Comparison of Serum Selenium, Homocysteine, Zinc, and Vitamin D Levels in Febrile Children with and without Febrile Seizures: A Prospective Single-Center Study
Abstract
:1. Introduction
- it does not show focal characteristics,
- it lasts less than 15 min,
- it does not recur within 24 h.
- it shows focal characteristics,
- it lasts more than 15 min,
- it recurs within the first 24 h [8].
2. Materials and Methods
3. Findings
4. Discussion
- (1)
- increasing the effect of glutamic acid decarboxylase, a rate-limiting enzyme in the synthesis of an inhibitory neurotransmitter in CNS, GABA (gamma-aminobutyric acid),
- (2)
- facilitating the suppression of an excitatory neurotransmitter in CNS, NMDA (N-methyl D-aspartate) by calcium [27].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Subcommittee on Febrile Seizures; American Academy of Pediatrics. Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics 2011, 127, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.T.; Shinnar, S.; Shapiro, E.D.; Salomon, M.E.; Crain, E.F.; Hauser, W.A. Risk factors for a first febrile seizure: A matched case-control study. Epilepsia 1995, 36, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Behrman, R.E. Nelson Textbook of Pediatrics, 18th ed.; Elsevier Health Sciences: Saunders, PA, USA, 2007; pp. 2457–2458. [Google Scholar]
- Thébault-Dagher, F.; Herba, C.M.; Séguin, J.R.; Muckle, G.; Lupien, S.J.; Carmant, L.; Simard, M.-N.; Shapiro, G.D.; Fraser, W.D.; Lippé, S. Age at first febrile seizure correlates with perinatal maternal emotional symptoms. Epilepsy Res. 2017, 135, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Mahmoudi, M.; Meysamie, A.; Gharedaghi, M.; Zamponi, G.W.; Rezaei, N. Possible role of trace elements in epilepsy and febrile seizures: A meta-analysis. Nutr. Rev. 2015, 73, 760–779. [Google Scholar] [CrossRef] [PubMed]
- Hardies, K.; Weckhuysen, S.; Peeters, E.; Holmgren, P.; Van Esch, H.; De Jonghe, P.; Van Paesschen, W.; Suls, A. Duplications of 17q12 can cause familial fever-related epilepsy syndromes. Neurology 2013, 81, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Haerian, B.S.; Baum, L.; Kwan, P.; Cherny, S.S.; Shin, J.G.; Kim, S.E.; Han, B.G.; Tan, H.J.; Raymond, A.A.; Tan, C.T.; et al. Contribution of GABRG2 polymorphisms to risk of epilepsy and febrile seizure: A multicenter cohort study and meta-analysis. Mol. Neurobiol. 2016, 53, 5457–5467. [Google Scholar] [CrossRef]
- John, R.; Østergaard, J.R. Febrile seizures. Acta Paediatr. 2009, 98, 771–773. [Google Scholar]
- Crandall, L.G.; Lee, J.H.; Stainman, R.; Friedman, D.; Devinsky, O. Potential role of febrile seizures and other risk factors associated with sudden deaths in children. JAMA Netw. Open 2019, 2, e192739. [Google Scholar] [CrossRef] [Green Version]
- Chin, R.F.; Neville, B.G.; Peckham, C.; Bedford, H.; Wade, A.; Scott, R.C. Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: Prospective population-based study. Lancet 2006, 368, 222–229. [Google Scholar] [CrossRef]
- Pujar, S.S.; Neville, B.G.R.; Scott, R.C.; Chin, R.F. North London Epilepsy Research Network. Death within 8 years after childhood convulsive status epilepticus: A population-based study. Brain 2011, 134, 2819–2827. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Dustin, K.S.; Kerry, P.S.; Molly, B. Febrile Seizures: Risks, Evaluation, and Prognosis. Am. Fam. Physician 2019, 99, 445–450. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2013. [Google Scholar]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; MPG Books Group: London, UK, 2010; p. 565. [Google Scholar]
- Finch, J.M.; Turner, R.J. Effects of selenium and vitamin e on the immune responses of domestic animals. Res. Vet. Sci. 1996, 60, 97–106. [Google Scholar] [CrossRef]
- Perucca, E.; Gram, L.; Avanzini, G.; Dulac, O. Antiepileptic drugs as a cause of worsening seizures. Epilepsia 1998, 39, 5–17. [Google Scholar] [CrossRef]
- Savaskan, N.E.; Bräuer, A.U.; Kühbacher, M.; Eyüpoglu, I.; Kyriakopoulos, A.; Ninnemann, O.; Behne, D.; Nitsch, R. Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J. 2003, 17, 112–114. [Google Scholar] [CrossRef]
- Bakhtiari, E.; Heydarian, F.; Khalesi, M.; Jafarian, F.; Heidarian, M. A Comparison Between Serum Selenium Level in Febrile Children with or Without Seizure. Biol. Trace Elem. Res. 2022, 200, 3103–3106. [Google Scholar] [CrossRef]
- Amiri, M.; Farzin, L.; Moassesi, M.E.; Sajadi, F. Serum trace element levels in febrile convulsion. Biol. Trace Elem. Res. 2010, 135, 38–44. [Google Scholar] [CrossRef]
- Mahyar, A.; Ayazi, P.; Fallahi, M.; Javadi, A. Correlation between serum selenium level and febrile seizures. Pediatr. Neurol. 2010, 43, 331–334. [Google Scholar] [CrossRef]
- Olmez, A.; Yalcin, S.; Yurdakok, K.; Coskun, T. Serum selenium levels in acute gastroenteritis of possible viral origin. J. Trop. Pediatr. 2004, 50, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Sammalkorpi, K.; Valtonen, V.; Alfthan, G.; Aro, A.; Huttunen, J.K. Serum selenium in acute infections. Infection 1988, 16, 222–224. [Google Scholar] [CrossRef]
- Portnoy, J.; Wang, J.; Wang, F.; Um, P.; Irving, S.Y.; Hackl, L.; Liu, J. Lower serum selenium concentration associated with anxiety in children. J. Pediatr. Nurs. 2022, 63, e121–e126. [Google Scholar] [CrossRef] [PubMed]
- Khoshdel, A.; Parvin, N.; Abbasi, M. Selenium and Leptin Levels in Febrile Seizure: A Case-Control Study in Children. Korean J. Pediatr. 2013, 56, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Safaralizadeh, R.; Kardar, G.A.; Pourpak, Z.; Moin, M.; Zare, A.; Teimourian, S. Serum concentration of selenium in healthy individuals living in Tehran. Nutr. J. 2005, 4, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, M.S.; Phillips, A.M.; Mullen, S.A.; Adlard, P.A.; Hardies, K.; Damiano, J.A.; Wimmer, V.; Bellows, S.T.; McMahon, J.M.; Burgess, R.; et al. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures. Sci. Rep. 2015, 5, 17816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salah, O.N.; Abdelraouf, E.R.; Abdelhameed, M.H.; Dawood, A.A.; Hashish, A.F.; Kilany, A.; Helal, S.I. Assessment of the Level of GABA and some trace elements in blood in children who suffer from familial febrile convulsions. Maced. J. Med. Sci. 2014, 7, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, F.; Nikkhah, A.; Afkhami, G.M. Serum Zinc Level in Children with Febrile Seizure. Iran. J. Child. Neurol. 2020, 14, 43–47. [Google Scholar]
- Okposio, M.; Sadoh, W.; Ofovwe, G.; Onyiriuka, A. Serum zinc level in Nigerian children with febrile convulsion. J. Pediatr. Neurol. 2015, 10, 187–191. [Google Scholar]
- Nasehi, M.M.; Sakhaei, R.; Moosazadeh, M.; Aliramzany, M. Comparison of serum zinc levels among children with simple febrile seizure and control group: A systematic review. Iran. J. Child. Neurol. 2015, 9, 17–24. [Google Scholar]
- Ganesh, R.; Janakiraman, L. Serum Zinc levels in children with simple febrile seizures. Clin. Pediatr. 2008, 47, 164–166. [Google Scholar] [CrossRef]
- Çelik, K.; Çelik Güzel, E.; Güzel, S.; Ayaz Özkul, A.; Elevli, M.; Nalbantoğlu, A. Serum zinc levels in febrile seizures: Is deficiency a risk factor? Turk. Klin. J. Pediatr. 2012, 21, 1–6. [Google Scholar]
- Cho, W.J.; Son, B.H.; Kim, S.W. Levels of Sodium and Zinc Concentration in febrile convulsion. Korean Child. Neural. Soc. 1999, 7, 214–219. [Google Scholar]
- Fong, C.Y.; Kong, A.N.; Poh, B.K.; Mohamed, A.R.; Khoo, T.B.; Ng, R.L.; Noordin, M.; Nadarajaw, T.; Ong, L.C. Vitamin D deficiency and its risk factors in Malaysian children with epilepsy. Epilepsia 2016, 57, 1271–1279. [Google Scholar] [CrossRef] [Green Version]
- Holló, A.; Clemens, Z.; Kamondi, A.; Lakatos, P.; Szűcs, A. Correction of vitamin D deficiency improves seizure control in epilepsy: A pilot study. Epilepsy Behav. 2012, 24, 131–133. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Minasyan, A.; Tuohimaa, P. Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res. Bull. 2005, 67, 156–160. [Google Scholar] [CrossRef]
- Al Khalifah, R.; Hudairi, A.; Al Homyani, D.; Hamad, M.H.; Bashiri, F.A. Vitamin D supplementation to prevent vitamin D deficiency for children with epilepsy: Randomized pragmatic trial protocol. Medicine 2018, 97. [Google Scholar] [CrossRef]
- Bhat, J.A.; Bhat, T.A.; Sheikh, S.A.; Wani, Z.A.; Ara, R. Status of 25-hydroxy vitamin D level in simple febrile seizures and its correlation with recurrence of seizures. Avicenna J. Med. 2020, 10, 6–9. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, P.; Dewan, D. Association of vitamin D levels with simple febrile seizures in under five children: A case control study. Int. J. Contemp. Pediatr. 2019, 6, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Motlaghzadeh, Y.; Sayarifard, F.; Allahverdi, B.; Rabbani, A.; Setoodeh, A.; Sayarifard, A.; Abbasi, F.; Haghi-Ashtiani, M.-T.; Rahimi-Froushani, A. Assessment of vitamin D status and response to vitamin D3 in obese and non-obese Iranian children. J. Trop. Pediatr. 2016, 62, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Heydarian, F.; Bakhtiari, E.; Golmakani, H.; Neda Fakhr Ghasemi, N.; Heidarian, M. Serum Level of Vitamin D and Febrile Seizure? A Clinical Study. Iran. J. Child. Neurol. 2020, 14, 77–82. [Google Scholar]
- Hermann, A.; Sitdikova, G. Homocysteine: Biochemistry, Molecular Biology and Role in Disease. Biomolecules 2021, 11, 737. [Google Scholar] [CrossRef]
- Biancheri, R.; Cerone, R.; Rossi, A.; Schiaffino, M.C.; Caruso, U.; Minniti, G.; Perrone, M.V.; Tortori-Donati, P.; Veneselli, E. Earlyonset cobalamin C/D deficiency: Epilepsy and electroencephalographic features. Epilepsia 2002, 43, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Telfeian, A.E.; Connors, B.W. Epileptiform propagation patterns mediated by NMDA and non-NMDA receptors in rat neocortex. Epilepsia 1999, 40, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Özkale, Y.; Erol, İ.; Kılıçarslan, B.; Özkale, M.; Saygı, S.; Sarıtürk, Ç.; Sezgin, N. Serum Vitamin B12, Folic Acid and Homocysteine Levels in Children with Febrile Seizure. Turk. J. Pediatr. 2015, 57, 345–352. [Google Scholar] [PubMed]
- Miller, A.; Korem, M.; Almog, R.; Galboiz, Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis. J. Neurol. Sci. 2005, 15, 93–97. [Google Scholar] [CrossRef]
- Rasmussen, S.A.; Fernhoff, P.M.; Scanlon, K.S. Vitamin B12 deficiency in children and adolescents. J. Pediatr. 2001, 138, 10–17. [Google Scholar] [CrossRef]
- Allen, L.H.; Rosado, J.L.; Casterline, J.E.; Martinez, H.; Lopez, P.; Muñoz, E.E.; Black, A.K. Vitamin B-12 deficiency and malabsorption are highly prevalent in rural Mexican communities. AJCN 1995, 62, 1013–1019. [Google Scholar] [CrossRef]
- Osifo, B.O.; Lukanmbi, F.A.; Familusi, J.B. Cerebrospinal fluid folate and cobalamin levels in febrile convulsion. J. Neurol. Sci. 1985, 68, 185–190. [Google Scholar] [CrossRef]
- Osifo, B.O.; Lukanmbi, F.A.; Familusi, J.B. Comparison of folate levels in convulsing and non-convulsing febrile children. Trop. Geogr. Med. 1983, 35, 363–368. [Google Scholar]
- Esnafoğlu, E.; Ozturan, D.D. The relationship of severity of depression with homocysteine, folate, vitamin B12 and vitamin D levels in children and adolescents. Child. Adolesc. Ment. Health 2020, 25, 249–255. [Google Scholar] [CrossRef]
- Altun, H.; Şahin, N.; Kurutaş, E.B.; Güngör, O. Homocysteine, Pyridoxine, Folate and Vitamin B12 Levels in Children with Attention Deficit Hyperactivity Disorder. Psychiatr. Danub. 2018, 30, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, H.; Gao, P. Red blood cell distribution widthto-platelet ratio and other laboratory indices associated with severity of histological hepatic fibrosis in patients with autoimmune hepatitis: A retrospective study at a single center. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e927946. [Google Scholar]
- Bazick, H.S.; Chang, D.; Mahadevappa, K.; Gibbons, F.K.; Christopher, K.B. Red cell distribution width and all-cause mortality in critically ill patients. Crit. Care Med. 2011, 39, 1913–1921. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, S.; Celi, L.A.; Lee, J.; Howell, M.D. Red cell distribution width improves the simplified acute physiology score for risk prediction in unselected critically ill patients. Crit. Care 2012, 16, R89. [Google Scholar] [CrossRef] [Green Version]
- Göksugur, S.B.; Kabakuş, N.; Bekdaş, M.; Demircioğlu, F. Neutrophil-to-lymphocyte ratio and red blood cell distribution width is a practical predictor for differentiation of febrile seizure types. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3380–3385. [Google Scholar]
- Yıldız, Y.; Cakmak, S.; Calapoğlu, T.; Hocaoglu, Z.I.; Karadeniz, E.G.; Ozkasap, S. Mean platelet volume can be used as a hospitalization criteria in pediatric patients diagnosed with acute bronchiolitis. Acta Med. Mediterr. 2018, 34, 1997–2000. [Google Scholar]
- Örnek, Z.; Kardeş, H.; Pişkin, İ.E.; Çalık, M. Comparison of Hemogram Parameters in Febrile Seizures Types. Duzce. Med. J. 2020, 22, 1–6. [Google Scholar] [CrossRef]
Simple Febrile Seizure | Complex Febrile Seizure |
---|---|
Lasts less than 15 min | Lasts more than 15 min |
Having a generalized seizure | Having a focal seizure |
No neurological findings after the seizure | Neurological findings after the seizure (Todd paralysis) |
No repetition of seizures within 24 h | Seizure recurrence in the first 24 h |
Study Group | Control Group | p-Value | |
---|---|---|---|
Gender (Girls/Mens) | 23/38 | 23/38 | 1.000 |
Age (months) | 35.36 ± 13.91 | 35.54 ± 13.87 | 0.943 |
Fever (°C) | 38.86 ± 0.52 | 38.84 ± 0.53 | 0.892 |
The time between the onset of fever and admission (hours) | 33.44 ± 9.69 | 33.34 ± 9.68 | 0.955 |
Variables | Total (n = 122) | Study Group n = 61 (50%) | Control Group n = 61 (50%) | p-Value |
---|---|---|---|---|
Vitamin D (ng/mL) | 15.4 (10.47–15.45) | 12.8 (10.6–15.8) | 19.6 (3.7–31.5) | <0.001 |
Selenium (µg/L) | 71.0 (50.75–91.25) | 51.0 (35.5–66.5) | 91.0 (75.5–106.5) | <0.001 |
Homocysteine (mmol/L) | 75.7 (64.27–87.37) | 75.7 (64.2–87.5) | 73.9 (61.2–85.3) | 0.990 |
Zinc (µg/dL) | 74.0 (68.87–84.50) | 67.6 (62.15–72.35) | 80.2 (73.70–94.05) | <0.001 |
Mg (mg/dL) | 19.9 (13.27–21.7) | 19.9 (96.5–217.0) | 19.9 (9.65–21.7) | 0.787 |
Vitamin B12 (pg/mL) | 259.0 (216.25–315.0) | 225.0 (174.0–246.5) | 315.0 (276.0–341.5) | <0.001 |
Variables | Simple Febrile n = 33 (54.1%) | Complex Febrile n = 28 (45.9%) | p-Value |
---|---|---|---|
Vitamin D (ng/mL) | 13.8 (10.95–16.3) | 11.75 (10.45–15.35) | 0.193 |
Selenium (µg/L) | 47.0 (32.5–63.0) | 53.0 (43.25–69.5) | 0.136 |
Homocysteine (mmol/L) | 77.1 (60.45–86.85) | 75.40 (64.32–88.27) | 0.885 |
Zinc (µg/dL) | 67.0 (62.2–71.95) | 70.15 (66.15–74.27) | 0.548 |
Mg (mg/dL) | 18.9 (2.4–21.7) | 20.25 (19.1–21.6) | 0.195 |
Vitamin B12 (pg/mL) | 225.0 (173.0–242.0) | 215.5 (190.5–258.5) | 0.679 |
WBC | 13.03 (7.97–16.38) | 10.69 (6.74–15.50) | 0.100 |
MCV (fL) | 79.1 (40.15–80.4) | 78.25 (74.65–80.4) | 0.931 |
RDW (%) | 15.3 (13.9–15.8) | 14.7 (12.6–15.37) | 0.147 |
PLT | 306.0 (274.0–384.0) | 373.0 (295.75–408.75) | 0.339 |
NRBC | 3.8 (2.0–5.4) | 3.9 (2.12–5.72) | 0.761 |
IG | 3.6 (1.95–9.6) | 3.85 (2.32–5.87) | 1.000 |
Variables | Total n = 122 | Study Group n = 61 (50%) | Control Group n = 61 (50%) | p-Value |
---|---|---|---|---|
WBC | 11.39 (7.44–15.86) | 11.76 (7.44–16.19) | 11.21 (7.36–14.56) | 0.464 |
MCV (fL) | 79.1 (73.1–80.4) | 79.1 (72.2–80.4) | 79.2 (751.5–805.5) | 0.421 |
RDW (%) | 13.4 (12.6–15.2) | 14.9(13.0–15.7) | 12.8 (12.3–13.7) | <0.001 |
PLT | 315.0 (285.75–395.25) | 315.0 (284.5–398.5) | 315.0 (284.5–398.0) | 0.900 |
NRBC | 4.15 (1.77–12.67) | 3.8 (2.15–5.55) | 8.6 (1.45–1.49) | 0.667 |
IG | 5.2 (14.22–2.27) | 3.8 (2.15–5.85) | 11.5 (3.0–15.5) | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çığrı, E.; İnan, F.Ç. Comparison of Serum Selenium, Homocysteine, Zinc, and Vitamin D Levels in Febrile Children with and without Febrile Seizures: A Prospective Single-Center Study. Children 2023, 10, 528. https://doi.org/10.3390/children10030528
Çığrı E, İnan FÇ. Comparison of Serum Selenium, Homocysteine, Zinc, and Vitamin D Levels in Febrile Children with and without Febrile Seizures: A Prospective Single-Center Study. Children. 2023; 10(3):528. https://doi.org/10.3390/children10030528
Chicago/Turabian StyleÇığrı, Emrah, and Funda Çatan İnan. 2023. "Comparison of Serum Selenium, Homocysteine, Zinc, and Vitamin D Levels in Febrile Children with and without Febrile Seizures: A Prospective Single-Center Study" Children 10, no. 3: 528. https://doi.org/10.3390/children10030528
APA StyleÇığrı, E., & İnan, F. Ç. (2023). Comparison of Serum Selenium, Homocysteine, Zinc, and Vitamin D Levels in Febrile Children with and without Febrile Seizures: A Prospective Single-Center Study. Children, 10(3), 528. https://doi.org/10.3390/children10030528