Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates
Abstract
:1. Introduction
1.1. Epidemiology
1.2. Microbiology and Pathogenesis
1.3. Risk Factors
1.4. Clinical Presentation
2. Diagnosis
2.1. Blood Culture
2.2. Serum Biomarkers
2.2.1. Mannan/Anti-Mannan Antibody
2.2.2. 1,3-β-D-Glycan
2.3. Molecular Techniques
2.3.1. MALDI-TOF/MS and PNA-FISH
2.3.2. T2 Magnetic Resonance (T2MR) Assay
2.3.3. Polymerase Chain Reaction (PCR) Assays
2.3.4. Next Generation Sequencing (NGS)
2.4. Candida Diagnosis in Middle-Low Income Countries
2.5. Candida Auris Diagnosis
2.6. Challenges of Candida Diagnosis in Neonates
3. Treatment
3.1. Antifungal Agents
3.1.1. Polyenes
IDSA (2016) [48] | ESCMID (2012) [134] | ||
---|---|---|---|
Candida Bloodstream Infection | Candida CNS Infection | ||
Antifungal agent Agents of choice | D-Amb 1 mg/kg/day or fluconazole 12 mg/kg/day if not on fluconazole prophylaxis | D-Amb 1 mg/kg/day | D-Amb 1 mg/kg/day or L-Amb 2.5–7 mg/kg/day or fluconazole 12 mg/kg/day if not on fluconazole prophylaxis (loading dose 25 mg/kg/day can be considered) |
Alternatives | L-Amb 3–5 mg/kg/day as an alternative (caution if urinary tract involvement) | L-Amb 5 mg/kg/day as an alternative | ABLC 2.5–5 mg/ kg/day as an alternative |
Echinocandins with caution, as salvage therapy or when D-Amb or fluconazole cannot be used due to toxicity or resistance | Flucytosine, 25 mg/kg four times daily, may be added in patients who do not respond clinically to initial AmB therapy | Micafungin 4–10 mg/kg/day | |
After response to initial treatment, step down to fluconazole 12 mg/kg daily for susceptible isolates | Capsofungin 25 mg/m2/day (limited data available) | ||
Implanted devices | CVC removal is strongly recommended | It is recommended that CNS devices should be removed if possible | Removal or replacement of intravenous catheters and/or other implanted prosthetic devices should be considered |
Therapy duration | 2 weeks after blood culture sterilization and resolution of signs of candidemia | Continue therapy until all signs, symptoms, and CSF and radiological abnormalities have resolved | 2 weeks after blood culture sterilization provided that no unresolved deep infection remains |
3.1.2. Triazoles
3.1.3. Echinocandins
3.1.4. Nucleoside Analogues
3.2. Central Venous Catheters (CVC)
3.3. Candida Auris Treatment
3.4. Antifungal Stewardship Programs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weimer, K.E.D.; Smith, P.B.; Puia-Dumitrescu, M.; Aleem, S. Invasive fungal infections in neonates: A review. Pediatr. Res. 2022, 91, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Edwards, E.M.; Coggins, S.A.; Horbar, J.D.; Puopolo, K.M. Late-Onset Sepsis among Very Preterm Infants. Pediatrics 2022, 150, e2022058813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.; Ding, Y.; Wei, B.; Wang, L.; Xu, S.; Qin, P.; Wei, L.; Jiang, L. Epidemiology of Candida albicans and non-C. albicans of neonatal candidemia at a tertiary care hospital in western China. BMC Infect. Dis. 2017, 17, 329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saha, A.K.; Saha, B. Profile of neonatal candidiasis in tertiary neonatal intensive care unit: A report from a developing country. J. Neonatal Perinatal Med. 2023, 3, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.C.; Jiang, S.Y.; Li, S.J.; Han, J.Y.; Zhou, Q.; Li, M.M.; Bai, R.M.; Xia, S.W.; Yang, Z.M.; Ge, J.F.; et al. Status of fungal sepsis among preterm infants in 25 neonatal intensive care units of tertiary hospitals in China. Zhonghua Er Ke Za Zhi 2023, 61, 29–35. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.M.; de Carvalho, A.M.R.; Macêdo, D.P.C.; Jucá, M.B.; Amorim, R.J.M.; Neves, R.P. Candidemia in Brazilian neonatal intensive care units: Risk factors, epidemiology, and antifungal resistance. Braz. J. Microbiol. 2023, 54, 817–825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molla, A.; Albadrani, M. Prevalence and Species Distribution of Neonatal Candidiasis: A Systematic Review and Meta-Analysis. Diseases 2024, 12, 154. [Google Scholar] [CrossRef]
- Ting, J.Y.; Roberts, A.; Synnes, A.; Canning, R.; Bodani, J.; Monterossa, L.; Shah, P.S. Canadian Neonatal Network Investigators. Invasive Fungal Infections in Neonates in Canada: Epidemiology and Outcomes. Pediatr. Infect. Dis. J. 2018, 37, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Calley, J.L.; Warris, A. Recognition and diagnosis of invasive fungal infections in neonates. J. Infect. 2017, 74 (Suppl. S1), S108–S113. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.; O’Brien, K.; Robinson, J.L.; Davies, D.H.; Simpson, K.; Asztalos, E.; Langley, J.M.; Le Saux, N.; Sauve, R.; Synnes, A.; et al. Invasive candidiasis in low birth weight preterm infants: Risk factors, clinical course and outcome in a prospective multicenter study of cases and their matched controls. BMC Infect. Dis. 2014, 14, 327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Q.; Kelly, E.; Luu, T.M.; Ye, X.Y.; Ting, J.; Shah, P.S.; Lee, S.K. Fungal infection and neurodevelopmental outcomes at 18–30 months in preterm infants. Front. Pediatr. 2023, 11, 1145252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjamin, D.K., Jr.; Stoll, B.J.; Fanaroff, A.A.; McDonald, S.A.; Oh, W.; Higgins, R.D.; Duara, S.; Poole, K.; Laptook, A.; Goldberg, R. National Institute of Child Health and Human Development Neonatal Research Network. Neonatal candidiasis among extremely low birth weight infants: Risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 2006, 117, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Saiprom, N.; Wongsuk, T.; Oonanant, W.; Sukphopetch, P.; Chantratita, N.; Boonsilp, S. Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J. Fungi 2023, 9, 353. [Google Scholar] [CrossRef]
- Warris, A.; Pana, Z.D.; Oletto, A.; Lundin, R.; Castagnola, E.; Lehrnbecher, T.; Groll, A.H.; Roilides, E.; EUROCANDY Study Group. Etiology and Outcome of Candidemia in Neonates and Children in Europe: An 11-year Multinational Retrospective Study. Pediatr. Infect. Dis. J. 2020, 39, 114–120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sokou, R.; Palioura, A.E.; Kopanou Taliaka, P.; Konstantinidi, A.; Tsantes, A.G.; Piovani, D.; Tsante, K.A.; Gounari, E.A.; Iliodromiti, Z.; Boutsikou, T.; et al. Candida auris Infection, a Rapidly Emerging Threat in the Neonatal Intensive Care Units: A Systematic Review. J. Clin. Med. 2024, 13, 1586. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Roy, M.; Kabbani, S.; Anderson, E.J.; Farley, M.M.; Harb, S.; Harrison, L.H.; Bonner, L.; Wadu, V.L.; Marceaux, K.; et al. Neonatal and Pediatric Candidemia: Results from Population-Based Active Laboratory Surveillance in Four US Locations, 2009–2015. J. Pediatr. Infect. Dis. Soc. 2018, 7, e78–e85. [Google Scholar] [CrossRef]
- Cook, A.; Ferreras-Antolin, L.; Adhisivam, B.; Ballot, D.; Berkley, J.A.; Bernaschi, P.; Carvalheiro, C.G.; Chaikittisuk, N.; Chen, Y.; Chibabhai, V.; et al. Neonatal invasive candidiasis in low- and middle-income countries: Data from the NeoOBS study. Med. Mycol. 2023, 61, myad010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noni, M.; Stathi, A.; Vaki, I.; Velegraki, A.; Zachariadou, L.; Michos, A. Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period. J. Fungi 2019, 5, 19. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Jillwin, J.; Iyer, R.; Sharma, A.; Harish, B.N.; Roy, I.; Kindo, A.J.; et al. Characteristics, outcome and risk factors for mortality of paediatric patients with ICU-acquired candidemia in India: A multicentre prospective study. Mycoses 2020, 63, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xie, D.; He, N.; Wang, X.; Dong, W.; Lei, X. Prophylactic Use of Fluconazole in Very Premature Infants. Front. Pediatr. 2021, 9, 726769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrando, G.; Castagnola, E. Prophylaxis of Invasive Fungal Infection in Neonates: A Narrative Review for Practical Purposes. J. Fungi 2023, 9, 164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bendel, C.M. Colonization and epithelial adhesion in the pathogenesis of neonatal candidiasis. Semin. Perinatol. 2003, 27, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Reef, S.E.; Lasker, B.A.; Butcher, D.S.; McNeil, M.M.; Pruitt, R.; Keyserling, H.; Jarvis, W.R. Nonperinatal nosocomial transmission of Candida albicans in a neonatal intensive care unit: Prospective study. J. Clin. Microbiol. 1998, 36, 1255–1259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.; Wang, X.; Wei, B.; Jiang, Y.; Chen, J. Risk factors and clinical analysis of candidemia in very-low-birth-weight neonates. Am. J. Infect. Control 2016, 44, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Taïeb, A. Skin barrier in the neonate. Pediatr. Dermatol. 2018, 35 (Suppl. S1), s5–s9. [Google Scholar] [CrossRef] [PubMed]
- Michalski, C.; Kan, Β.; Lavoie, P.M. Antifungal Immunological Defenses in Newborns. Front. Immunol. 2017, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Wang, X.; Yu, Y.; Ji, H.; Dong, X.; Li, J.; Li, H.; He, H.; Li, Z.; Yang, Z.; et al. Invasive fungal infection is associated with antibiotic exposure in preterm infants: A multi-centre prospective case-control study. J. Hosp. Infect. 2023, 134, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Eisi, H.; Ibraheem, S.; Hisham, T.; Al-Harbi, A.; Saidy, K.; Ali, I.; Nour, I.; Nasef, N. Risk factors and outcomes of deep tissue Candida invasion in neonates with invasive candidiasis. Mycoses 2022, 65, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Saiman, L.; Ludington, E.; Pfaller, M.; Rangel-Frausto, S.; Wiblin, R.T.; Dawson, J.; Blumberg, H.M.; Patterson, J.E.; Rinaldi, M.; Edwards, J.E.; et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. Pediatr. Infect. Dis. J. 2000, 19, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Pera, A.; Byun, A.; Gribar, S.; Schwartz, R.; Kumar, D.; Parimi, P. Dexamethasone therapy and Candida sepsis in neonates less than 1250 grams. J. Perinatol. 2002, 22, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.; Freire, M.S.; Santana, R.N.S.; Martins-Filho, P.R.S.; Cuevas, L.E.; Gurgel, R.Q. Association between histamine-2 receptor antagonists and adverse outcomes in neonates: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Willems, H.M.E.; Stultz, J.S.; Coltrane, M.E.; Fortwendel, J.P.; Peters, B.M. Disparate Candida albicans Biofilm Formation in Clinical Lipid Emulsions due to Capric Acid-Mediated Inhibition. Antimicrob. Agents Chemother. 2019, 63, e01394-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menezes, R.P.; Ferreira, I.C.D.S.; Lopes, M.S.M.; de Jesus, T.A.; de Araújo, L.B.; Santos Pedroso, R.D.; Röder, D.V.D.B. Epidemiological indicators and predictors of lethality associated with fungal infections in a NICU: A historical series. J. Pediatr. 2024, 100, 267–276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feja, K.N.; Wu, F.; Roberts, K.; Loughrey, M.; Nesin, M.; Larson, E.; Della-Latta, P.; Haas, J.; Cimiotti, J.; Saiman, L. Risk factors for candidemia in critically ill infants: A matched case-control study. J. Pediatr. 2005, 147, 156–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelly, M.S.; Benjamin, D.K., Jr.; Smith, P.B. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin. Perinatol. 2015, 42, 105–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manzoni, P.; Farina, D.; Galletto, P.; Leonessa, M.; Priolo, C.; Arisio, R.; Gomirato, G. Type and number of sites colonized by fungi and risk of progression to invasive fungal infection in preterm neonates in neonatal intensive care unit. J. Perinat. Med. 2007, 35, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, R.; Scarrow, E.; Hornik, C.; Greenberg, R.G. Neonatal invasive candidiasis: Updates on clinical management and prevention. Lancet Child. Adolesc. Health 2022, 6, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Qiu, M.; Niu, X.; Wang, S.; Wang, F.; Cao, J.; Tang, S.; Cheng, L.; Mei, Y.; Liang, H.; et al. End-organ damage from neonatal invasive fungal infection: A 14-year retrospective study from a tertiary center in China. BMC Infect. Dis. 2024, 24, 521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjamin, D.K.; Poole, C.; Steinbach, W.J.; Rowen, J.L.; Walsh, T.J. Neonatal candidemia and end-organ damage: A critical appraisal of the literature using meta-analytic techniques. Pediatrics 2003, 112, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Noyola, D.E.; Fernandez, M.; Moylett, E.H.; Baker, C.J. Ophthalmologic, visceral, and cardiac involvement in neonates with candidemia. Clin. Infect. Dis. 2001, 32, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Karlowicz, M.G. Candidal renal and urinary tract infection in neonates. Semin. Perinatol. 2003, 27, 393–400. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Pana, Z.D.; Lehrnbecher, T.; Steinbach, W.J.; Warris, A. Recognition and Clinical Presentation of Invasive Fungal Disease in Neonates and Children. J. Pediatric Infect. Dis. Soc. 2017, 6, S12–S21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pana, Z.D.; Dotis, J.; Iosifidis, E.; Roilides, E. Fungal Endocarditis in Neonates: A Review of Seventy-one Cases (1971–2013). Pediatr. Infect. Dis. J. 2015, 34, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M. Candida Infections in Neonates: Epidemiology, Clinical Manifestations, and Diagnosis. Available online: www.uptodate.com (accessed on 5 July 2024).
- Robertson, N.J.; Kuna, J.; Cox, P.M.; Lakhoo, K. Spontaneous intestinal perforation and Candida peritonitis presenting as extensive necrotizing enterocolitis. Acta Paediatr. 2003, 92, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef]
- Keighley, C.; Cooley, L.; Morris, A.J.; Ritchie, D.; Clark, J.E.; Boan, P.; Worth, L.J. Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive candidiasis in haematology, oncology and intensive care settings, 2021. Intern. Med. J. 2021, 51, 89–117. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.D.; Samsa, G.P.; Schell, W.A.; Reller, L.B.; Perfect, J.R.; Alexander, B.D. Quantitation of Candida CFU in initial positive blood cultures. J. Clin. Microbiol. 2011, 49, 2879–2883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Komorowski, A.S.; Aftanas, P.; Porter, V.; Katz, K.; Kozak, R.A.; Li, X.X. Verification, Analytical Sensitivity, Cost-effectiveness, and Comparison of 4 Candida auris Screening Methods. Open Forum Infect. Dis. 2024, 11, ofae017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, T.S.; Kaakeh, R.; Nagel, J.L.; Newton, D.W.; Stevenson, J.G. Cost Analysis of Implementing Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Plus Real-Time Antimicrobial Stewardship Intervention for Bloodstream Infections. J. Clin. Microbiol. 2016, 55, 60–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ombelet, S.; Ronat, J.B.; Walsh, T.; Yansouni, C.P.; Cox, J.; Vlieghe, E.; Martiny, D.; Semret, M.; Vandenberg, O.; Jacobs, J.; et al. Clinical bacteriology in low-resource settings: Today’s solutions. Lancet Infect. Dis. 2018, 18, e248–e258. [Google Scholar] [CrossRef] [PubMed]
- Bourika, V.; Siahanidou, T.; Theodoridou, K.; Tsakris, A.; Vrioni, G.; Michos, A. Evaluation of the mannan antigen assay in neonates with or without Candida albicans colonization. Med. Mycol. 2024, 62, 138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveri, S.; Trovato, L.; Betta, P.; Romeo, M.G.; Nicoletti, G. Experience with the Platelia Candida ELISA for the diagnosis of invasive candidosis in neonatal patients. Clin. Microbiol. Infect. 2008, 14, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Montagna, M.T.; Lovero, G.; De Giglio, O.; Iatta, R.; Caggiano, G.; Montagna, O.; Laforgia, N.; AURORA Project Group. Invasive fungal infections in neonatal intensive care units of Southern Italy: A multicentre regional active surveillance (AURORA project). J. Prev. Med. Hyg. 2010, 51, 125–130. [Google Scholar] [PubMed]
- Cohen, J.F.; Ouziel, A.; Matczak, S.; Brice, J.; Spijker, R.; Lortholary, O.; Bougnoux, M.E.; Toubiana, J. Diagnostic accuracy of serum (1,3)-beta-d-glucan for neonatal invasive candidiasis: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wu, Y.; Lai, W.; Lu, W.; Mu, X. The diagnostic value of (1,3)-β-D-glucan alone or combined with traditional inflammatory markers in neonatal invasive candidiasis. BMC Infect. Dis. 2019, 19, 716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreras-Antolin, L.; Borman, A.; Diederichs, A.; Warris, A.; Lehrnbecher, T. Serum Beta-D-Glucan in the Diagnosis of Invasive Fungal Disease in Neonates, Children and Adolescents: A Critical Analysis of Current Data. J. Fungi 2022, 8, 1262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cliquennois, P.; Scherdel, P.; Lavergne, R.A.; Flamant, C.; Morio, F.; Cohen, J.F.; Launay, E.; Gras Le Guen, C. Serum (1 → 3)-β-D-glucan could be useful to rule out invasive candidiasis in neonates with an adapted cut-off. Acta Paediatr. 2021, 110, 79–84. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health and Care Excellence (NICE). Available online: https://www.nice.org.uk/advice/mib118 (accessed on 28 September 2024).
- Mylonakis, E.; Clancy, C.J.; Ostrosky-Zeichner, L.; Garey, K.W.; Alangaden, G.J.; Vazquez, J.A.; Groeger, J.S.; Judson, M.A.; Vinagre, Y.M.; Heard, S.O.; et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: A clinical trial. Clin. Infect. Dis. 2015, 60, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monday, L.M.; Parraga Acosta, T.; Alangaden, G. T2Candida for the Diagnosis and Management of Invasive Candida Infections. J. Fungi 2021, 7, 178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bilir, S.P.; Ferrufino, C.P.; Pfaller, M.A.; Munakata, J. The economic impact of rapid Candida species identification by T2Candida among high-risk patients. Future Microbiol. 2015, 10, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Hamula, C.L.; Hughes, K.; Fisher, B.T.; Zaoutis, T.E.; Singh, I.R.; Velegraki, A. T2Candida Provides Rapid and Accurate Species Identification in Pediatric Cases of Candidemia. Am. J. Clin. Pathol. 2016, 145, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Garnham, K.; Halliday, C.L.; Kok, J.; Jayawardena, M.; Ahuja, V.; Green, W.; Chen, S.C. Knowledge at what cost? An audit of the utility of panfungal PCR performed on bronchoalveolar lavage fluid specimens at a tertiary mycology laboratory. Pathology. 2020, 52, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.T.; Villar, S.; Bouza, E.; Bergon-Sendin, E.; Perez Rivilla, A.; Collados, C.T.; Andreu, M.; Reyes, C.S.; Campos-Herrero, M.I.; de Heredia, J.L.; et al. Performance of a Quantitative PCR-Based Assay and Beta-d-Glucan Detection for Diagnosis of Invasive Candidiasis in Very-Low-Birth-Weight Preterm Neonatal Patients (CANDINEO Study). J. Clin. Microbiol. 2017, 55, 2752–2764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, B.; Yang, Q. Updates in Laboratory Identification of Invasive Fungal Infection in Neonates. Microorganisms 2023, 11, 1001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agudelo-Pérez, S.; Fernández-Sarmiento, J.; Rivera León, D.; Peláez, R.G. Metagenomics by next-generation sequencing (mNGS) in the etiological characterization of neonatal and pediatric sepsis: A systematic review. Front. Pediatr. 2023, 11, 1011723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Overbeek, R.; Leitl, C.J.; Stoll, S.E.; Wetsch, W.A.; Kammerer, T.; Mathes, A.; Böttiger, B.W.; Seifert, H.; Hart, D.; Dusse, F. The Value of Next-Generation Sequencing in Diagnosis and Therapy of Critically Ill Patients with Suspected Bloodstream Infections: A Retrospective Cohort Study. J. Clin. Med. 2024, 13, 306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsang, C.C.; Teng, J.L.L.; Lau, S.K.P.; Woo, P.C.Y. Rapid Genomic Diagnosis of Fungal Infections in the Age of Next-Generation Sequencing. J. Fungi 2021, 7, 636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daniel, K.; Greenberg, R.G.; Boutzoukas, A.; Katakam, L. Updated Perspectives on the Diagnosis and Management of Neonatal Invasive Candidiasis. Res. Rep. Neonatol. 2023, 13, 45–63. [Google Scholar] [CrossRef]
- Lancaster, D.P.; Friedman, D.F.; Chiotos, K.; Sullivan, K.V. Blood Volume Required for Detection of Low Levels and Ultralow Levels of Organisms Responsible for Neonatal Bacteremia by Use of Bactec Peds Plus/F, Plus Aerobic/F Medium, and the BD Bactec FX System: An In Vitro Study. J. Clin. Microbiol. 2015, 53, 3609–3613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuenca-Estrella, M.; Verweij, P.E.; Arendrup, M.C.; Arikan-Akdagli, S.; Bille, J.; Donnelly, J.P.; Jensen, H.E.; Lass-Flörl, C.; Richardson, M.D.; Akova, M.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Diagnostic procedures. Clin. Microbiol. Infect. 2012, 18, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.; Catel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harewood, F.C.; Curtis, N.; Daley, A.J.; Bryant, P.A.; Gwee, A.; Connell, T.G. Adequate or Inadequate? The Volume of Blood Submitted for Blood Culture at a Tertiary Children’s Hospital. Clin. Pediatr. 2018, 57, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S. Ideal blood inoculant volume for neonatal sepsis evaluation: An alternative approach. Pediatr. Res. 2021, 90, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Finding the “missing 50%” of invasive candidiasis: How nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Schelonka, R.L.; Moser, S.A. Time to positive culture results in neonatal Candida septicemia. J. Pediatr. 2003, 142, 564–565. [Google Scholar] [CrossRef] [PubMed]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choe, K.W.; Lim, Y.K.; Lee, M.K. Comparison of new and old BacT/ALERT aerobic bottles for detection of Candida species. PLoS ONE 2023, 18, e0288674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clancy, C.J.; Nguyen, M.H. Diagnosing Invasive Candidiasis. J. Clin. Microbiol. 2018, 56, e01909-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlström, M.G.; Antsupova, V.S.; Pedersen, M.; Johansen, H.K.; Hansen, D.S.; Knudsen, I.J.D. A Dedicated Mycosis Flask Increases the Likelihood of Identifying Candidemia Sepsis. J. Fungi 2023, 9, 441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, K.; Luo, Y.; Zhang, W.; Xie, S.; Yan, P.; Liu, Y.; Li, Y.; Ma, X.; Xiao, K.; Fu, H.; et al. Diagnostic value of Candida mannan antigen and anti-mannan IgG and IgM antibodies for Candida infection. Mycoses 2020, 63, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Huppler, A.R.; Fisher, B.T.; Lehrnbecher, T.; Walsh, T.J.; Steinbach, W.J. Role of Molecular Biomarkers in the Diagnosis of Invasive Fungal Diseases in Children. J. Pediatric Infect. Dis. Soc. 2017, 6, S32–S44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cornu, M.; Goudjil, S.; Kongolo, G.; Leke, A.; Poulain, D.; Chouaki, T.; Sendid, B. Evaluation of the (1,3)-beta-D-glucan assay for the diagnosis of neonatal invasive yeast infections. Med. Mycol. 2018, 56, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Shabaan, A.E.; Elbaz, L.M.; El-Emshaty, W.M.; Shouman, B. Role of serum (1,3)-β-d-glucan assay in early diagnosis of invasive fungal infections in a neonatal intensive care unit. J. Pediatr. 2018, 94, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, F.; Zhu, X.; Shen, L.; Zhang, S.X. Evaluation of a Novel Plasma (1,3)-β-d-Glucan Detection Assay for Diagnosis of Candidemia in Pediatric Patients. J. Clin. Microbiol. 2015, 53, 3017–3020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eades, C.P.; Bakri, A.R.B.A.; Lau, J.C.Y.; Moore, C.B.; Novak-Frazer, L.; Richardson, M.D.; Rautemaa-Richardson, R. Comparison of β-1-3-D-Glucan and Candida Mannan Biomarker Assays with Serological Tests for the Diagnosis of Candidemia. J. Fungi 2023, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Camp, I.; Spettel, K.; Willinger, B. Molecular Methods for the Diagnosis of Invasive Candidiasis. J. Fungi 2020, 6, 101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkow, E.L.; Lockhart, S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Won, E.J.; Choi, M.J.; Kim, M.N.; Yong, D.; Lee, W.G.; Uh, Y.; Kim, T.S.; Byeon, S.A.; Lee, S.Y.; Kim, S.H.; et al. Fluconazole-Resistant Candida glabrata Bloodstream Isolates, South Korea, 2008–2018. Emerg. Infect. Dis. 2021, 3, 779–788. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daneshnia, F.; de Almeida Júnior, J.N.; Ilkit, M.; Lombardi, L.; Perry, A.M.; Gao, M.; Nobile, C.J.; Egger, M.; Perlin, D.S.; Zhai, B.; et al. Worldwide emergence of fluconazole-resistant Candida parapsilosis: Current framework and future research roadmap. Lancet Microbe 2023, 6, e470–e480. [Google Scholar] [CrossRef]
- Phoompoung, P.; Chayakulkeeree, M. Recent Progress in the Diagnosis of Pathogenic Candida Species in Blood Culture. Mycopathologia 2016, 181, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Yaman, G.; Akyar, I.; Can, S. Evaluation of the MALDI TOF-MS method for identification of Candida strains isolated from blood cultures. Diagn. Microbiol. Infect. Dis. 2012, 73, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, M.D.; Lewis, R.E.; Dodds Ashley, E.S.; Ostrosky-Zeichner, L.; Zaoutis, T.; Thompson, G.R.; Andes, D.R.; Walsh, T.J.; Pappas, P.G.; Cornely, O.A.; et al. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J. Infect. Dis. 2020, 222, S175–S198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, D.L.; Chen, X.; Zhu, C.G.; Li, Z.W.; Xia, Y.; Guo, X.G. Pooled analysis of T2 Candida for rapid diagnosis of candidiasis. BMC Infect. Dis. 2019, 19, 798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mylonakis, E.; Zacharioudakis, I.M.; Clancy, C.J.; Nguyen, M.H.; Pappas, P.G. Efficacy of T2 Magnetic Resonance Assay in Monitoring Candidemia after Initiation of Antifungal Therapy: The Serial Therapeutic and Antifungal Monitoring Protocol (STAMP) Trial. J. Clin. Microbiol. 2018, 56, e01756-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kidd, S.E.; Chen, S.C.; Meyer, W.; Halliday, C.L. A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Front. Microbiol. 2020, 10, 2903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lorenz, M.G.; Mühl, H.; Disqué, C. Bacterial and fungal DNA extraction from blood samples: Manual protocols. Methods Mol. Biol. 2015, 1237, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Codreanu, S.I.; Ciurea, C.N. Candida spp. DNA Extraction in the Age of Molecular Diagnosis. Microorganisms 2023, 11, 818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, D.H.; Jee, H.; Moon, K.C.; Lim, C.S.; Jang, W.S. Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia. Pathogens 2022, 11, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ivagnes, V.; Menchinelli, G.; Liotti, F.M.; De Carolis, E.; Torelli, R.; De Lorenzis, D.; Recine, C.; Sanguinetti, M.; D’Inzeo, T.; Posteraro, B. Chip-Based Molecular Evaluation of a DNA Extraction Protocol for Candida Species from Positive Blood Cultures. Microorganisms 2023, 12, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Czurda, S.; Smelik, S.; Preuner-Stix, S.; Nogueira, F.; Lion, T. Occurrence of Fungal DNA Contamination in PCR Reagents: Approaches to Control and Decontamination. J. Clin. Microbiol. 2016, 54, 148–152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Czurda, S.; Lion, T. Prerequisites for Control of Contamination in Fungal Diagnosis. Methods Mol. Biol. 2017, 1508, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.G.; Lustig, M.; Linow, M. Fungal-Grade Reagents and Materials for Molecular Analysis. Methods Mol. Biol. 2017, 1508, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Champlot, S.; Berthelot, C.; Pruvost, M.; Bennett, E.A.; Grange, T.; Geigl, E.M. An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE 2010, 5, e13042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taira, C.L.; Okay, T.S.; Delgado, A.F.; Ceccon, M.E.; de Almeida, M.T.; Del Negro, G.M. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients. BMC Infect. Dis. 2014, 14, 406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avni, T.; Leibovici, L.; Paul, M. PCR diagnosis of invasive candidiasis: Systematic review and meta-analysis. J. Clin. Microbiol. 2011, 49, 665–670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet Digital PCR of Viral DNA/RNA, Current Progress, Challenges, and Future Perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Lin, B.C.; Huang, Z.F.; Yang, C.Z.; Huang, W.M. Clinical Value of Droplet Digital PCR in Rapid Diagnosis of Invasive Fungal Infection in Neonates. Zhongguo Dang Dai Er Ke Za Zhi 2019, 21, 45–51. [Google Scholar]
- Yang, Q.; He, B.; Chen, C.; Wang, H.; Li, W.; Xue, X.; Qiu, T.; Hao, X.; Lv, F.; Wang, S. A Rapid, Visible, and Highly Sensitive Method for Recognizing and Distinguishing Invasive Fungal Infections via CCP-FRET Technology. ACS Infect. Dis. 2021, 7, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, D.; Xia, H.; Wang, J.; Yang, H.; Xu, L.; Huang, K.; Fang, J. Metagenomic next-generation sequencing for detection of pathogens in children with hematological diseases complicated with infection. Mol. Cell Probes 2023, 67, 101889. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Wickes, B.L.; Ilkit, M.; Pincus, D.H.; Daneshnia, F.; Pan, W.; Fang, W.; Boekhout, T. Identification of Mycoses in Developing Countries. J. Fungi 2019, 5, 90. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, H.; Chakrabarti, A. Strategies to Reduce Mortality in Adult and Neonatal Candidemia in Developing Countries. J. Fungi 2017, 3, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ragheb, S.M.; Jimenez, L. Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries. PDA J. Pharm. Sci. Technol. 2014, 68, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Chandramati, J.; Sadanandan, L.; Kumar, A.; Ponthenkandath, S. Neonatal Candida auris infection: Management and prevention strategies—A single centre experience. J. Paediatr. Child. Health 2020, 56, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Keighley, C.; Garnham, K.; Harch, S.A.J.; Robertson, M.; Chaw, K.; Teng, J.C.; Chen, S.C. Candida auris: Diagnostic Challenges and Emerging Opportunities for the Clinical Microbiology Laboratory. Curr. Fungal Infect. Rep. 2021, 15, 116–126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Delavy, M.; Dos Santos, A.R.; Heiman, C.M.; Coste, A.T. Investigating Antifungal Susceptibility in Candida Species with MALDI-TOF MS-Based Assays. Front. Cell Infect. Microbiol. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scott, B.L.; Hornik, C.D.; Zimmerman, K. Pharmacokinetic, efficacy, and safety considerations for the use of antifungal drugs in the neonatal population. Expert Opin. Drug Metab. Toxicol. 2020, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Tezer, H.; Canpolat, F.E.; Dilmen, U. Invasive fungal infections during the neonatal period: Diagnosis, treatment and prophylaxis. Expert. Opin. Pharmacother. 2012, 13, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Bersani, I.; Piersigilli, F.; Goffredo, B.M.; Santisi, A.; Cairoli, S.; Ronchetti, M.P.; Auriti, C. Antifungal Drugs for Invasive Candida Infections (ICI) in Neonates: Future Perspectives. Front. Pediatr. 2019, 7, 375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faustino, C.; Pinheiro, L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akinosoglou, K.; Rigopoulos, E.A.; Papageorgiou, D.; Schinas, G.; Polyzou, E.; Dimopoulou, E.; Gogos, C.; Dimopoulos, G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J. Fungi 2024, 10, 278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Downes, K.J.; Fisher, B.T.; Zane, N.R. Administration and Dosing of Systemic Antifungal Agents in Pediatric Patients. Paediatr. Drugs 2020, 22, 165–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Le, J.; Adler-Shohet, F.C.; Nguyen, C.; Lieberman, J.M. Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr. Infect. Dis. J. 2009, 28, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Cetin, H.; Yalaz, M.; Akisu, M.; Hilmioglu, S.; Metin, D.; Kultursay, N. The efficacy of two different lipid-based amphotericin B in neonatal Candida septicemia. Pediatr. Int. 2005, 47, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Ambreen, G.; Rehman, A.; Hussain, K.; Sohail, M.; Javed, S.; Shamim, S.; Ali, U.; Ahmad, K.; Rizvi, A. Neonatal fluid and electrolytes profile effect on amphotericin B associated nephrotoxicity in neonatal tertiary care unit of Karachi-Pakistan. Expert Opin. Drug Saf. 2020, 19, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Andrew, E.C.; Curtis, N.; Coghlan, B.; Cranswick, N.; Gwee, A. Adverse effects of amphotericin B in children; a retrospective comparison of conventional and liposomal formulations. Br. J. Clin. Pharmacol. 2018, 4, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groll, A.H.; Giri, N.; Petraitis, V.; Petraitiene, R.; Candelario, M.; Bacher, J.S.; Piscitelli, S.C.; Walsh, T.J. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J. Infect. Dis. 2000, 182, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbiol. Infect. 2012, 18 (Suppl. S7), 38–52. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.D.; Bondi, D.S.; Greene, N.M.; Cober, M.P.; John, B. Review of Fluconazole Treatment and Prophylaxis for Invasive Candidiasis in Neonates. J. Pediatr. Pharmacol. Ther. 2021, 26, 115–122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wenzl, T.G.; Schefels, J.; Hörnchen, H.; Skopnik, H. Pharmacokinetics of oral fluconazole in premature infants. Eur. J. Pediatr. 1998, 157, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Autmizguine, J.; Guptill, J.T.; Cohen-Wolkowiez, M.; Benjamin, D.K., Jr.; Capparelli, E.V. Pharmacokinetics and pharmacodynamics of antifungals in children: Clinical implications. Drugs 2014, 74, 891–909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreras-Antolín, L.; Sharland, M.; Warris, A. Management of Invasive Fungal Disease in Neonates and Children. Pediatr. Infect. Dis. J. 2019, 38, S2–S6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Driessen, M.; Ellis, J.B.; Cooper, P.A.; Wainer, S.; Muwazi, F.; Hahn, D.; Gous, H.; De Villiers, F.P. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: A prospective randomized trial. Pediatr. Infect. Dis. J. 1996, 15, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Ascher, S.B.; Smith, P.B.; Watt, K.; Benjamin, D.K.; Cohen-Wolkowiez, M.; Clark, R.H.; Benjamin, D.K., Jr.; Moran, C. Antifungal therapy and outcomes in infants with invasive Candida infections. Pediatr. Infect. Dis. J. 2012, 31, 439–443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mondal, R.K.; Singhi, S.C.; Chakrabarti, A.; Jayashree, M. Randomized comparison between fluconazole and itraconazole for the treatment of candidemia in a pediatric intensive care unit: A preliminary study. Pediatr. Crit. Care Med. 2004, 5, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, K.Y.; Feng, X.W.; Ran, X.; Lama, J.; Ran, Y.P. Efficacy and safety of itraconazole use in infants. World J. Pediatr. 2016, 12, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.; Long, L.; Herrada, J.; Aram, J.; McCormick, T.S.; Ghannoum, M.A. Efficacy of Voriconazole, Isavuconazole, Fluconazole, and Anidulafungin in the Treatment of Emerging Candida auris Using an Immunocompromised Murine Model of Disseminated Candidiasis. Antimicrob. Agents Chemother. 2021, 65, e0054921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watt, K.; Manzoni, P.; Cohen-Wolkowiez, M.; Rizzollo, S.; Boano, E.; Jacqz-Aigrain, E.; Benjamin, D.K. Triazole use in the nursery: Fluconazole, voriconazole, posaconazole, and ravuconazole. Curr. Drug Metab. 2013, 14, 193–202. [Google Scholar] [PubMed] [PubMed Central]
- Tsekoura, M.; Ioannidou, M.; Pana, Z.D.; Haidich, A.B.; Antachopoulos, C.; Iosifidis, E.; Kolios, G.; Roilides, E. Efficacy and Safety of Echinocandins for the Treatment of Invasive Candidiasis in Children: A Meta-analysis. Pediatr. Infect. Dis. J. 2019, 38, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Petraitiene, R.; Petraitis, V.; Zaw, M.H.; Hussain, K.; Ricart Arbona, R.J.; Roilides, E.; Walsh, T.J. Combination of Systemic and Lock-Therapies with Micafungin Eradicate Catheter-Based Biofilms and Infections Caused by Candida albicans and Candida parapsilosis in Neutropenic Rabbit Models. J. Fungi 2024, 10, 293. [Google Scholar] [CrossRef]
- Benjamin, D.K., Jr.; Kaufman, D.A.; Hope, W.W.; Smith, P.B.; Arrieta, A.; Manzoni, P.; Kovanda, L.L.; Lademacher, C.; Isaacson, B.; Jednachowski, D.; et al. A Phase 3 Study of Micafungin Versus Amphotericin B Deoxycholate in Infants with Invasive Candidiasis. Pediatr. Infect. Dis. J. 2018, 37, 992–998. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.; Berezin, E.; Leverger, G.; Freire, A.; van der Vyver, A.; Chotpitayasunondh, T.; Konja, J.; Diekmann-Berndt, H.; Koblinger, S.; Groll, A.H.; et al. Micafungin Invasive Candidiasis Study Group. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: Substudy of a randomized double-blind trial. Pediatr. Infect. Dis. J. 2008, 27, 820–826. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/mycamine-epar-product-information_en.pdf (accessed on 5 August 2024).
- Auriti, C.; Falcone, M.; Ronchetti, M.P.; Goffredo, B.M.; Cairoli, S.; Crisafulli, R.; Piersigilli, F.; Corsetti, T.; Dotta, A.; Pai, M.P. High-Dose Micafungin for Preterm Neonates and Infants with Invasive and Central Nervous System Candidiasis. Antimicrob. Agents Chemother. 2016, 60, 7333–7339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parramon-Teixido, C.J.; Garcia Esquerda, C.; Frick, M.A.; Tripodi, C.; Gomez-Ganda, L.; Ruiz-Campillo, C.W.; Cabañas-Poy, M.J. Case Report: Micafungin for treating Candida glabrata urinary infection: A clinical case in a premature neonate. Front. Pediatr. 2024, 17, 1397456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grau, S.; Luque, S.; Echeverría-Esnal, D.; Sorlí, L.; Campillo, N.; Montero, M.; Álvarez Lerma, F.; Plasencia, V.; Horcajada, J.P. Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int. J. Antimicrob. Agents. 2016, 48, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.S.; Liu, Y.; Cai, X.; Zhan, L.; Hu, K. Association of different Candida species with catheter-related candidemia, and the potential antifungal treatments against their adhesion properties and biofilm-forming capabilities. J. Clin. Lab. Anal. 2021, 35, e23738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seibel, N.L.; Schwartz, C.; Arrieta, A.; Flynn, P.; Shad, A.; Albano, E.; Keirns, J.; Lau, W.M.; Facklam, D.P.; Buell, D.N.; et al. Safety, tolerability, and pharmacokinetics of Micafungin (FK463) in febrile neutropenic pediatric patients. Antimicrob. Agents Chemother. 2005, 49, 3317–3324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manzoni, P.; Wu, C.; Tweddle, L.; Roilides, E. Micafungin in premature and non-premature infants: A systematic review of 9 clinical trials. Pediatr. Infect. Dis. J. 2014, 33, e291–e298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Natarajan, G.; Lulic-Botica, M.; Rongkavilit, C.; Pappas, A.; Bedard, M. Experience with caspofungin in the treatment of persistent fungemia in neonates. J. Perinatol. 2005, 25, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Llorens, X.; Macias, M.; Maiya, P.; Pineros, J.; Jafri, H.S.; Chatterjee, A.; Ruiz, G.; Raghavan, J.; Bradshaw, S.K.; Kartsonis, N.A.; et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob. Agents Chemother. 2009, 53, 869–875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.; Nakwa, F.L.; Araujo Motta, F.; Liu, H.; Dorr, M.B.; Anderson, L.J.; Kartsonis, N. A randomized, double-blind trial investigating the efficacy of caspofungin versus amphotericin B deoxycholate in the treatment of invasive candidiasis in neonates and infants younger than 3 months of age. J. Antimicrob. Chemother. 2020, 75, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Sobel, J.D. Anidulafungin: A novel echinocandin. Clin. Infect. Dis. 2006, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/ecalta-epar-product-information_en.pdf (accessed on 8 August 2024).
- Roilides, E.; Carlesse, F.; Tawadrous, M.; Leister-Tebbe, H.; Conte, U.; Raber, S.; Swanson, R.; Yan, J.L.; Aram, J.A.; Queiroz-Telles, F.; et al. Safety, Efficacy and Pharmacokinetics of Anidulafungin in Patients 1 Month to <2 Years of Age with Invasive Candidiasis, Including Candidemia. Pediatr. Infect. Dis. J. 2020, 39, 305–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sigera, L.S.M.; Denning, D.W. Flucytosine and its clinical usage. Ther. Adv. Infect. Dis. 2023, 10, 20499361231161387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malinovská, Z.; Čonková, E.; Váczi, P. Biofilm Formation in Medically Important Candida Species. J. Fungi. 2023, 9, 955. [Google Scholar] [CrossRef]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018, 16, 19–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosmeri, C.; Giapros, V.; Serbis, A.; Balomenou, F.; Baltogianni, M. Antibiofilm Strategies in Neonatal and Pediatric Infections. Antibiotics 2024, 13, 509. [Google Scholar] [CrossRef]
- Wijaya, M.; Halleyantoro, R.; Kalumpiu, J.F. Biofilm: The invisible culprit in catheter-induced candidemia. AIMS Microbiol. 2023, 9, 467–485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.-N.; Hsu, J.-F.; Chu, S.-M.; Lai, M.-Y.; Lin, C.; Huang, H.-R.; Yang, P.-H.; Chiang, M.-C.; Tsai, M.-H. Clinical and Microbiological Characteristics of Neonates with Candidemia and Impacts of Therapeutic Strategies on the Outcomes. J. Fungi 2022, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, P.; Mostert, M.; Castagnola, E. Update on the management of Candida infections in preterm neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F454–F459. [Google Scholar] [CrossRef] [PubMed]
- Imbert, C.; Rammaert, B. What Could Be the Role of Antifungal Lock-Solutions? From Bench to Bedside. Pathogens 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovács, R.; Majoros, L. Antifungal lock therapy: An eternal promise or an effective alternative therapeutic approach? Lett. Appl. Microbiol. 2022, 74, 851–862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bandara, N.; Samaranayake, L. Emerging and future strategies in the management of recalcitrant Candida auris. Med. Mycol. 2022, 60, myac008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lone, S.A.; Ahmad, A. Candida auris—The growing menace to global health. Mycoses 2019, 62, 620–637. [Google Scholar] [CrossRef] [PubMed]
- Center for Diseases Control and Prevention (CDC). Available online: https://www.cdc.gov/candida-auris/hcp/clinical-care/index.html (accessed on 22 September 2024).
- Kourti, M.; Chorafa, E.; Roilides, E.; Iosifidis, E. Antifungal Stewardship Programs in Children: Challenges and Opportunities. Pediatr. Infect. Dis. J. 2023, 42, e246–e248. [Google Scholar] [CrossRef] [PubMed]
- Lestner, J.M.; Versporten, A.; Doerholt, K.; Warris, A.; Roilides, E.; Sharland, M.; Bielicki, J.; Goossens, H.; ARPEC Project Group. Systemic antifungal prescribing in neonates and children: Outcomes from the Antibiotic Resistance and Prescribing in European Children (ARPEC) Study. Antimicrob. Agents Chemother. 2015, 59, 782–789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreras-Antolín, L.; Irwin, A.; Atra, A.; Dermirjian, A.; Drysdale, S.B.; Emonts, M.; McMaster, P.; Paulus, S.; Patel, S.; Kinsey, S.; et al. Neonatal Antifungal Consumption Is Dominated by Prophylactic Use; Outcomes from The Pediatric Antifungal Stewardship: Optimizing Antifungal Prescription Study. Pediatr. Infect. Dis. J. 2019, 38, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
Advantages | Disadvantages | Cost | |
---|---|---|---|
Blood culture [49,50,51,52,53,54] | Antifungal susceptibility testing Sensitivity threshold up to <1 cfu/mL, depending on the blood volume | Sensitivity ~50% Challenging to obtain optimal blood volumes in neonates Slow turnaround time (1–3 days) | Low cost (estimated ~$10–30 per test), but highly variable depending on the culture system used |
Mannan/anti-mannan antibody [55,56,57] | Early positivity High sensitivity and positivity (94.4%, 94.2%, respectively) High NPV | Low sensitivity for C.parapsilosis, C.krusei infections Fast elimination and repeat testing may be needed | Affordable test, specific cost varies depending on test used (estimated ~$20–30 per test) |
1,3-β-D glucan [58,59,60,61,62] | Minimal amount of blood required (<100 μL) High sensitivity (>80%) High NPV Useful in treatment monitoring | The optimal positivity threshold in neonates is not yet determined Component of the cell wall of many fungal species, not specific for Candida spp. diagnosis Frequent false positive results | Affordable test (estimated ~$20–30 per test); high-cost equipment is necessary |
T2MR assay [63,64,65,66,67] | High sensitivity and specificity Sensitivity threshold 1–3 cfu/mL, depending on species Rapid turnaround time Useful in treatment monitoring | Detection of five Candida species High blood volume required | High-cost equipment is necessary, estimated cost per test ~$150–265 |
PCR techniques [49,50,55,68,69,70] | High sensitivity and specificity High NPV Minimal blood volume required | Limited data on neonates Technique optimization needed | Cost highly variable depending on the assay (estimated from $10 to more than $100 per test), but high-cost equipment is necessary |
NGS [71,72,73] | Detection of multiple microorganisms simultaneously | Inability to differentiate between colonization and infection Slow turnaround time | Requires highly expensive equipment, cost per test depends on sequencer used (estimated from $100 to more than $500 per test) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltogianni, M.; Giapros, V.; Dermitzaki, N. Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates. Children 2024, 11, 1207. https://doi.org/10.3390/children11101207
Baltogianni M, Giapros V, Dermitzaki N. Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates. Children. 2024; 11(10):1207. https://doi.org/10.3390/children11101207
Chicago/Turabian StyleBaltogianni, Maria, Vasileios Giapros, and Niki Dermitzaki. 2024. "Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates" Children 11, no. 10: 1207. https://doi.org/10.3390/children11101207
APA StyleBaltogianni, M., Giapros, V., & Dermitzaki, N. (2024). Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates. Children, 11(10), 1207. https://doi.org/10.3390/children11101207