.; et al. Umbilical cord lactate compared with pH as predictors of intrapartum asphyxia. Exp. Ther. Med. 2021, 21, 80. [Google Scholar] [CrossRef] [PubMed]
- Mazouri, A.; Fallah, R.; Saboute, M.; Taherifard, P.; Dehghan, M. The prognostic value of the level of lactate in umbilical cord blood in predicting complications of neonates with meconium aspiration syndrome. J. Matern. Neonatal Med. 2021, 34, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Syed, F.; Kini, S.; Lewis, L.E.; Ramesh Bhat, Y.; Purkaystha, J. Prediction of respiratory morbidities in late preterm neonates using cord blood arterial lactate and base excess. Iran. J. Neonatol. 2019, 10, 71–75. [Google Scholar]
- Karabayir, N.; Demirel, A.; Bayramoglu, E. Blood lactate level and meconium aspiration syndrome. Arch. Gynecol. Obstet. 2015, 291, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Ozkiraz, S.; Gokmen, Z.; Boke, S.B.; Kilicdag, H.; Ozel, D.; Sert, A. Lactate and lactate dehydrogenase in predicting the severity of transient tachypnea of the newborn. J. Matern. Neonatal Med. 2013, 26, 1245–1248. [Google Scholar] [CrossRef]
- Simovic, A.M.; Stojkovic, A.K.; Dejan, J.M.; Savic, D. Is it Possible to Predict Mortality in Preterm Neonates, Based on a Single Troponin I Value at 24 h? Indian J. Pediatr. 2016, 83, 466–467. [Google Scholar] [CrossRef]
- Miletin, J.; Pichova, K.; Dempsey, E.M. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur. J. Pediatr. 2009, 168, 809–813. [Google Scholar] [CrossRef]
- Al Balushi, A.; Vargas, S.B.; Maluorni, J.; Sanon, P.N.; Rampakakis, E.; Saint-Martin, C.; Wintermark, P. Hypotension and Brain Injury in Asphyxiated Newborns Treated with Hypothermia. Am. J. Perinatol. 2018, 35, 31–38. [Google Scholar] [CrossRef]
- White, C.R.H.; Doherty, D.A.; Henderson, J.J.; Kohan, R.; Newnham, J.P.; Pennell, C.E. Accurate prediction of hypoxic-ischaemic encephalopathy at delivery: A cohort study. J. Matern. Neonatal Med. 2012, 25, 1653–1659. [Google Scholar] [CrossRef]
- Tuuli, M.; Stout, M.; Shanks, A.; Odibo, A.; Macones, G.; Cahill, A. Umbilical cord arterial lactate compared with pH for predicting neonatal morbidity at term. Obstet. Gynecol. 2014, 124, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Beken, S.; Aydin, B.; Dilli, D.; Erol, S.; Zenciroǧlu, A.; Okumuş, N. Can biochemical markers predict the severity of hypoxicischemic encephalopathy? Turk. J. Pediatr. 2014, 56, 62–68. [Google Scholar] [PubMed]
- Nadeem, M.; Clarke, A.; Dempsey, E.M. Day 1 serum lactate values in preterm infants less than 32 weeks gestation. Eur. J. Pediatr. 2010, 169, 667–670. [Google Scholar] [CrossRef]
- Simovic, A.; Stojkovic, A.; Savic, D.; Milovanovic, D.R. Can a single lactate value predict adverse outcome in critically ill newborn? Bratisl. Lek. Listy 2015, 116, 591–595. [Google Scholar] [CrossRef]
- De Bernardo, G.; De Santis, R.; Giordano, M.; Sordino, D.; Buonocore, G.; Perrone, S. Predict respiratory distress syndrome by umbilical cord blood gas analysis in newborns with reassuring Apgar score. Ital. J. Pediatr. 2020, 46, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tuuli, M.; Stout, M.; Macones, G.; Cahill, A. Umbilical Cord Venous Lactate for Predicting Arterial Lactic Acidemia and Neonatal Morbidity at Term. Obstet. Gynecol. 2016, 127, 674–680. [Google Scholar] [CrossRef]
- WestWestgren, M.; Divon, M.; Horal, M.; Ingemarsson, I.; Kublickas, M.; Shimojo, N.; Nordström, L. Routine measurements of umbilical artery lactate levels in the prediction of perinatal outcome. Am. J. Obstet. Gynecol. 1995, 173, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Gilshenan, K.; Gray, P.H. Does lactate level in the first 12 hours of life predict mortality in extremely premature infants? J. Paediatr. Child Health 2009, 45, 263–267. [Google Scholar] [CrossRef]
- Kraut, J.A.; Madias, N.E. Lactic acidosis. N. Engl. J. Med. 2014, 371, 2309–2319. [Google Scholar] [CrossRef]
- Hernandez, G.; Bellomo, R.; Bakker, J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019, 45, 82–85. [Google Scholar] [CrossRef]
- Vincent, J.L.; e Silva, A.Q.; Couto, L.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.C.; van Bommel, J.; Schoonderbeek, F.J.; Sleeswijk Visser, S.J.; van der Klooster, J.M.; Lima, A.P.; Willemsen, S.P.; Bakker, J. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 752–761. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a newdefinition and assessing newclinical criteria for Septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA J. Am. Med. Assoc. 2016, 315, 775–787. [Google Scholar] [CrossRef]
- Scott, H.F.; Brou, L.; Deakyne, S.J.; Fairclough, D.L.; Kempe, A.; Bajaj, L. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis. J. Pediatr. 2016, 170, 149–155.e4. [Google Scholar] [CrossRef] [PubMed]
- Marty, P.; Roquilly, A.; Vallée, F.; Luzi, A.; Ferré, F.; Fourcade, O.; Asehnoune, K.; Minville, V. Lactate clearance for death prediction in severe sepsis or septic shock patients during the first 24 hours in intensive care unit: An observational study. Ann. Intensive Care 2013, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.; Sitaraman, S.; Choudhary, A. Lactate clearance as the predictor of outcome in pediatric septic shock. J. Emerg. Trauma Shock 2017, 10, 55–59. [Google Scholar]
- Vink, E.E.; Bakker, J. Practical Use of Lactate Levels in the Intensive Care. J. Intensive Care Med. 2018, 33, 159–165. [Google Scholar] [CrossRef]
- Bangash, M.N.; Kong, M.L.; Pearse, R.M. Use of inotropes and vasopressor agents in critically ill patients. Br. J. Pharmacol. 2012, 165, 2015–2033. [Google Scholar] [CrossRef]
- Singh, Y.; Tissot, C.; Fraga, M.V.; Yousef, N.; Cortes, R.G.; Lopez, J.; Sanchez-de-Toledo, J.; Brierley, J.; Colunga, J.M.; Raffaj, D.; et al. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit. Care 2020, 24, 1–16. [Google Scholar] [CrossRef]
- Atallah, J.; Dinu, I.A.; Joffe, A.R.; Robertson, C.M.T.; Sauve, R.S.; Dyck, J.D.; Ross, D.B.; Rebeyka, I.M. Two-year survival and mental and psychomotor outcomes after the Norwood procedure: An analysis of the modified Blalock-Taussig shunt and right ventricle-to-pulmonary artery shunt surgical eras. Circulation 2008, 118, 1410–1418. [Google Scholar] [CrossRef]
- Bhat, P.; Hirsch, J.C.; Gelehrter, S.; Cooley, E.; Donohue, J.; King, K.; Gajarski, R.J. Outcomes of infants weighing three kilograms or less requiring extracorporeal membrane oxygenation after cardiac surgery. Ann. Thorac. Surg. 2013, 95, 656–661. [Google Scholar] [CrossRef]
- Sivarajan, V.; Penny, D.J.; Filan, P.; Brizard, C.; Shekerdemian, L.S. Impact of antenatal diagnosis of hypoplastic left heart syndrome on the clinical presentation and surgical outcomes: The Australian experience. J. Paediatr. Child Health 2009, 45, 112–117. [Google Scholar] [CrossRef]
- Gupta, P.; King, C.; Benjamin, L.; Goodhart, T.; Robertson, M.J.; Gossett, J.M.; Pesek, G.A.; DasGupta, R. Association of Hematocrit and Red Blood Cell Transfusion with Outcomes in Infants Undergoing Norwood Operation. Pediatr. Cardiol. 2015, 36, 1212–1218. [Google Scholar] [CrossRef]
- Topjian, A.A.; Clark, A.E.; Casper, T.C.; Berger, J.T.; Schleien, C.L.; Dean, J.M.; Moler, F.W. Early lactate elevations following resuscitation from pediatric cardiac arrest are associated with increased mortality. Pediatr. Crit. Care Med. 2013, 14, e380–e387. [Google Scholar] [CrossRef]
- Alves, R.L.; Aragão e Silva, A.L.; Kraychete, N.C.D.C.; Campos, G.O.; Martins, M.D.J.; Módolo, N.S.P. Intraoperative lactate levels and postoperative complications of pediatric cardiac surgery. Paediatr. Anaesth. 2012, 22, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.; Goot, B.; Da Cruz, E.; Kaufman, J. The use of arginine vasopressin in postoperative norwood patients. Cardiol. Young 2010, 20, S113. [Google Scholar]
- Rossi, A.F.; Lopez, L.; Dobrolet, N.; Khan, D.; Bolivar, J. Hyperlactatemia in neonates admitted to the cardiac intensive care unit with critical heart disease. Neonatology 2010, 98, 212–216. [Google Scholar] [CrossRef]
- Kuzovlev, A.; Perepelitsa, S. Lactat acidosis—Marker of severity of perinatal hypoxia. Resuscitation 2019, 142, e89–e90. [Google Scholar] [CrossRef]
- Boutaybi, N.; Steggerda, S.J.; Smits-Wintjens, V.E.H.J.; van Zwet, E.W.; Walther, F.J.; Lopriore, E. Early-onset thrombocytopenia in near-term and term infants with perinatal asphyxia. Vox Sang. 2014, 106, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Yadav, A. Role of umbilical cord arterial pH and lactate in newborn assessment of term antenatal women with hypertensive disorders of pregnancy. Clin. Epidemiol. Glob. Health 2020, 8, 927–933. [Google Scholar] [CrossRef]
- De Azevedo, L.S.N.; Da Silva, A.N.; Oliveira, N.F.; Nogueira, P.C.K.; De Oliveira Iglesias, S.B.; Leite, H.P. Acute kidney injury assessed by prifle score and its relationship with metabolic markers and outcome. Pediatr. Crit. Care Med. 2012, 13, 620. [Google Scholar]
- Ali Aydemir, N.; Harmandar, B.; Karaci, A.R.; Erdem, A.; Yurtseven, N.; Sasmazel, A.; Yekeler, I. Randomized comparison between mild and moderate hypothermic cardiopulmonary bypass for neonatal arterial switch operation. Eur. J. Cardio-Thorac. Surg. 2012, 41, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, A.A.; Antonios, M.A.M.; Abdellatif, E.M.; Hussain, A.H. Association of lactate/albumin ratio level to organ failure and mortality in severe sepsis in a pediatric intensive care unit in Egypt. Turk. J. Pediatr. 2018, 60, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Doherty, D.R.; Parshuram, C.S.; Gaboury, I.; Hoskote, A.; Lacroix, J.; Tucci, M.; Joffe, A.; Choong, K.; Farrell, R.; Bohn, D.J.; et al. Hypothermia therapy after pediatric cardiac arrest. Circulation 2009, 119, 1492–1500. [Google Scholar] [CrossRef]
- Dogra, K.; Kaur, G.; Basu, S.; Chawla, D. Red Cell Transfusion Practices in Neonatal Intensive Care Unit: An Experience from Tertiary Care Centre. Indian J. Hematol. Blood Transfus. 2018, 34, 671–676. [Google Scholar] [CrossRef]
- Hickok, R.L.; Spaeder, M.C.; Berger, J.T.; Schuette, J.J.; Klugman, D. Postoperative Abdominal NIRS Values Predict Low Cardiac Output Syndrome in Neonates. World J. Pediatr. Congenit. Heart Surg. 2016, 7, 180–184. [Google Scholar] [CrossRef]
- Hatherill, M.; McIntyre, A.G.; Wattie, M.; Murdoch, I.A. Early hyperlactataemia in critically ill children. Intensive Care Med. 2000, 26, 314–318. [Google Scholar] [CrossRef]
- Ergün, S.; Yildiz, O.; Güneş, M.; Akdeniz, H.S.; Öztürk, E.; Onan, İ.S.; Güzeltaş, A.; Haydin, S. Use of extracorporeal membrane oxygenation in postcardiotomy pediatric patients: Parameters affecting survival. Perfusion 2020, 35, 608–620. [Google Scholar] [CrossRef]
- Durward, A.; Tibby, S.M.; Skellett, S.; Austin, C.; Anderson, D.; Murdoch, I.A. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr. Crit. Care Med. 2005, 6, 281–285. [Google Scholar] [CrossRef]
- Scott, H.F.; Donoghue, A.J.; Gaieski, D.F.; Marchese, R.F.; Mistry, R.D. The utility of early lactate testing in undifferentiated pediatric systemic inflammatory response syndrome. Acad. Emerg. Med. 2012, 19, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, T.; Billimoria, Z.; Handley, S.; Smith, K.; Yalon, L.; Brogan, T.V.; Digeronimo, R. Therapeutic Plasma Exchange in Neonatal Septic Shock: A Retrospective Cohort Study. Am. J. Perinatol. 2020, 37, 962–969. [Google Scholar] [CrossRef]
- Nazir, M.; Wani, W.; Dar, S.A.; Mir, I.H.; Charoo, B.A.; Ahmad, Q.I.; Wajid, S. Lactate clearance prognosticates outcome in pediatric septic shock during first 24 h of intensive care unit admission. J. Intensive Care Soc. 2019, 20, 290–298. [Google Scholar] [CrossRef]
- Burkhardt, B.E.U.; Rücker, G.; Stiller, B. Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease. Cochrane Database Syst. Rev. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, J.A.; Benítez-Gómez, I.L.; Martínez-López, A.I.; Praena-Fernández, J.M.; Cano-Franco, J.; Loscertales-Abril, M. Prognostic markers of mortality after congenital heart defect surgery. An. Pediatr. 2012, 77, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Mackie, A.S.; Alton, G.Y.; Dinu, I.A.; Joffe, A.R.; Roth, S.J.; Newburger, J.W.; Robertson, C.M. Clinical outcome score predicts the need for neurodevelopmental intervention after infant heart surgery. J. Thorac. Cardiovasc. Surg. 2013, 145, 1248–1254.e2. [Google Scholar] [CrossRef]
- Cashen, K.; Reeder, R.; Dalton, H.J.; Berg, R.A.; Shanley, T.P.; Newth, C.J.; Pollack, M.M.; Wessel, D.; Carcillo, J.; Harrison, R.; et al. Functional Status of Neonatal and Pediatric Patients After Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2017, 18, 561–570. [Google Scholar] [CrossRef]
- Molina Hazan, V.; Gonen, Y.; Vardi, A.; Keidan, I.; Mishali, D.; Rubinshtein, M.; Yakov, Y.; Paret, G. Blood lactate levels differ significantly between surviving and nonsurviving patients within the same risk-adjusted Classification for Congenital Heart Surgery (RACHS-1) group after pediatric cardiac surgery. Pediatr. Cardiol. 2010, 31, 952–960. [Google Scholar] [CrossRef]
- Neamtu, M.L.; Dobrota, L. Lactic acidosis: A highly indicator of unfavorable outcome in critically ill children. Intensive Care Med. 2013, 39, S176–S177. [Google Scholar]
- Vari, D.; Behere, S.; Spurrier, E.; Baffa, J. Low-dose prostaglandin e1 for congenital heart disease: Is it time to revisit the dosing guidelines. J. Am. Coll. Cardiol. 2019, 73, 600. [Google Scholar] [CrossRef]
- Botha, P.; Deshpande, S.R.; Wolf, M.; Heard, M.; Alsoufi, B.; Kogon, B.; Kanter, K. Extracorporeal membrane oxygenator support in infants with systemic-pulmonary shunts. J. Thorac. Cardiovasc. Surg. 2016, 152, 912–918. [Google Scholar] [CrossRef]
- Polimenakos, A.C.; Wojtyla, P.; Smith, P.J.; Rizzo, V.; Nater, M.; El Zein, C.F.; Ilbawi, M.N. Post-cardiotomy extracorporeal cardiopulmonary resuscitation in neonates with complex single ventricle: Analysis of outcomes. Eur. J. Cardiothorac. Surg. 2011, 40, 1396–1405; discussion 1405. [Google Scholar] [CrossRef]
- Rhodes, L.A.; Erwin, W.C.; Borasino, S.; Cleveland, D.C.; Alten, J.A. Central Venous to Arterial Co2 Difference after Cardiac Surgery in Infants and Neonates∗. Pediatr. Crit. Care Med. 2017, 18, 228–233. [Google Scholar] [CrossRef]
- Castro-Rodríguez, C.O.; Rodríguez-Hernández, L.; de Jesús Estrada-Loza, M.; Herrera-Márquez, J.R.; Gómez-Salvador, M.; Flores-Lujano, J.; Núñez-Enríquez, J.C. Prognostic factors associated with postoperative morbidity in children with isolated ventricular septal defect. Rev. Med. Inst. Mex. Seguro Soc. 2015, 53, S324–S335. [Google Scholar]
- Killinger, J.S.; Hsu, D.T.; Schleien, C.L.; Mosca, R.S.; Hardart, G.E. Children undergoing heart transplant are at increased risk for postoperative vasodilatory shock. Pediatr. Crit. Care Med. 2009, 10, 335–340. [Google Scholar] [CrossRef]
- Kalyanaraman, M.; DeCampli, W.M.; Campbell, A.I.; Bhalala, U.; Harmon, T.G.; Sandiford, P.; McMahon, C.K.; Shore, S.; Yeh, T.S. Serial blood lactate levels as a predictor of mortality in children after cardiopulmonary bypass surgery. Pediatr. Crit. Care Med. 2008, 9, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, K.R.; Reichel, R.A.; Vlasic, J.R.; Yu, S.; Donohue, J.; Gajarski, R.J.; Charpie, J.R. Rate of increase in serum lactate level risk-stratifies infants after surgery for congenital heart disease. J. Thorac. Cardiovasc. Surg. 2014, 148, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, R.; Grohmann, J.; Siepe, M.; Benk, C.; Humburger, F.; Rensing-Ehl, A.; Stiller, B. Early prediction of capillary leak syndrome in infants after cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2013, 44, 275–281. [Google Scholar] [CrossRef]
- Kramer, P.; Mommsen, A.; Miera, O.; Photiadis, J.; Berger, F.; Schmitt, K.R.L. Survival and Mid-Term Neurologic Outcome after Extracorporeal Cardiopulmonary Resuscitation in Children. Pediatr. Crit. Care Med. 2020, 21, e316–e324. [Google Scholar] [CrossRef] [PubMed]
- Mildh, L.H.; Pettilä, V.; Sairanen, H.I.; Rautiainen, P.H. Cardiac troponin T levels for risk stratification in pediatric open heart surgery. Ann. Thorac. Surg. 2006, 82, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Kanaris, C.; Ramanathan, G.; Pritchard, L.; Stibbards, S. Risk stratification of critically ill children and neonates with acute general surgical pathology requiring stabilisation, transfer to tertiary care facility and factors predicting mortality. Pediatr. Crit. Care Med. 2018, 19, 91. [Google Scholar] [CrossRef]
- PR, A.-S.; Lazo-Cárdenas, C.; Rodríguez-Hernández, L.; Márquez-González, H.; JA, G.-S. Mortality-associated factors in pediatric patients with Blalock-Taussig shunt. Rev. Med. Inst. Mex. Seguro Soc. 2014, 52, S62–S67. [Google Scholar]
- Olshove, V.; Berndsen, N.; Nawathe, P.; Robert, S.; Phillips, A. Acute kidney injury scoring system is a better predictor of increased length compared to inotrope score. Cardiol. Young 2017, 27, S344. [Google Scholar]
- Manso, P.; Ferreira, M.; Silva, T.; Turquetto, A.; Caneo, L.; Santos, J.; Amato, L.; Carmona, F. Risk factors for mechanical ventilation time after congenital heart surgery. Cardiol. Young 2017, 27, S348–S349. [Google Scholar]
- Rossi, A.F.; Khan, D.M.; Hannan, R.; Bolivar, J.; Zaidenweber, M.; Burke, R. Goal-directed medical therapy and point-of-care testing improve outcomes after congenital heart surgery. Intensive Care Med. 2005, 31, 98–104. [Google Scholar] [CrossRef]
- Dodge-Khatami, J.; Gottschalk, U.; Eulenburg, C.; Wendt, U.; Schnegg, C.; Rebel, M.; Reichenspurner, H.; Dodge-Khatami, A. Prognostic value of perioperative near-infrared spectroscopy during neonatal and infant congenital heart surgery for adverse in-hospital clinical events. World J. Pediatr. Congenit. Heart Surg. 2012, 3, 221–228. [Google Scholar] [CrossRef]
- Siegel, L.B.; Dalton, H.J.; Hertzog, J.H.; Hopkins, R.A.; Hannan, R.L.; Hauser, G.J. Initial postoperative serum lactate levels predict survival in children after open heart surgery. Intensive Care Med. 1996, 22, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Rastan, A.J.; Walther, T.; Alam, N.A.; Daehnert, I.; Borger, M.A.; Mohr, F.W.; Janousek, J.; Kostelka, M. Moderate versus deep hypothermia for the arterial switch operation--experience with 100 consecutive patients. Eur. J. Cardiothorac. Surg. 2008, 33, 619–625. [Google Scholar] [CrossRef]
- Ricci, Z.; Garisto, C.; Favia, I.; Vitale, V.; Di Chiara, L.; Cogo, P.E. Levosimendan infusion in newborns after corrective surgery for congenital heart disease: Randomized controlled trial. Intensive Care Med. 2012, 38, 1198–1204. [Google Scholar] [CrossRef]
- Scherer, B.; Moser, E.A.S.; Brown, J.W.; Rodefeld, M.D.; Turrentine, M.W.; Mastropietro, C.W. Vasoactive-ventilation-renal score reliably predicts hospital length of stay after surgery for congenital heart disease. J. Thorac. Cardiovasc. Surg. 2016, 152, 1423–1429.e1. [Google Scholar] [CrossRef]
- Brix, N.; Sellmer, A.; Jensen, M.S.; Pedersen, L.V.; Henriksen, T.B. Predictors for an unsuccessful INtubation-SURfactant-Extubation procedure: A cohort study. BMC Pediatr. 2014, 14, 155. [Google Scholar] [CrossRef]
- Solé, A.; Jordan, I.; Bobillo, S.; Moreno, J.; Balaguer, M.; Hernández-Platero, L.; Segura, S.; Cambra, F.J.; Esteban, E.; Rodríguez-Fanjul, J. Venoarterial extracorporeal membrane oxygenation support for neonatal and pediatric refractory septic shock: More than 15 years of learning. Eur. J. Pediatr. 2018, 177, 1191–1200. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; MacLaren, G.; Festa, M.; Alexander, J.; Erickson, S.; Beca, J.; Slater, A.; Schibler, A.; Pilcher, D.; Millar, J.; et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017, 43, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Munoz, R.; Laussen, P.C.; Palacio, G.; Zienko, L.; Piercey, G.; Wessel, D.L. Changes in whole blood lactate levels during cardiopulmonary bypass for surgery for congenital cardiac disease: An early indicator of morbidity and mortality. J. Thorac. Cardiovasc. Surg. 2000, 119, 155–162. [Google Scholar] [CrossRef]
- Nagata, H.; Glick, L.; Lougheed, J.; Grattan, M.; Mondal, T.; Thakur, V.; Schwartz, S.M.; Jaeggi, E. Prenatal Diagnosis of Transposition of the Great Arteries Reduces Postnatal Mortality: A Population-Based Study. Can. J. Cardiol. 2020, 36, 1592–1597. [Google Scholar] [CrossRef]
- Woods, P.; Halliday, R.; Skowno, J. Utilisation of near infrared spectroscopy (NIRS) in monitoring haemodynamic stability of infants with hypoplastic left heart syndrome (HLHS) in the presurgical setting. J. Paediatr. Child Health 2013, 49, 68–69. [Google Scholar]
- Garisto, C.; Favia, I.; Ricci, Z.; Chiara, L.D.; Morelli, S.; Giorni, C.; Vitale, V.; Picardo, S.; Di Donato, R.M. Initial single-center experience with levosimendan infusion for perioperative management of univentricular heart with ductal-dependent systemic circulation. World J. Pediatr. Congenit. Heart Surg. 2010, 1, 292–299. [Google Scholar] [CrossRef]
- Jaeggi, E.; Glick, L.; Lougheed, J.; Mondal, T.; Rosenberg, H.; Thakur, V.; Schwartz, S.; Nagata, H. Prenatal detection of transposition of the great arteries does not reduce mortality and morbidity. Cardiol. Young 2016, 26, S33. [Google Scholar]
- Rodríguez-Fanjul, J.; Solé, A.; Bobillo, S.; Moreno, J.; Segura, S.; Esteban, E.; Balaguer, M.; Jordan, I. Extracorporeal membrane oxygenation for refractory septic shock in children: Our institution’s results. Eur. J. Heart Fail. 2017, 19, 23–24. [Google Scholar]
- Morris, K.P.; McShane, P.; Stickley, J.; Parslow, R.C. The relationship between blood lactate concentration, the Paediatric Index of Mortality 2 (PIM2) and mortality in paediatric intensive care. Intensive Care Med. 2012, 38, 2042–2046. [Google Scholar] [CrossRef]
- Boigner, H.; Brannath, W.; Hermon, M.; Stoll, E.; Burda, G.; Trittenwein, G.; Golej, J. Predictors of mortality at initiation of peritoneal dialysis in children after cardiac surgery. Ann. Thorac. Surg. 2004, 77, 61–65. [Google Scholar] [CrossRef]
- Weber, R.W.; Stiasny, B.; Ruecker, B.; Fasnacht, M.; Cavigelli-Brunner, A.; Valsangiacomo Buechel, E.R. Prenatal Diagnosis of Single Ventricle Physiology Impacts on Cardiac Morbidity and Mortality. Pediatr. Cardiol. 2019, 40, 61–70. [Google Scholar] [CrossRef]
- Amini, S.; Abbaspour, H.; Morovatdar, N.; Robabi, H.N.; Soltani, G.; Tashnizi, M.A. Risk factors and outcome of acute kidney injury after congenital heart surgery: A prospective observational study. Indian J. Crit. Care Med. 2017, 21, 847–851. [Google Scholar] [CrossRef]
- Siddiqui, I.; Jafri, L.; Abbas, Q.; Raheem, A.; Haque, A.U. Relationship of serum procalcitonin, c-reactive protein, and lactic acid to organ failure and outcome in critically ill pediatric population. Indian J. Crit. Care Med. 2018, 22, 91–95. [Google Scholar] [PubMed]
- Nishibe, S.; Tsujita, M. The impact of intraoperative vasopressin infusion in complex neonatal cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 966–972. [Google Scholar] [CrossRef]
- Ressia, L.; Calevo, M.G.; Lerzo, F.; Carleo, A.M.; Petrucci, L.; Montobbio, G. Beneficial effect of fenoldopam mesylate in preventing peak blood lactate level during cardiopulmonary bypass for paediatric cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2014, 19, 178–182. [Google Scholar] [CrossRef]
- Garcia Guerra, G.; Joffe, A.R.; Senthilselvan, A.; Kutsogiannis, D.J.; Parshuram, C.S. Incidence of milrinone blood levels outside the therapeutic range and their relevance in children after cardiac surgery for congenital heart disease. Intensive Care Med. 2013, 39, 951–957. [Google Scholar] [CrossRef]
- Örmeci, T.; Alkan-Bozkaya, T.; Özyüksel, A.; Ersoy, C.; Ündar, A.; Akçevin, A.; Türkoğlu, H. Correlation between cerebral-renal near-infrared spectroscopy and ipsilateral renal perfusion parameters as clinical outcome predictors after open heart surgery in neonates and infants. Artif. Organs 2015, 39, 53–58. [Google Scholar] [CrossRef]
- Davidson, J.; Tong, S.; Hancock, H.; Hauck, A.; Da Cruz, E.; Kaufman, J. Prospective validation of the vasoactive-inotropic score and correlation to short-term outcomes in neonates and infants after cardiothoracic surgery. Intensive Care Med. 2012, 38, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Wu, E.T.; Chen, Y.S.; Chang, C.I.; Chiu, S.; Chi, N.H.; Wu, M.H.; Wang, S.S.; Lin, F.Y.; Ko, W.J. Experience with extracorporeal life support in pediatric patients after cardiac surgery. ASAIO J. 2005, 51, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Hawkes, C.P.; Ryan, C.A.; Dempsey, E.M. Perfusion index in the very preterm infant. Acta Paediatr. 2013, 102, e398–e401. [Google Scholar] [CrossRef] [PubMed]
- Budniok, T.; ElSayed, Y.; Louis, D. Effect of Vasopressin on Systemic and Pulmonary Hemodynamics in Neonates. Am. J. Perinatol. 2020, 38, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Sawada, M.; Ueda, K.; Matsuo, K.; Tokumasu, S.; Ogino, K.; Hayashi, T.; Saito, M.; Kubota, M.; Takahashi, A.; Watabe, S.; et al. Continuous renal replacement therapy in the NICU.; Ten years’ experience in a singlecenter. Pediatr. Nephrol. 2015, 30, 2235. [Google Scholar]
- Pugni, L.; Ronchi, A.; Bizzarri, B.; Consonni, D.; Pietrasanta, C.; Ghirardi, B.; Fumagalli, M.; Ghirardello, S.; Mosca, F. Exchange transfusion in the treatment of neonatal septic shock: A ten-year experience in a neonatal intensive care unit. Int. J. Mol. Sci. 2016, 17, 695. [Google Scholar] [CrossRef]
- Algra, S.O.; Kornmann, V.N.N.; Van Der Tweel, I.; Schouten, A.N.J.; Jansen, N.J.G.; Haas, F. Increasing duration of circulatory arrest, but not antegrade cerebral perfusion, prolongs postoperative recovery after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 2012, 143, 375–382. [Google Scholar] [CrossRef]
- Hoffman, T.M.; Wernovsky, G.; Atz, A.M.; Kulik, T.J.; Nelson, D.P.; Chang, A.C.; Bailey, J.M.; Akbary, A.; Kocsis, J.F.; Kaczmarek, R.; et al. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 2003, 107, 996–1002. [Google Scholar] [CrossRef]
- Talwar, S.; Bansal, A.; Sahu, M.K.; Singh, S.P.; Choudhary, S.K.; Airan, B. Vasoactive inotropic score and outcome assessment in cyanotic infants after cardiovascular surgery. J. Card. Crit. Care 2018, 2, 25–31. [Google Scholar] [CrossRef]
- Bianchi, M.O.; Cheung, P.Y.; Phillipos, E.; Aranha-Netto, A.; Joynt, C. The effect of milrinone infusion on cerebral perfusion in neonates with congenital heart disease prior to cardiac surgery. Arch. Dis. Child. 2012, 97, A93–A94. [Google Scholar] [CrossRef]
- Soliman, R.M.; Mostafa, F.A.; Abdelmassih, A.; Sultan, E.; Mosallam, D. Patent ductus arteriosus in preterm infants; experience of a tertiary referral neonatal intensive care unit: Prevalence, complications, and management. Egypt. Pediatr. Assoc. Gaz. 2020, 68, 34. [Google Scholar] [CrossRef]
- Rosenthal, J.; Ravi, P.; Eckersly, L.; Houshmandi, M.; Savard, W.; Hornberger, L. Impact of prenatal diagnosis of D transposition of the great arteries in the newborn who requires a balloon atrial septostomy. Cardiol. Young 2017, 27, S320–S321. [Google Scholar]
- Ruth, V.J.; Raivio, K.O. Perinatal brain damage: Predictive value of metabolic acidosis and the Apgar score. BMJ 1988, 297, 24–27. [Google Scholar] [CrossRef]
- Dellenbach, P.; Haberey, P. Lactate as indicator for fetal and neonatal asphyxia. Lancet 1982, 1, 907. [Google Scholar] [CrossRef] [PubMed]
- Trittenwein, G.; Pansi, H.; Graf, B.; Golej, J.; Burda, G.; Hermon, M.; Marx, M.; Wollenek, G.; Trittenwein, H.; Pollak, A. Proposed entry criteria for postoperative cardiac extracorporeal membrane oxygenation after pediatric open heart surgery. Artif. Organs 1999, 23, 1010–1014. [Google Scholar] [CrossRef]
- Luce, W.; Schwartz, R.; Beauseau, W.; Giannone, P.; Hashiguchi, B.; Cheatham, J.P.; Galantowicz, M.; Cua, C.L. Gastrointestinal morbidity for the hybrid approach to hypoplastic left heart syndrome. Cardiol. Young 2009, 19, 147. [Google Scholar]
- Butts, R.J.; Scheurer, M.A.; Zyblewski, S.C.; Wahlquist, A.E.; Nietert, P.J.; Bradley, S.M.; Atz, A.M.; Graham, E.M. A composite outcome for neonatal cardiac surgery research. J. Thorac. Cardiovasc. Surg. 2014, 147, 428–433. [Google Scholar] [CrossRef]
- Cheifetz, I.M.; Kern, F.H.; Schulman, S.R.; Greeley, W.J.; Ungerleider, R.M.; Meliones, J.N. Serum lactates correlate with mortality after operations for complex congenital heart disease. Ann. Thorac. Surg. 1997, 64, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Oriot, D.; Nasimi, A.; Berthier, M.; Marlin, S.; Hubert, A.; Follet-Bouhamed, C. Lactate and anion gap in asphyxiated neonates. Arch. Dis. Child. Fetal Neonat. Ed. 1998, 78, F80. [Google Scholar] [CrossRef]
- Ulate, K.P.; Yanay, O.; Jeffries, H.; Baden, H.; Di Gennaro, J.L.; Zimmerman, J. An Elevated Low Cardiac Output Syndrome Score Is Associated With Morbidity in Infants After Congenital Heart Surgery. Pediatr. Crit. Care Med. 2017, 18, 26–33. [Google Scholar] [CrossRef]
- Janaillac, M.; Beausoleil, T.P.; Barrington, K.J.; Raboisson, M.-J.; Karam, O.; Dehaes, M.; Lapointe, A. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur. J. Pediatr. 2018, 177, 541–550. [Google Scholar] [CrossRef]
- Cashen, K.; Costello, J.M.; Grimaldi, L.M.; Gowda, K.M.N.; Moser, E.A.S.; Piggott, K.D.; Wilhelm, M.; Mastropietro, C.W. Multicenter Validation of the Vasoactive-Ventilation-Renal Score as a Predictor of Prolonged Mechanical Ventilation After Neonatal Cardiac Surgery*. Pediatr. Crit. Care Med. 2018, 19, 1015–1023. [Google Scholar] [CrossRef]
- Philpot, P.A.; Bhandari, V. Predicting the likelihood of bronchopulmonary dysplasia in premature neonates. Expert Rev. Respir. Med. 2019, 13, 871–884. [Google Scholar] [CrossRef]
- Udine, M.; Borasino, S.; Alten, J.; Kirklin, J.; McNeal, S.; Xie, R.; Naftel, D.; Hock, K.; Dabal, R.; Cleveland, D. Early, mild fluid overload is associated with postoperative morbidity after neonatal cardiopulmonary bypass. World J. Pediatr. Congenit. Heart Surg. 2018, 9, NP24. [Google Scholar]
- Nasr, V.G.; Staffa, S.J.; Boyle, S.; Regan, W.; Brown, M.; Smith-Parrish, M.; Kaza, A.; DiNardo, J.A. Predictors of Increased Lactate in Neonatal Cardiac Surgery: The Impact of Cardiopulmonary Bypass. J. Cardiothorac. Vasc. Anesth. 2020, 35, 148–153. [Google Scholar] [CrossRef]
- Molteni, K.H. Blood lactate concentrations and neonatal sepsis. J. Pediatr. 1993, 123, 493–494. [Google Scholar] [CrossRef]
- Lorenz, J.M.; Kleinman, L.I.; Markarian, K.; Oliver, M.; Fernandez, J. Serum anion gap in the differential diagnosis of metabolic acidosis in critically ill newborns. J. Pediatr. 1999, 135, 751–755. [Google Scholar] [CrossRef]
- Fitzgerald, M.J.; Goto, M.; Myers, T.F.; Zeller, W.P. Early metabolic effects of sepsis in the preterm infant: Lactic acidosis and increased glucose requirement. J. Pediatr. 1992, 121, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Al Balushi, A.; Guilbault, M.-P.; Wintermark, P. Secondary Increase of Lactate Levels in Asphyxiated Newborns during Hypothermia Treatment: Reflect of Suboptimal Hemodynamics (A Case Series and Review of the Literature). AJP Rep. 2015, 6, e48–e58. [Google Scholar] [CrossRef] [PubMed]
- Mastropietro, C.; Cashen, K.; Narayana, K.M.; Piggott, G.K.; Wilhelm, M.; Costello, J. Multicenter validation of the vasoactiveventilation-renal score for neonatal cardiac surgery. Crit. Care Med. 2016, 44, 108. [Google Scholar] [CrossRef]
- Qiu, L.S.; Liu, J.F.; Zhu, L.M.; Xu, Z.M. Evaluation on the early hemodynamic changes after cardiac surgery for congenital heart diseases in neonates. Zhonghua Er Ke Za Zhi = Chin. J. Pediatr. 2009, 47, 662–666. [Google Scholar]
- Baizat, M.; Zaharie, G.; Iancu, M.; Muresan, D.; Hășmășanu, M.; Procopciuc, L.M. Potential clinical predictors of suspected early and late onset sepsis (EOS and LOS) in preterm newborns: A single tertiary center retrospective study. Clin. Lab. 2019, 65, 1299–1308. [Google Scholar] [CrossRef]
- König, K.; Drew, S.; Walsh, G.; Burke, E.; Barfield, C.; Watkins, A.; Collins, C. The relationship between B-type natriuretic peptide and echocardiographic and laboratory markers of circulatory status in preterm infants. Monatsschr. Kinderheilkd. 2011, 159, 98. [Google Scholar]
- Barberi, I.; Calabrò, M.P.; Cordaro, S.; Gitto, E.; Sottile, A.; Prudente, D.; Bertuccio, G.; Consolo, S. Myocardial ischaemia in neonates with perinatal asphyxia. Electrocardiographic, echocardiographic and enzymatic correlations. Eur. J. Pediatr. 1999, 158, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Munshi, U.K. Feeding associated neonatal necrotizing enterocolitis (Primary NEC) is an inflammatory bowel disease. Pathophysiology 2014, 21, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Hannan, R.L.; Ybarra, M.A.; White, J.A.; Ojito, J.W.; Rossi, A.F.; Burke, R.P. Patterns of lactate values after congenital heart surgery and timing of cardiopulmonary support. Ann. Thorac. Surg. 2005, 80, 1464–1468. [Google Scholar] [CrossRef]
- Srinivasjois, R.; Nathan, E.; Doherty, D.; Patole, S. Prediction of progression of definite necrotising enterocolitis to need for surgery or death in preterm neonates. J. Matern. Fetal Neonatal Med. 2010, 23, 695–700. [Google Scholar] [CrossRef]
- Markkanen, H.K.; Pihkala, J.I.; Salminen, J.T.; Saarinen, M.M.; Hornberger, L.K.; Ojala, T.H. Prenatal diagnosis improves the postnatal cardiac function in a population-based cohort of infants with hypoplastic left heart syndrome. J. Am. Soc. Echocardiogr. 2013, 26, 1073–1079. [Google Scholar] [CrossRef]
- Raghuraman, N.; Tuuli, M.G.; Macones, G.A.; Cahill, A.G.; Stout, M.J. Prediction of morbidity in SGA neonates: Are we using the right cord gas parameters to identify morbidity? Am. J. Obs. Gynecol. 2018, 218, S304. [Google Scholar] [CrossRef]
- Waqar, T.; Haque, K.N. Umbilical cord blood gas and lactate levels as a marker of birth asphyxia in neonates with particular reference to resource limited countries. Pak. Paediatr. J. 2013, 37, 197–203. [Google Scholar]
- Houshmandi, M.; Eckersley, L.; Savard, W.; Fruitman, D.; Mills, L.; Hornberger, L. Prenatal diagnosis improves the perioperative condition of neonates requiring surgical intervention for coarctation but is associated with longer preoperative stay. Can. J. Cardiol. 2017, 33, S40. [Google Scholar] [CrossRef]
- Aly, S.A.; Zurakowski, D.; Glass, P.; Skurow-Todd, K.; Jonas, R.A.; Donofrio, M.T. Cerebral tissue oxygenation index and lactate at 24 hours postoperative predict survival and neurodevelopmental outcome after neonatal cardiac surgery. Congenit. Heart Dis. 2017, 12, 188–195. [Google Scholar] [CrossRef]
- Polimenakos, A.C.; Rizzo, V.; El-Zein, C.F.; Ilbawi, M.N. Post-cardiotomy Rescue Extracorporeal Cardiopulmonary Resuscitation in Neonates with Single Ventricle After Intractable Cardiac Arrest: Attrition After Hospital Discharge and Predictors of Outcome. Pediatr. Cardiol. 2017, 38, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Gunn, J.K.; Beca, J.; Hunt, R.W.; Goldsworthy, M.; Brizard, C.P.; Finucane, K.; Donath, S.; Shekerdemian, L.S. Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy. Arch. Dis. Child. 2016, 101, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, R.E.; Clark, B.G.; Robertson, C.M.; Moddemann, D.M.; Dinu, I.A.; Joffe, A.R.; Sauve, R.S.; Creighton, D.E.; Zwaigenbaum, L.; Ross, D.B.; et al. Five-year neurocognitive and health outcomes after the neonatal arterial switch operation. J. Thorac. Cardiovasc. Surg. 2008, 136, 1413–1421.e2. [Google Scholar] [CrossRef]
- Khalid, O.M.; Harrison, T.M. Early Neurodevelopmental Outcomes in Children with Hypoplastic Left Heart Syndrome and Related Anomalies After Hybrid Procedure. Pediatr. Cardiol. 2019, 40, 1591–1598. [Google Scholar] [CrossRef]
- Freed, D.H.; Robertson, C.M.T.; Sauve, R.S.; Joffe, A.R.; Rebeyka, I.M.; Ross, D.B.; Dyck, J.D. Intermediate-term outcomes of the arterial switch operation for transposition of great arteries in neonates: Alive but well? J. Thorac. Cardiovasc. Surg. 2006, 132, 845–852.e2. [Google Scholar] [CrossRef] [PubMed]
- Alton, G.Y.; Robertson, C.M.; Sauve, R.; Divekar, A.; Nettel-Aguirre, A.; Selzer, S.; Joffe, A.R.; Rebeyka, I.M.; Ross, D.B. Early childhood health, growth, and neurodevelopmental outcomes after complete repair of total anomalous pulmonary venous connection at 6 weeks or younger. J. Thorac. Cardiovasc. Surg. 2007, 133, 905–911. [Google Scholar] [CrossRef]
- Photiadis, J.; Sinzobahamvya, N.; Fink, C.; Schneider, M.; Schindler, E.; Brecher, A.M.; Urban, A.E.; Asfour, B. Optimal pulmonary to systemic blood flow ratio for best hemodynamic status and outcome early after Norwood operation. Eur. J. Cardiothorac. Surg. 2006, 29, 551–556. [Google Scholar] [CrossRef]
- El-Abd Ahmed, A.; Hassan, M.H.; Abo-Halawa, N.; Abdel-Razik, G.M.; Moubarak, F.A.; Sakhr, H.M. Lactate and intestinal fatty acid binding protein as essential biomarkers in neonates with necrotizing enterocolitis: Ultrasonographic and surgical considerations. Pediatr. Neonatol. 2020, 61, 481–489. [Google Scholar] [CrossRef]
- Kuraim, G.A.; Garros, D.; Ryerson, L.; Moradi, F.; Dinu, I.A.; Garcia Guerra, G.; Moddemann, D.; Bond, G.Y.; Robertson, C.M.T.; Joffe, A.R. Predictors and outcomes of early post-operative veno-arterial extracorporeal membrane oxygenation following infant cardiac surgery. J. Intensive Care 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Junior, L.K.O.; Carmona, F.; Aragon, D.C.; Gonçalves-Ferri, W.A. Evaluation of urine output, lactate levels and lactate clearance in the transitional period in very low birth weight preterm infants. Eur. J. Pediatr. 2021, 180, 91–97. [Google Scholar] [CrossRef]
- Ricci, M.F.; Andersen, J.C.; Joffe, A.R.; Watt, M.J.; Moez, E.K.; Dinu, I.A.; Guerra, G.G.; Ross, D.B.; Rebeyka, I.M.; Robertson, C.M.T. Chronic Neuromotor Disability After Complex Cardiac Surgery in Early Life. Pediatrics 2015, 136, e922–e933. [Google Scholar] [CrossRef] [PubMed]
- Simović, A.M.; Košutić, J.L.; Prijić, S.M.; Knežević, J.B.; Vujić, A.J.; Stojanović, N.D. The role of biochemical markers as early indicators of cardiac damage and prognostic parameters of perinatal asphyxia. Vojnosanit. Pregl. 2014, 71, 149–155. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Country | Study Type | Subgroup Population | No. Patients | Gestational Age | Birth Weight (kg) | Outcomes |
---|---|---|---|---|---|---|---|---|
Charpie JR [15] | 2000 | USA | PC | CHD | 46 | - | 3.2 (0.5) | Death or ECMO |
Polackova R [16] | 2017 | Czech republic | PC | Birth Asphyxia | 51 | 38.8 (1.8)—adverse outcome group | 3.2 (0.6)—adverse outcome group | Death or severe disability |
Lekhwani S [17] | 2010 | India | RC | All | 50 | - | - | Death |
Tokuhisa T [18] | 2014 | Japan | CC | Birth Asphyxia | 23 | 38.5 (1.3)—adverse outcome group | 2.9 (0.7)—adverse outcome group | Death or cerebral palsy |
Matsushita FY [19] | 2019 | Brazil | RC | Preterm | 80 | 26.1 (2.1) | 0.66 (0.14) | Death |
Buijs EAB [20] | 2014 | Netherlands | PC | ECMO | 56 | - | 3 (2.2–3.3) | Death |
Photiadis J [21] | 2006 | Germany | PC | CHD | 26 | - | 3.3 (0.1)—nonsurvivor group | Death |
Amirnovin R [22] | 2013 | USA | PC | CHD | 24 | - | 3.3 (0.4) | Death OR surgical intervention OR ECMO OR transplant |
Li J [23] | 2012 | Japan | RC | Birth Asphyxia | 21 | 39.2 (1.9)—poor outcome group | 2.8 (0.4)—poor outcome group | Death or neurological deficit |
Shuhaiber J [24] | 2012 | USA | CC | CHD | 112 | 25% with birth weight < 2.5 kg—nonsurvivor group | Death | |
Hayakawa M [25] | 2014 | Japan | RC | Birth Asphyxia | 227 | 36.6 (38.4–40.6) | 2.9 (2.6–3.2) | Death or neurological deficit |
Joffe AR [26] | 2007 | Canada | PC | CHD | 70 | 39 (2) | 3.3 (0.6) | Death |
Manotas H [27] | 2017 | Colombia | RC | Birth Asphyxia | 64 | - | - | Death |
Liu X [28] | 2020 | China | RC | CHD | 207 | - | 3 (0.5)—nonsurvivor group | Death |
Ouellete C [29] | 2019 | USA | RC | Sepsis | 12 | - | - | Death |
Miyamoto T [30] | 2008 | Germany | RC | CHD | 34 | 35.5 (2.3) | 2.1 (0.2) | Death |
Rocha TS [31] | 2010 | Brazil | RC | CHD | 76 | - | 3.1 (0.4)—nonsurvivor group | Death |
Howard TS [32] | 2016 | USA | RC | CHD | 84 | - | 2.9 (2.3–3.1)—nonsurvivor group | Death |
Groenendaal F [33] | 2003 | Netherlands | RC | Preterm | 79 | 28.5 (2.3)—poor outcome group | 1.1 (0.5)—poor outcome group | Death or cerebral palsy |
Christmann M [34] | 2018 | Switzerland | RC | CHD | 57 | - | 2.9 (0.5)—nonsurvivor group | Death |
Cheung PY [35] | 1994 | Canada | RC | ECMO | 28 | 38.3 (2.1)—nonsurvivors | 3 (0.4)—nonsurvivors | Death |
Phillips LA [36] | 2011 | UK | PC | Preterm | 381 | 28 (23–37) | 1 (0.37–1.5) | Death |
Kessler U [37] | 2006 | Switzerland | RC | Preterm/NEC | 128 | 28.7 (0.8)—nonsurvivors | 1.2 (0.12)—nonsurvivors | Death |
Abubacker M [38] | 2002 | UK | RC | Preterm/NEC | 24 | 27 (24–36)—nonsurvivors | 0.7 (0.5–1.8)—nonsurvivors | Death |
Verheijen PM [39] | 2010 | Netherlands | RC | CHD | 105 | - | - | Death |
Araki S [40] | 2010 | Japan | RC | Birth Asphyxia | 16 | 35.6 (4.5)—nonsurvivors | 2.3 (0.7)—nonsurvivors | Death |
Erdeve O [41] | 2019 | Turkey | PC | All | 372 | 31.1 (5.4)—nonsurvivors | 1.65 (1.09)—nonsurvivors | Death or ECMO |
Chen D [42] | 2020 | China | PC | All | 161 | 31.9 (3.5)—nonsurvivors | 1.95 (0.53)—nonsurvivors | Death |
Cheung PY [43] | 2002 | Canada | PC | ECMO | 74 | 39 (2) | 3.2 (0.7) | Death |
Cheung PY [44] | 2005 | Canada | PC | CHD | 85 | 38 (1)—nonsurvivors | 3.1 (0.55)—nonsurvivors | Death |
Reppucci ML [45] | 2020 | USA | RC | Preterm/GI perforation | 42 | - | BW < 1500 g | Death |
Grayck EN [46] | 1995 | USA | RC | ECMO | 82 | - | - | Death/intracranial hemorrhage |
Fernandez HGC [47] | 2012 | Brazil | RC | All | 156 | 33.1 (4)—hyperlactatemia | 1.83 (0.88)—hyperlactatemia | Death/seizure/pulmonary hypertension/intracerebral hemorrhage |
Márquez-González H [48] | 2015 | Mexico | PC | All | 154 | 18% > 37 weeks—nonsurvivors | 22% > 2500 g—nonsurvivors | Death |
Márquez-González-H [48] | 2015 | Mexico | PC | All | 227 | - | - | Death |
Murtuza B [49] | 2011 | Switzerland | RC | CHD | 221 | - | 3.1 (0.6) | Death |
Okur N [50] | 2018 | Turkey | PC | Preterm | 119 | 28.2 (2)—hyperlactatemia | 0.96 (0.31)—hyperlactatemia | Death/MV duration/IVH/PDA/ROP/BPD |
Tuten A [51] | 2017 | Turkey | PC | Preterm | 60 | 27 (2.5) | 0.99 (0.28) | Death/BPD/PDA/NEC/IVH/ROP |
Deshpande SA [52] | 1996 | UK | PC | All mechanically ventilated | 75 | 29 (23–40) | 1.3 (0.55–4.08) | Death |
Chilinda GK [53] | 2018 | Malawi | PC | All | 389 | - | 2.9 (0.57)—hyperlactatemia | Death |
Haiju Z [54] | 2008 | China | PC | Birth Asphyxia | 18 | 38.1 (1.05)–moderate to severe HIE | 2.7 (2.2–3.1)—moderate to severe HIE | Severe HIE |
Neacsu A [55] | 2020 | Romania | RC | Birth Asphyxia | 274 | Term infants (>37 weeks) | - | APGAR < 3 first minute OR APGAR < 5 fifth minute OR respiratory insufficiency OR NICU > 24 h |
Mazouri A [56] | 2021 | Iran | PC | Meconium Aspirate Syndrome | 150 | 38.6 (1.43) | - | Pulmonary hemorrhage/pulmonary hypertension/IVH/MV necessity |
Syed F [57] | 2019 | India | PC | Preterm | 156 | 34–36 + 6/7 weeks | - | RDS/TTN/pneumonia/MAS |
Karabayir N [58] | 2014 | Turkey | PC | All | 1341 | 39.3 (0.9) | 3.4 (0.6) | MAS/MV/O2 supply |
Ozkiraz S [59] | 2013 | Turkey | CC | TTN | 56 | 37.7 (1.6) | 2.9 (0.5) | Respiratory support |
Simovic AM [60] | 2016 | Serbia | CC | Preterm | 108 | 31.7 (3.3)—respiratory support | 1.8 (0.7) | Respiratory support |
Miletin J [61] | 2008 | Ireland | PC | Preterm | 38 | 26.5 (24–29)—low SVC group | 1.1 (0.5–1.44)—Low SVC group | Low SVC |
Balushi AA [62] | 2017 | Canada | RC | Birth Asphyxia | 190 | 39.2 (1.5)—hypotension group | 3.4 (0.6)—Hypotension group | Hypotension/brain injury |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsushita, F.Y.; Krebs, V.L.J.; De Carvalho, W.B. Association between Serum Lactate and Morbidity and Mortality in Neonates: A Systematic Review and Meta-Analysis. Children 2023, 10, 1796. https://doi.org/10.3390/children10111796
Matsushita FY, Krebs VLJ, De Carvalho WB. Association between Serum Lactate and Morbidity and Mortality in Neonates: A Systematic Review and Meta-Analysis. Children. 2023; 10(11):1796. https://doi.org/10.3390/children10111796
Chicago/Turabian StyleMatsushita, Felipe Yu, Vera Lucia Jornada Krebs, and Werther Brunow De Carvalho. 2023. "Association between Serum Lactate and Morbidity and Mortality in Neonates: A Systematic Review and Meta-Analysis" Children 10, no. 11: 1796. https://doi.org/10.3390/children10111796
APA StyleMatsushita, F. Y., Krebs, V. L. J., & De Carvalho, W. B. (2023). Association between Serum Lactate and Morbidity and Mortality in Neonates: A Systematic Review and Meta-Analysis. Children, 10(11), 1796. https://doi.org/10.3390/children10111796