Vitamin D Deficiency and Maternal Diseases as Risk Factors for the Development of Macrosomia in Newborns
Abstract
:1. Introduction
2. Materials and Methods of Research
2.1. Characteristics of the Object of Study
2.2. Ethical Approval Details
2.3. Laboratory Tests
Determination of the Level of Vitamin D in Cord Blood
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, H.; Lee, N. Factors influencing macrosomia in pregnant women in a tertiary care hospital in Malaysia. J. Obstet. Gynaecol. Res. 2014, 40, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Mohammadbeigi, A.; Tabatabaee, S.H.; Mohammadsalehi, N.; Yazdani, M.A. Gestational diabetes and its association with un-pleasant outcomes of pregnancy. Pak. J. Med. Sci. 2008, 4, 566–570. [Google Scholar]
- Yang, S.; Zhou, A.; Xiong, C.; Yang, R.; Bassig, B.A.; Hu, R.; Zhang, Y.; Yao, C.; Zhang, Y.; Qiu, L.; et al. Parental Body Mass Index, Gestational Weight Gain, and Risk of Macrosomia: A Population-Based Case–Control Study in China. Paediatr. Périnat. Epidemiol. 2015, 29, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Black, M.H.; Sacks, D.A.; Xiang, A.H.; Lawrence, J.M. The relative contribution of prepregnancy overweight and obesity, gestational weight gain, and IADPSG-defined gestational diabetes mellitus to fetal overgrowth. Diabetes Care 2013, 36, 56–62. [Google Scholar] [CrossRef]
- Zonana-Nacach, A.; Baldenebro-Preciado, R.; Ruiz-Dorado, M.A. The effect of gestational weight gain on maternal and neonatal outcomes. Salud Publica Mex. 2010, 52, 220–225. [Google Scholar]
- Levy, A.; Wiznitzer, A.; Holcberg, G.; Mazor, M.; Sheiner, E. Family history of diabetes mellitus as an independent risk factor for macrosomia and cesarean delivery. J. Matern. Neonatal Med. 2010, 23, 148–152. [Google Scholar] [CrossRef]
- Ornoy, A.; Becker, M.; Weinstein-Fudim, L.; Ergaz, Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int. J. Mol. Sci. 2021, 22, 2965. [Google Scholar] [CrossRef]
- Ho, A.; Flynn, A.C.; Pasupathy, D. Nutrition in pregnancy. Obstet. Gynaecol. Reprod. Med. 2020, 26, 259–264. [Google Scholar] [CrossRef]
- Urrutia-Pereira, M.; Solé, D. Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood. Rev. Paul. Pediatrician. 2015, 33, 104–113. [Google Scholar] [CrossRef]
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharm. 2012, 3, 118–126. [Google Scholar]
- Palacios, C.; De-Regil, L.M.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation during pregnancy: Updated meta-analysis on maternal outcomes. J. Steroid Biochem. Mol. Biol. 2016, 164, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Thorne-Lyman, A.; Fawzi, W.W. Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: A systematic review and meta-analysis. Paediatr. Perinat Epidemiol. 2012, 26, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Khazai, N.; Judd, S.E.; Tangpricha, V. Calcium and vitamin D: Skeletal and extraskeletal health. Curr. Rheumatol. Rep. 2008, 10, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, M.L.; Felton, S.K.; Riek, A.E.; Bernal-Mizrachi, C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet. Gynecol. 2010, 202, 429.e1–429.e9. [Google Scholar] [CrossRef]
- Karras, S.N.; Fakhoury, H.; Muscogiuri, G.; Grant, W.B.; Ouweland, J.M.V.D.; Colao, A.M.; Kotsa, K. Maternal vitamin D levels during pregnancy and neonatal health: Evidence to date and clinical implications. Ther. Adv. Musculoskelet. Dis. 2016, 8, 124–135. [Google Scholar] [CrossRef]
- Hollis, B.; Wagner, C. New insights into the vitamin D requirements during pregnancy. Bone Res. 2017, 5, 17030. [Google Scholar] [CrossRef]
- Morales, E.; Rodriguez, A.; Valvi, D.; Iñiguez, C.; Esplugues, A.; Vioque, J.; Marina, L.S.; Jiménez, A.; Espada, M.; Dehli, C.R.; et al. Deficit of vitamin D in pregnancy and growth and overweight in the offspring. Int. J. Obes. 2015, 39, 61–68. [Google Scholar] [CrossRef]
- Fiamenghi, V.I.; de Mello, E.D. Vitamin D deficiency in children and adolescents with obesity: A meta- analysis. J. Pediatr. 2021, 97, 273–279. [Google Scholar] [CrossRef]
- Amberntsson, A.; Papadopoulou, E.; Winkvist, A.; Lissner, L.; Meltzer, H.M.; Brantsaeter, A.L.; Augustin, H. Maternal vitamin D intake and BMI during pregnancy in relation to child’s growth and weight status from birth to 8 years: A large national cohort study. BMJ Open 2021, 11, e048980. [Google Scholar] [CrossRef]
- Wen, J.; Kang, C.; Wang, J.; Cui, X.; Hong, Q.; Wang, X.; Zhu, L.; Xu, P.; Fu, Z.; You, L.; et al. Association of maternal serum 25-hydroxyvitamin D concentrations in second and third trimester with risk of macrosomia. Sci. Rep. 2018, 8, 6196. [Google Scholar] [CrossRef]
- Munteanu, C.; Schwartz, B. The relationship between nutrition and the immune system. Front. Nutr. 2022, 9, 1082500. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Hu, H.; Zhang, M.; Long, W.; Liu, J.; Jiang, J.; Yu, B. Iron deficiency in late pregnancy and its associations with birth outcomes in Chinese pregnant women: A retrospective cohort study. Nutr. Metab. 2019, 16, 30. [Google Scholar] [CrossRef] [PubMed]
- Drukker, L.; Hants, Y.; Farkash, R.; Ruchlemer, R.; Samueloff, A.; Grisaru-Granovsky, S. Iron deficiency anemia at admission for labor and delivery is associated with an increased risk for Cesarean section and adverse maternal and neonatal outcomes. Transfusion 2015, 55, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.calculator.net/sample-size-calculator.html (accessed on 24 February 2023).
- Available online: https://ibl-international.com/en/25-oh-vitamin-d-elisa (accessed on 24 February 2023).
- Trimboli, F.; Rotundo, S.; Armili, S.; Mimmi, S.; Lucia, F.; Montenegro, N.; Antico, G.C.; Cerra, A.; Gaetano, M.; Galato, F.; et al. Serum 25-hydroxyvitamin D measurement: Comparative evaluation of three automated immunoassays. Pract. Lab. Med. 2021, 26, e00251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. Med. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Olofsson, P. Umbilical cord pH, blood gases, and lactate at birth: Normal values, interpretation, and clinical utility. Am. J. Obstet. Gynecol. 2023, 228, S1222–S1240. [Google Scholar] [CrossRef]
- Mai, X.-M.; Chen, Y.; Camargo, C.A., Jr.; Langhammer, A. Cross-sectional and prospective cohort study of serum 25-hydroxyvitamin D level and obesity in adults: The HUNT study. Am. J. Epidemiol. 2012, 175, 1029–1036. [Google Scholar] [CrossRef]
- Walsh, J.M.; McGowan, C.A.; Kilbane, M.; McKenna, M.J.; McAuliffe, F.M. The relationship between maternal and fetal vitamin d, insulin resistance, and fetal growth. Reprod. Sci. 2013, 20, 536–541. [Google Scholar] [CrossRef]
- Ariyawatkul, K.; Lersbuasin, P. Prevalence of vitamin D deficiency in cord blood of newborns and the association with maternal vitamin D status. Eur. J. Pediatr. 2018, 177, 1541–1545. [Google Scholar] [CrossRef]
- Kassai, M.S.; Cafeo, F.R.; Affonso-Kaufman, F.A.; Suano-Souza, F.I.; Sarni, R.O.S. Vitamin D plasma concentrations in pregnant women and their preterm newborns. BMC Pregnancy Childbirth 2018, 18, 412. [Google Scholar] [CrossRef]
- Saraf, R.; Morton, S.M.B.; Camargo, C.A., Jr.; Grant, C.C. Global summary of maternal and newborn vitamin D status—A systematic review. Matern. Child. Nutr. 2016, 12, 647–668. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Hong, Q.; Wang, X.; Zhu, L.; Wu, T.; Xu, P.; Fu, Z.; You, L.; Wang, X.; Ji, C.; et al. The effect of maternal vitamin D deficiency during pregnancy on body fat and adipogenesis in rat offspring. Sci. Rep. 2018, 8, 365. [Google Scholar] [CrossRef]
- Wang, J.; Thingholm, L.B.; Skiecevičienė, J.; Rausch, P.; Kummen, M.; Hov, J.R.; Degenhardt, F.; Heinsen, F.-A.; Rühlemann, M.C.; Szymczak, S.; et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 2016, 48, 1396–1406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.; Zeng, Y.; Zhang, Q.; Xiao, X. The Role of Maternal Vitamin D Deficiency in Offspring Obesity: A Narrative Review. Nutrients 2023, 15, 533. [Google Scholar] [CrossRef] [PubMed]
- Miliku, K.; Vinkhuyzen, A.; Blanken, L.M.; McGrath, J.J.; Eyles, D.W.; Burne, T.H.; Hofman, A.; Tiemeier, H.; AP Steegers, E.; Gaillard, R.; et al. Maternal vitamin D concentrations during pregnancy, fetal growth patterns, and risks of adverse birth outcomes. Am. J. Clin. Nutr. 2016, 103, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Fu, L.; Hao, J.-H.; Yu, Z.; Zhu, P.; Wang, H.; Xu, Y.-Y.; Zhang, C.; Tao, F.-B.; Xu, D.-X. Maternal Vitamin D Deficiency During Pregnancy Elevates the Risks of Small for Gestational Age and Low Birth Weight Infants in Chinese Population. J. Clin. Endocrinol. Metab. 2015, 100, 1912–1919. [Google Scholar] [CrossRef]
- Hacker, A.N.; Fung, E.B.; King, J.C. Role of calcium during pregnancy: Maternal and fetal needs. Nutr. Rev. 2012, 70, 397–409. [Google Scholar] [CrossRef]
- Lewandowska, M. The Role of Maternal Weight in the Hierarchy of Macrosomia Predictors; Overall Effect of Analysis of Three Prediction Indicators. Nutrients 2021, 13, 801. [Google Scholar] [CrossRef]
- Owens, L.A.; O’Sullivan, E.P.; Kirwan, B.; Avalos, G.; Gaffney, G.; Dunne, F.; Collaborators, F.T.A.D. ATLANTIC DIP: The impact of obesity on pregnancy outcome in glucose-tolerant women. Diabetes Care 2010, 33, 577–579. [Google Scholar] [CrossRef]
- Viswanathan, M.; Siega-Riz, A.M.; Moos, M.K.; Deierlein, A.; Mumford, S.; Knaack, J.; Thieda, P.; Lux, L.J.; Lohr, K.N. Outcomes of maternal weight gain. Evid. Rep. Technol. Assess. (Full Rep.) 2008, 168, 1–223. [Google Scholar] [PubMed] [PubMed Central]
- Mathew, M.; Machado, L.; Al-Ghabshi, R.; Al-Haddabi, R. Fetal macrosomia. Risk factor and outcome. Saudi Med. J. 2005, 26, 96–100. [Google Scholar] [PubMed]
- Addo, V.N. Body mass index, weight gain during pregnancy and obstetric outcomes. Ghana Med. J. 2010, 44, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Vrijkotte, T.G.; Hrudey, E.J.; Twickler, M.B. Early Maternal Thyroid Function During Gestation Is Associated With Fetal Growth, Particularly in Male Newborns. J. Clin. Endocrinol. Metab. 2017, 102, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Zhang, Z.; Ma, L.; Zhang, B.; Dang, S.; Yan, H. Association between maternal iron supplementation and newborn birth weight: A quantile regression analysis. Ital. J. Pediatr. 2021, 47, 133. [Google Scholar] [CrossRef]
- Georgieff, M.K. The importance of iron deficiency in pregnancy on fetal, neonatal, and infant neurodevelopmental outcomes. Int. J. Gynecol. Obstet. 2023, 162 (Suppl. 2), 83–88. [Google Scholar] [CrossRef]
Rate | Main Group | Control | p |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Weight (grams) | 4361 (±301.7) | 3302 (±395.4) | 0.001 |
Length (centimeters) | 54.4 (±2.44) | 52.9 (±2.41) | 0.001 |
Head circumference (centimeters) | 36.5 (±1.10) | 35.2 (±1.59) | 0.001 |
Chest circumference (centimeters) | 36.5 (±1.98) | 34.4 (±2.34) | 0.001 |
Apgar at the end of 1 min (scores) | 7 (±1.49) | 8 (±0.99) | 0.001 |
Apgar at the end of the fifth minute (scores) | 8 (±1.49) | 9 (±1.0) | 0.001 |
Mother’s age (years) | 32.4 (±5.54) | 28.4 (±5.28) | 0.001 |
Childbirth parity (number) | 4 (±1.53) | 2 (±1.06) | 0.001 |
Gestational age (weeks) | 38.9 (±1.53) | 38.9 (±1.49) | 0.95 |
Glucose level (mmol/L) | 3.2 (±1.16) | 3.6 (±0.80) | 0.001 |
Hemoglobin (g/L) | 194 (±30.6) | 187 (±13.5) | 0.06 |
Bilirubin (μmol/L) | 27.3 (±16.4) | 21.9 (±14.2) | 0.01 |
Reticulocytes (%) | 10 (±4.40) | 9 (±3.65) | 0.114 |
BMI at the time of pregnancy (m/h2) | 27.2 (±9.66) | 22.5 (±4.26) | 0.001 |
BMI before childbirth (m/h2) | 31.1 (±9.71) | 25.5 (±4.86) | 0.001 |
Pathology | Main Group | Control | p |
---|---|---|---|
Maternal obesity: | |||
Overweight | 7 (8.1%) | 6 (3.5%) | <0.001 |
Obesity 1st degree | 11 (12.8%) | 8 (4.7%) | <0.001 |
Obesity 2 degrees | 9 (10.5%) | 4 (2.3%) | <0.001 |
Obesity 3 degrees | 4 (4.7%) | 0 (0.0%) | <0.001 |
Diabetes mellitus: | |||
T1DM | 5 (5.8%) | 0 (0.0%) | <0.001 |
T2DM | 5 (5.8%) | 1 (0.6%) | <0.001 |
Gestational diabetes | 12 (14.0%) | 5 (2.9%) | <0.001 |
Impaired glucose tolerance | 7 (8.1%) | 3 (1.7%) | <0.001 |
Maternal hypothyroidism | 23 (26.7%) | 17 (9.9%) | <0.001 |
Maternal IDA | 59 (68.6%) | 30 (17.4%) | <0.001 |
Vitamin D Rate | Average Rate | 95% CI | Median | Min | Max | Statistical Significance |
---|---|---|---|---|---|---|
Main group n = 86 | 13.2 ± 6.7 | 11.7–14.6 | 11.05 | 1.3 | 35.1 | t = 5.759 p < 0.05 |
Control group n = 172 | 21.3 ± 12.1 | 19.5–23.1 | 18.8 | 0.5 | 44.2 |
Vitamin D Level | Main Group | Control | Statistical Significance |
---|---|---|---|
Severe deficiency | 35 (40.7%) | 10 (5.8%) | ꭓ2 = 71.788, df = 3, p < 0.001 |
Deficiency | 31 (36.0%) | 72 (41.9%) | |
Insufficiency | 15 (17.4%) | 14 (8.1%) | |
Normal rate | 5 (5.8%) | 76 (44.2%) |
Variable | Adjusted OR | (95% CI) | SEE | p-Value |
---|---|---|---|---|
Diabetes mellitus type 1 | 6.673 | 1.669–26.682 | 1.218 | 0.007 |
Diabetes mellitus type 2 | 14.298 | 1.636–124.961 | 0.515 | 0.016 |
Gestational diabetes | 6.863 | 2.316–20.328 | 0.655 | <0.001 |
Maternal IDA | 10.343 | 5.665–18.886 | 0.307 | <0.001 |
BMI gain during pregnancy: | ||||
Overweight and obesity | 4.822 | 2.499–9.309 | 0.335 | <0.001 |
Maternal hypothyroidism | 4.12 | 1.994–5.516 | 0.370 | <0.001 |
Mothers’ age: | ||||
26–35 years old | 2.4 | 1.124–5.124 | 0.237 | 0.024 |
Over 36 years old | 9.1 | 3.647–22.692 | 0.507 | <0.001 |
Vitamin D deficiency in the cord blood | 4.059 | 2.207–7.463 | 0.311 | <0.001 |
Variable | Adjusted OR | (95% CI) | p-Value |
---|---|---|---|
Maternal IDA | 0.086 | 0.041–0.181 | <0.001 |
Mothers’ age: | |||
26–35 years old | 3.631 | 1.467–8.989 | 0.005 |
Over 36 years old | 19.539 | 6.19–61.682 | <0.001 |
Maternal hypothyroidism | 9.353 | 2.863–30.569 | <0.001 |
Vitamin D deficiency in the cord blood | 2.288 | 1.06–4.943 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ailbayeva, N.; Alimbayeva, A.; Yurkovskaya, O.; Faizova, R.; Tanatarov, S.; Taiorazova, G.; Abylgazinova, A.; Orekhov, A.; Jamedinova, U.; Pivina, L. Vitamin D Deficiency and Maternal Diseases as Risk Factors for the Development of Macrosomia in Newborns. Children 2024, 11, 1160. https://doi.org/10.3390/children11101160
Ailbayeva N, Alimbayeva A, Yurkovskaya O, Faizova R, Tanatarov S, Taiorazova G, Abylgazinova A, Orekhov A, Jamedinova U, Pivina L. Vitamin D Deficiency and Maternal Diseases as Risk Factors for the Development of Macrosomia in Newborns. Children. 2024; 11(10):1160. https://doi.org/10.3390/children11101160
Chicago/Turabian StyleAilbayeva, Nazym, Aliya Alimbayeva, Oxana Yurkovskaya, Raida Faizova, Sayat Tanatarov, Gulnara Taiorazova, Aizhan Abylgazinova, Andrey Orekhov, Ulzhan Jamedinova, and Lyudmila Pivina. 2024. "Vitamin D Deficiency and Maternal Diseases as Risk Factors for the Development of Macrosomia in Newborns" Children 11, no. 10: 1160. https://doi.org/10.3390/children11101160
APA StyleAilbayeva, N., Alimbayeva, A., Yurkovskaya, O., Faizova, R., Tanatarov, S., Taiorazova, G., Abylgazinova, A., Orekhov, A., Jamedinova, U., & Pivina, L. (2024). Vitamin D Deficiency and Maternal Diseases as Risk Factors for the Development of Macrosomia in Newborns. Children, 11(10), 1160. https://doi.org/10.3390/children11101160