SARS-CoV-2 Infection as a Possible Trigger for IgA-Associated Vasculitis: A Case Report
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Oni, L.; Sampath, S. Childhood IgA Vasculitis (Henoch Schonlein Purpura)-Advances and Knowledge Gaps. Front. Pediatr. 2019, 7, 257. [Google Scholar] [CrossRef]
- Hwang, H.H.; Lim, I.S.; Choi, B.S.; Yi, D.Y. Analysis of seasonal tendencies in pediatric Henoch-Schönlein purpura and comparison with outbreak of infectious diseases. Medicine 2018, 97, e12217. [Google Scholar] [CrossRef]
- Wang, J.J.; Xu, Y.; Liu, F.F.; Wu, Y.; Samadli, S.; Wu, Y.F.; Luo, H.H.; Zhang, D.D.; Hu, P. Association of the infectious triggers with childhood Henoch-Schonlein purpura in Anhui province, China. J. Infect. Public Health 2020, 13, 110–117. [Google Scholar] [CrossRef]
- Dyga, K.; Szczepańska, M. IgA vasculitis with nephritis in children. Adv. Clin. Exp. Med. 2020, 29, 513–519. [Google Scholar] [CrossRef]
- Rajapakse, N.; Dixit, D. Human and novel coronavirus infections in children: A review. Paediatr. Int. Child Health 2021, 41, 36–55. [Google Scholar] [CrossRef]
- Kloc, M.; Ghobrial, R.M.; Kuchar, E.; Lewicki, S.; Kubiak, J.Z. Development of child immunity in the context of COVID-19 pandemic. Clin. Immunol. 2020, 217, 108510. [Google Scholar] [CrossRef]
- Barbetta, L.; Filocamo, G.; Passoni, E.; Boggio, F.; Folli, C.; Monzani, V. Henoch-Schönlein purpura with renal and gastrointestinal involvement in course of COVID-19: A case report. Clin. Exp. Rheumatol. 2021, 129, 191–192. [Google Scholar] [CrossRef]
- Sandhu, S.; Chand, S.; Bhatnagar, A.; Dabas, R.; Bhat, S.; Kumar, H.; Dixit, P.K. Possible association between IgA vasculitis and COVID-19. Dermatol. Ther. 2021, 34, e14551. [Google Scholar] [CrossRef]
- Jacobi, M.; Lancrei, H.M.; Brosh-Nissimov, T.; Yeshayahu, Y. Purpurona: A Novel Report of COVID-19-Related Henoch-Schonlein Purpura in a Child. Pediatr. Infect. Dis. J. 2021, 40, e93–e94. [Google Scholar] [CrossRef]
- Yu, H.Q.; Sun, B.Q.; Fang, Z.F.; Zhao, J.C.; Liu, X.Y.; Li, Y.M.; Sun, X.Z.; Liang, H.F.; Zhong, B.; Huang, Z.F.; et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J. 2020, 56, 2001526. [Google Scholar] [CrossRef]
- Fessatou, S.; Nicolaidou, P.; Gourgiotis, D.; Georgouli, H.; Douros, K.; Moustaki, M.; Fretzayas, A. Endothelin 1 levels in relation to clinical presentation and outcome of Henoch Schonlein purpura. BMC Pediatr. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Jaszczura, M.; Góra, A.; Grzywna-Rozenek, E.; Barć-Czarnecka, M.; Machura, E. Analysis of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio and mean platelet volume to platelet count ratio in children with acute stage of immunoglobulin A vasculitis and assessment of their suitability for predicting the course of the disease. Rheumatol. Int. 2019, 39, 869–878. [Google Scholar] [CrossRef]
- AlGhoozi, D.A.; AlKhayyat, H.M. A child with Henoch-Schonlein purpura secondary to a COVID-19 infection. BMJ Case Rep. 2021, 14, e239910. [Google Scholar] [CrossRef]
- Mousavi, M.S.; Jafari, M. COVID-19 in IgA Vasculitis. Iran J. Pediatr. 2020, 30, e104424. [Google Scholar] [CrossRef]
- Hoskins, B.; Keeven, N.; Dang, M.; Keller, E.; Nagpal, R. A Child with COVID-19 and Immunoglobulin A Vasculitis. Pediatr Ann. 2021, 50, e44–e48. [Google Scholar] [CrossRef] [PubMed]
- Nakandakari, M.D.; Marín-Macedo, H.; Seminario-Vilca, R. IgA Vasculitis (Henoch Schönlein purpura) in a pediatric patient with COVID-19 and Strongyloidiasis. Case report. Rev. Fac. Med. Hum. 2021, 21, 199–205. [Google Scholar] [CrossRef]
- Chesser, H.; Chambliss, J.M.; Zwemer, E. Acute Hemorrhagic Edema of Infancy after Coronavirus Infection with Recurrent Rash. Case Rep. Pediatr. 2017, 2017, 5637503. [Google Scholar] [CrossRef] [PubMed]
- AbdelMassih, A.F.; AbdelAzeam, A.S.; Ayad, A.; Kamel, A.Y.; Khalil, A.; Kotb, B.; Waheed, D.; Menshawey, E.; Sefein, F.; Taha, F.; et al. Unleashing the mysterious link between COVID-19 and a famous childhood vasculitis: Kawasaki disease. Egypt Pediatr. Assoc. Gaz. 2020, 68, 21. [Google Scholar] [CrossRef]
- Ozen, S.; Marks, S.D.; Brogan, P.; Groot, N.; de Graeff, N.; Avcin, T.; Bader-Meunier, B.; Dolezalova, P.; Feldman, B.M.; Kone-Paut, I.; et al. European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis-the SHARE initiative. Rheumatology 2019, 58, 1607–1616. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Jia, R.; Yi, C.; Gu, W.; Liu, P.; Dong, X.; Zhou, H.; Shang, B.; Cheng, S.; et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cell Mol. Immunol. 2020, 17, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Han, M.S.; Um, J.; Lee, E.J.; Kim, K.M.; Chang, S.H.; Lee, H.; Kim, Y.K.; Choi, Y.Y.; Cho, E.Y.; Kim, D.H.; et al. Antibody Responses to SARS-CoV-2 in Children With COVID-19. J. Pediatr. Infect. Dis Soc. 2022, 11, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Hansen, I.S.; Hoepel, W.; Zaat, S.A.J.; Baeten, D.L.P.; den Dunnen, J. Serum IgA Immune Complexes Promote Proinflammatory Cytokine Production by Human Macrophages, Monocytes, and Kupffer Cells through FcαRI-TLR Cross-Talk. J. Immunol. 2017, 199, 4124–4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Result | ||
---|---|---|---|
Hospitalization Beginning | Deterioration | Hospitalization End | |
Hemoglobin (g/dl) | 14.4 | 9.2 | 12.8 |
Total leukocyte count (cells/µL) | 15.63 | 38 | 24.84 |
Differential count (%)/(cells/µL) | |||
Neutrophils | 73.6/11.52 | 82.2/31.26 | 66.3/16.5 |
Lymphocytes | 16.5/2.58 | 14.1/5.32 | 21.3/5.28 |
Platelets (cells/µL) | 418 | 477 | 571 |
Neutrophil-to-lymphocyte count ratio (NLR) (1–1.91) [13] | 4.46 | 5.86 | 3.12 |
Platelet-to-lymphocytes count ratio (PLR) (95.47–152.32) [13] | 162.01 | 433.66 | 108.14 |
Mean platelet volume divided by platelet count (MPR) (0.029–0.037) [13] | 0.022 | 0.018 | 0.016 |
IgA (g/L) (0.33–2.35) | 2.9 | ||
IgM (g/L) (0.36–1.98) | 1.89 | ||
IgG (g/L) (8.53–14.4) | 11.45 | ||
C3 (g/L) (0.9–1.8) | 1.21 | ||
C4 (g/L) (0.1–0.4) | 0.23 | ||
24 h urinary protein (mg) | 1800 | ||
Serum creatinine (mg/dL) | 0.45 | 0.38 | 0.34 |
Sodium (mEq/L) | 138 | 133 | 141 |
Potassium (mEq/L) | 4.42 | 4.86 | 4.73 |
Aspartate aminotransferase (IU/L) (0–40) | 27.1 | 22.2 | 16.1 |
Alanine aminotransferase (IU/L) (0–41) | 8.6 | 10.8 | 21.6 |
Protein (g/dL) (5.7–8.2) | 5.7 | 7.3 | |
Albumin (g/dL) (3.8–5.4) | 3.49 | 4.4 | |
Prothrombin time (11–16) | 15.4 | 12.5 | 15.5 |
Kaolin-kephalin time (28–40) | 31.8 | 22.7 | 28.8 |
Fibrynogen mg/dL (200–400) | 449 | 208 | 309 |
INR (0.8–1.2) | 1.16 | 1.7 | 0.95 |
C-reactive protein (mg/L) (0–5) | 21.93 | 55.5 | 0.99 |
d-Dimer ug/mL (0–0.5) | 9.12 | 3.92 | 0.73 |
Procalcitonin (ng/mL) (0–0.5) | 2.38 | 0.08 | |
Rapid SARS-CoV-2 antigen test | Negative | ||
SARS-CoV-2 IgM positive > 1.00 index | 3.2 | ||
SARS-CoV-2 IgG positive > 7.1 BAU/mL | 132.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machura, E.; Krakowczyk, H.; Bąk-Drabik, K.; Szczepańska, M. SARS-CoV-2 Infection as a Possible Trigger for IgA-Associated Vasculitis: A Case Report. Children 2023, 10, 344. https://doi.org/10.3390/children10020344
Machura E, Krakowczyk H, Bąk-Drabik K, Szczepańska M. SARS-CoV-2 Infection as a Possible Trigger for IgA-Associated Vasculitis: A Case Report. Children. 2023; 10(2):344. https://doi.org/10.3390/children10020344
Chicago/Turabian StyleMachura, Edyta, Helena Krakowczyk, Katarzyna Bąk-Drabik, and Maria Szczepańska. 2023. "SARS-CoV-2 Infection as a Possible Trigger for IgA-Associated Vasculitis: A Case Report" Children 10, no. 2: 344. https://doi.org/10.3390/children10020344
APA StyleMachura, E., Krakowczyk, H., Bąk-Drabik, K., & Szczepańska, M. (2023). SARS-CoV-2 Infection as a Possible Trigger for IgA-Associated Vasculitis: A Case Report. Children, 10(2), 344. https://doi.org/10.3390/children10020344