Mepolizumab in Severe Pediatric Asthma: Certainties and Doubts through a Single-Center Experience and Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Case Series
3.2. Review of the Literature
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dharmage, S.C.; Perret, J.L.; Custovic, A. Epidemiology of Asthma in Children and Adults. Front. Pediatr. 2019, 7, 246. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2024. Updated May 2024. Available online: www.ginasthma.org (accessed on 22 May 2024).
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef]
- Bacharier, L.B.; Pavord, I.D.; Maspero, J.F.; Jackson, D.J.; Fiocchi, A.G.; Mao, X.; Jacob-Nara, J.A.; Deniz, Y.; Laws, E.; Mannent, L.P.; et al. Blood eosinophils and fractional exhaled nitric oxide are prognostic and predictive biomarkers in childhood asthma. J. Allergy Clin. Immunol. 2024, 154, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; El-Sayed, Z.A.; Gómez, R.M.; Hossny, E.; Jiu-Yao, W.; Kalayci, Ö.; Morais-Almeida, M.; Phipatanakul, W.; Pitrez, P.M.; PozoBeltrán, C.F.; et al. Unanswered questions on the use of biologics in pediatric asthma. World Allergy Organ. J. 2023, 16, 1–16. [Google Scholar] [CrossRef]
- Agache, I.; Akdis, C.A.; Akdis, M.; Canonica, G.W.; Casale, T.; Chivato, T.; Corren, J.; Chu, D.K.; Del Giacco, S.; Eiwegger, T.; et al. EAACI Biologicals Guidelines-Recommendations for severe asthma. Allergy 2021, 76, 14–44. [Google Scholar] [CrossRef] [PubMed]
- GSK’s Nucala (Mepolizumab) Receives Approval from US FDA. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-s-nucala-mepolizumab-receives-approval-from-us-fda (accessed on 4 December 2015).
- Chen, R.; Wei, L.; Dai, Y.; Wang, Z.; Yang, D.; Jin, M.; Xiong, C.; Li, T.; Hu, S.; Song, J.; et al. Efficacy and safety of mepolizumab in a Chinese population with severe asthma: A phase III, randomised, double-blind, placebo-controlled trial. ERJ Open Res. 2024, 10, 00750–02023. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Bacharier, L.B.; Gergen, P.J.; Gagalis, L.; Calatroni, A.; Wellford, S.; Gill, M.A.; Stokes, J.; Liu, A.H.; Gruchalla, R.S.; et al. Mepolizumab for urban children with exacerbation-prone eosinophilic asthma in the USA (MUPPITS-2): A randomised, double-blind, placebo-controlled, parallel-group trial. Lancet 2022, 400, 502–511. [Google Scholar] [CrossRef]
- Chupp, G.L.; Bradford, E.S.; Albers, F.C.; Bratton, D.J.; Wang-Jairaj, J.; Nelsen, L.M.; Trevor, J.L.; Magnan, A.; Ten Brinke, A. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): A randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 2017, 5, 390–400. [Google Scholar] [CrossRef]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D.; SIRIUS Investigators. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 18, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Pouliquen, I.; Austin, D.; Price, R.G.; Kempsford, R.; Steinfeld, J.; Bradford, E.S.; Yancey, S.W. Subcutaneous mepolizumab in children aged 6 to 11 years with severe eosinophilic asthma. Pediatr. Pulmonol. 2019, 54, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Wetzke, M.; Funken, D.; Ahrens, F.O.; Gappa, M.; Hansen, G.; Koerner-Rettberg, C.; Koester, H.; Schulze, J.; Schwerk, N.; Zielen, S. Mepolizumab Treatment in Severe Pediatric Asthma: First Multicentric Real-World Data. Klin. Padiatr. 2022, 234, 305–308. [Google Scholar] [CrossRef]
- Lim, Y.T.; Williams, T.C.; Langley, R.J.; Weir, E. Mepolizumab in children and adolescents with severe eosinophilic asthma not eligible for omalizumab: A single Center experience. J. Asthma 2024, 61, 793–800. [Google Scholar] [CrossRef] [PubMed]
- SIGN 158 British Guideline on the Management of Asthma. A National Clinical Guideline BTS/SIGN. Available online: https://www.sign.ac.uk/our-guidelines/british-guideline-on-the-management-of-asthma/ (accessed on 29 June 2024).
- Bush, A. Differing effects of mepolizumab across the life course. Lancet Respir. Med. 2023, 11, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ikeda, M.; Geng, B.; Azmi, J.; Price, R.G.; Bradford, E.S.; Yancey, S.W.; Steinfeld, J. Long-term safety and pharmacodynamics of mepolizumab in children with severe asthma with an eosinophilic phenotype. J. Allergy Clin. Immunol. 2019, 144, 1336–1342. [Google Scholar] [CrossRef]
- Tosca, M.A.; Girosi, D.; Sacco, O.; Bernardini, R.; Ciprandi, G. Steroid-sparing effect of mepolizumab in children with severe eosinophilic nonallergic asthma. Allergol. Immunopathol. 2021, 49, 113–116. [Google Scholar] [CrossRef]
- Hartl, S.; Breyer, M.K.; Burghuber, O.C.; Ofenheimer, A.; Schrott, A.; Urban, M.H.; Agusti, A.; Studnicka, M.; Wouters, E.F.M.; Breyer-Kohansal, R. Blood eosinophil count in the general population: Typical values and potential confounders. Eur. Respir. J. 2020, 55, 1901874. [Google Scholar] [CrossRef]
- Weir, E.; Paton, J. Mepolizumab in adolescents with severe eosinophilic asthma not eligible for omalizumab: One center’s early clinical experience. J. Asthma 2020, 57, 521–524. [Google Scholar] [CrossRef]
- Wisniewski, J.A.; Muehling, L.M.; Eccles, J.D.; Capaldo, B.J.; Agrawal, R.; Shirley, D.A.; Patrie, J.T.; Workman, L.J.; Schuyler, A.J.; Lawrence, M.G.; et al. TH1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. J. Allergy Clin. Immunol. 2018, 141, 2048–2060. [Google Scholar] [CrossRef]
- Boulet, L.P. Airway remodeling in asthma: Update on mechanisms and therapeutic approaches. Curr. Opin. Pulm. Med. 2018, 24, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Domingo, C.; Mirapeix, R.M.; González-Barcala, F.J.; Forné, C.; García, F. Omalizumab in Severe Asthma: Effect on Oral Corticosteroid Exposure and Remodeling. A Randomized Open-Label Parallel Study. Drugs 2023, 83, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Zastrzeżyńska, W.; Bazan-Socha, S.; Przybyszowski, M.; Gawlewicz-Mroczka, A.; Jakieła, B.; Plutecka, H.; Zaręba, L.; Musiał, J.; Okoń, K.; Sładek, K.; et al. Effect of omalizumab on bronchoalveolar lavage matrix metalloproteinases in severe allergic asthma. J. Asthma 2022, 59, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, M.; Ohtawa, J. Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration 2012, 83, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, T.; Niimi, A.; Matsumoto, H.; Ito, I.; Oguma, T.; Otsuka, K.; Takeda, T.; Nakaji, H.; Inoue, H.; Iwata, T.; et al. Comprehensive efficacy of omalizumab for severe refractory asthma: A time-series observational study. Ann. Allergy Asthma Immunol. 2014, 113, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Przybyszowski, M.; Paciorek, K.; Zastrzeżyńska, W.; Gawlewicz-Mroczka, A.; Trojan-Królikowska, A.; Orłowska, A.; Soja, J.; Pawlik, W.; Sładek, K. Influence of omalizumab therapy on airway remodeling assessed with high-resolution computed tomography (HRCT) in severe allergic asthma patients. Adv. Respir. Med. 2018, 86, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Flood-Page, P.; Menzies-Gow, A.; Phipps, S.; Ying, S.; Wangoo, A.; Ludwig, M.S.; Barnes, N.; Robinson, D.; Kay, A.B. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Investig. 2003, 112, 1029–1036. [Google Scholar] [CrossRef]
- Haldar, P.; Brightling, C.E.; Hargadon, B.; Gupta, S.; Monteiro, W.; Sousa, A.; Marshall, R.P.; Bradding, P.; Green, R.H.; Wardlaw, A.J.; et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 2009, 360, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Vantaggiato, L.; Cameli, P.; Bergantini, L.; d’Alessandro, M.; Shaba, E.; Carleo, A.; Di Giuseppe, F.; Angelucci, S.; Sebastiani, G.; Dotta, F.; et al. Serum Proteomic Profile of Asthmatic Patients after Six Months of Benralizumab and Mepolizumab Treatment. Biomedicines 2022, 10, 761. [Google Scholar] [CrossRef]
- Tsuge, M.; Ikeda, M.; Tsukahara, H. Novel Lung Growth Strategy with Biological Therapy Targeting Airway Remodeling in Childhood Bronchial Asthma. Children 2022, 9, 1253. [Google Scholar] [CrossRef]
- Licari, A.; Castagnoli, R.; Panfili, E.; Marseglia, A.; Brambilla, I.; Marseglia, G.L. An Update on Anti-IgE Therapy in Pediatric Respiratory Diseases. Curr. Respir. Med. Rev. 2017, 13, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Deschildre, A.; Marguet, C.; Langlois, C.; Pin, I.; Rittié, J.L.; Derelle, J.; Abou Taam, R.; Fayon, M.; Brouard, J.; Dubus, J.C.; et al. Real-life long-term omalizumab therapy in children with severe allergic asthma. Eur. Respir. J. 2015, 46, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Monzio Compagnoni, M.; Conflitti, C.; Capuano, V.; Bonaiti, G.; Franchi, M.; Vimercati, C.; Biondi, A.; Luppi, F.; Corrao, G.; Faverio, P. Healthcare costs and resources utilization in children with difficult-to-control asthma treated with biologic therapies: A population-based cohort study. Pediatr. Pulmonol. 2024, 59, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.E.; Tan, W.H.G.; Aziz, M.I.A.; Koh, M.S.; Tay, T.R.; Pearce, F.; Ng, K. Assessing the cost-effectiveness of mepolizumab as add-on therapy to standard of care for severe eosinophilic asthma in Singapore. J. Asthma 2022, 59, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Abbott, T.; Balmaceda, C.; Zamorano, P.; Giglio, A.; Espinoza, M. Cost-Effectiveness of Mepolizumab Add-On in the Treatment of Severe Eosinophilic Asthma in Chile. Value Health Reg. Issues 2023, 35, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Chaogang, X.; Mengna, A.; Zhen, W.; Ying, L.; Xin, G.; Xin, Z.; Shengjie, Z.; Yuan, Z.; Qian, L.; Wenbin, M.; et al. Cost-effectiveness of mepolizumab for severe eosinophilic asthma in China. J. Asthma 2024, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bagnasco, D.; Povero, M.; Pradelli, L.; Brussino, L.; Rolla, G.; Caminati, M.; Menzella, F.; Heffler, E.; Canonica, G.W.; Paggiaro, P.; et al. Economic impact of mepolizumab in uncontrolled severe eosinophilic asthma, in real life. World Allergy Organ. J. 2021, 14, 100509. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; McMahon, P.M.; Welch, E.; McMahill-Walraven, C.; Jamal-Allial, A.; Zhang, T.; Draper, C.; Kline, A.M.; Koerner, L.; Brown, J.S.; et al. Use of Mepolizumab in Children and Adolescents with Asthma in the USA. J. Respir. 2022, 2, 123–128. [Google Scholar] [CrossRef]
- Scotney, E.; Saglani, S. Diagnosis and Management of Problematic Severe Asthma. Acta Med. Acad. 2020, 49, 117–129. [Google Scholar] [CrossRef]
- Ullmann, N.; Peri, F.; Florio, O.; Porcaro, F.; Profeti, E.; Onofri, A.; Cutrera, R. Severe Pediatric Asthma Therapy: Mepolizumab. Front. Pediatr. 2022, 10, 920066. [Google Scholar] [CrossRef]
- Pham, D.D.; Lee, J.H.; Kwon, H.S.; Song, W.J.; Cho, Y.S.; Kim, H.; Kwon, J.W.; Park, S.Y.; Kim, S.; Hur, G.Y.; et al. Predictors of Early and Late Lung Function Improvement in Severe Eosinophilic Asthma on Type2-Biologics in the PRISM Study. Lung 2024, 202, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Indolfi, C.; Dinardo, G.; Klain, A.; Contieri, M.; Umano, G.R.; Decimo, A.; Ciprandi, G.; Del Giudice, M.M. Time effect of dupilumab to treat severe uncontrolled asthma in adolescents: A pilot study. Allergol. Immunopathol. 2023, 51, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Jackson, D.J. Biologics in the treatment of asthma in children and adolescents. J. Allergy Clin. Immunol. 2023, 151, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.E.; Knight, J.; Liu, Q.; Shelar, A.; Stewart, E.; Wang, X.; Yan, X.; Sanders, J.; Visness, C.; Gill, M.; et al. Activated sputum eosinophils associated with exacerbations in children on mepolizumab. J. Allergy Clin. Immunol. 2024, in press. [Google Scholar] [CrossRef]
- Santamaria, F.; Borrelli, M.; Baraldi, E. GINA 2021: The missing pieces in the childhood asthma puzzle. Lancet Respir. Med. 2021, 9, e98. [Google Scholar] [CrossRef]
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
Age at asthma onset | 3 years | 12 years | 8 months | 2 months |
Allergic sensitization | House dust mites, cat dander, Olea europaea, Parietaria judaica | Grass pollen, Artemisia, Olea europaea, Parietaria judaica | House dust mites, cat/dog dander, cow’s milk proteins, egg | House dust mites, Alternaria, Olea europaea, Parietaria judaica |
Symptom burden | Weekly cough, dyspnea, and night awakenings. Frequent asthma attacks requiring systemic steroids, extra ICS, and bronchodilators. | Daily chest tightness, cough, exercise-induced dyspnea. Frequent asthma attacks requiring systemic steroids, extra ICS, and bronchodilators. | Monthly exacerbations with frequent need for systemic steroids, extra ICS, and bronchodilators. | Exacerbations requiring systemic steroids twice a month. Weekly night awakenings due to respiratory symptoms. |
Comorbidity | Obesity, insulin resistance | Nasal polyposis | - | Obesity, insulin resistance |
Treatment at referral | Budesonide (640 µg/d) + Formoterol (18 µg/d) | Budesonide (640 µg/d) + Formoterol (18 µg /d) + Montelukast (10 mg) | Budesonide (640 µg /d) + Formoterol (18 µg/d) + Montelukast (10 mg) | Beclomethasone (200 µg/d) + Formoterol (12 µg/d) + Omalizumab (450 mg/14 d) |
Age at mepolizumab | 14 years | 16 years | 10 years | 14 years |
Case 1 | Case 2 | Case 3 | Case 4 | |||||
---|---|---|---|---|---|---|---|---|
Baseline | 12 Months | Baseline | 12 Months | Baseline | 12 Months | Baseline | 12 Months | |
Blood eosinophils, cells/µL (%) | 1490 (13) | 140 (1.3) | 1470 (19) | 100 (1.4) | 420 (8.2) | 80 (1.8) | 530 (6) | 70 (0.8) |
Decrease in eosinophil count post-mepo (%) | −91 | −93 | −81 | −86 | ||||
FEV1, L (% pred) | 3.7 (125) | 3.1 (89) | 3.3 (84) | 3.0 (86) | 1.5 (94) | 1.5 (89) | 1.6 (37) | 4.3 (99) |
FEF25–75, L/s (% pred) | 2.5 (67) | 2.9 (73) | 3.7 (84) | 2.8 (65) | 1.3 (64) | 0.9 (44) | 0.7 (16) | 4.2 (87) |
Total serum IgE (IU/mL) | 1900 | 1800 | 234 | 250 | 1980 | 1980 | 1560 | 403 |
FeNO | 143 | 117 | 53 | 55 | 68 | 33 | 38 | 12 |
ACT score | 12 | 18 | 15 | 20 | 18 | 21 | 8 | 15 |
No. of exacerbations/year | 18 | 7 | 20 | 9 | 17 | 5 | 18 | 8 |
Current treatment | Mepolizumab + Budesonide (640 µg/d) + Formoterol (18 µg/d) | Mepolizumab + Budesonide (640 µg/d) + Formoterol (18 µg/d) | Mepolizumab + Budesonide (640 µg/d) + Formoterol (18 µg/d) + Montelukast (10 mg) | Mepolizumab + Budesonide (640 µg/d) + Formoterol (18 µg/d) |
Reference | Study Design | Number of Cases and Age | Inclusion Criteria | Mepolizumab Daily Dose/Duration | Main Findings |
---|---|---|---|---|---|
Pavord, 2012 (DREAM) [13] | Randomized, double-blind, controlled, multicenter trial | 616; 12–74 years (156 assigned to mepo 750 mg, 152 to mepo 250 mg, 153 to mepo 75 mg, 155 to placebo) | Sputum EOS > 3%, FENO > 50 ppb, blood EOS >300 cells/μL, or asthma control deteriorating after <25% reduction in maintenance ICS or OCS. Daily treatment with ≥880 μg inhaled fluticasone or equivalent, with or without maintenance OCS, and additional controller drugs. | 750 mg, 250 or 75 mg s.c. every 4 weeks for 48 weeks | Decreased asthma exacerbations (all doses) versus placebo. No FEV1 change. |
Ortega, 2014 (MENSA) [12] | Randomized, double-blind, double-dummy, controlled, multicenter, phase 3b trial | 576; 12–82 years (194 assigned to s.c. mepo 100 mg, 191 to i.v. mepo 75 mg, 191 to placebo) | Blood EOS > 300 cells/μL in the previous year, or >150 cells/μL at screening. >2 exacerbations treated with SCS in the previous year. Daily treatment with ≥880 μg inhaled fluticasone or equivalent and ≥3 months of treatment with an additional controller. FEV1 < 80% pred (age ≥18 years) or <90% pred (age 12–17 years). | 75 mg or 100 mg s.c. every 4 weeks for 32 weeks | Decreased asthma exacerbations. Improvement of FEV1 and QoL with both s.c. and i.v. mepo. |
Bel, 2014 (SIRIUS) [11] | Randomized, double-blind, controlled, parallel-group, multicenter trial | 135; 16–74 years (69 assigned to s.c. mepo 100 mg, 66 to placebo) | Blood EOS > 300 cells/μL in the previous year, or >150 cells/μL at screening. Maintenance SCS therapy >6 months. Treatment with high-dose ICS + an additional controller. | 100 mg s.c. every 4 weeks for 20 weeks | Decreased asthma exacerbations. Steroids-sparing effect. Improved asthma control. Non-significant trend of FEV1 improvement. |
Chupp, 2017 (MUSCA) [10] | Randomized, double-blind, controlled, parallel-group, multicenter, phase 3b trial | 551; ≥12 years (274 assigned to mepo, 277 to placebo) | Blood EOS > 300 cells/μL in the previous year, or >150 cells/μL at screening. >2 exacerbations treated with SCS in the previous year. FEV1 <80% pred (age ≥18 years) or <90% pred (age 12–17 years). | 100 mg s.c. every 4 weeks for 24 weeks | Improved QoL and FEV1. |
Gupta, 2019 [14] | Non-randomized, open-label, repeat-dose, phase 2 study | 36; 6–11 years | Blood EOS ≥150 cells/μL at screening or ≥300 cells/μL in the previous year. ≥2 exacerbations treated with SCS in the previous year. Treatment with >200 μg/d fluticasone propionate or equivalent with/without maintenance OCS and ≥1 controller drug. | 40 mg (<40 kg) or 100 mg (>40 kg) s.c. every 4 weeks for 12 weeks | Trend toward improved asthma control. Favorable safety profile No FEV1 change. |
Jackson, 2022 (MUPPITS-2) [9] | Randomized, double-blind, controlled, parallel-group, multicenter trial | 290; 6–17 years (146 assigned to mepo, 144 to placebo) | Blood EOS ≥150 cells/μL. ≥2 exacerbations treated with SCS in the previous year. Twice-daily therapy with at least fluticasone propionate 250 μg or equivalent (6–11 years), or at least futicasone/salmeterol 250/50 μg or equivalent (12–17 years). | 40 mg (age 6–11 years) or 100 mg (age 12–17 years) s.c. every 4 weeks for 52 weeks | Decreased asthma exacerbations. |
Wetzke, 2022 [15] | Real-life multicenter study | 18; 6–17 years | Uncontrolled asthma despite high ICS/LABA doses and trigger avoidance, or asthma requiring high doses of ICS/LABA to remain controlled | 40 mg (age 6–11 years) or 100 mg (age 12–17 years) s.c. every 4 weeks for 12.3 (median; range, 3–36) months | No significant reduction in exacerbation rate except 4 cases with follow-up >1 year. Improved FEV1. |
Lim, 2024 [16] | Retrospective, single-center study | 16; 7–17 years | Blood EOS >300 cells/μL or FENO > 50 ppb in the previous year. ≥3 exacerbations treated with SCS in the previous year. Treatment with high-dose ICS + an additional controller. | 40 mg (age 6–11 years) or 100 mg (age 12–17 years) s.c. every 4 weeks for 48 weeks | Decreased asthma-related hospitalizations. Reduced OCS dose/day No FEV1 or FEF25–75 change. |
Chen, 2024 [8] | Randomized, double-blind, controlled, parallel-group, multicenter trial | 300; ≥12 years (149 assigned to mepo, 151 to placebo) | Blood EOS ≥ 150 cells/μL at screening or ≥300 cells/μL in the previous year. ≥2 exacerbations treated with SCS in the previous year. FEV1 < 80% pred (age ≥18 years) or <90% pred (age 12–17 years). Treatment with high-dose ICS + an additional controller. | 100 mg s.c. every 4 weeks for 52 weeks | Decreased asthma exacerbations and asthma-related hospitalizations. Improved QoL and FEV1. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maglione, M.; Borrelli, M.; Dorato, A.; Cimbalo, C.; del Giudice, L.A.; Santamaria, F. Mepolizumab in Severe Pediatric Asthma: Certainties and Doubts through a Single-Center Experience and Review of the Literature. Children 2024, 11, 895. https://doi.org/10.3390/children11080895
Maglione M, Borrelli M, Dorato A, Cimbalo C, del Giudice LA, Santamaria F. Mepolizumab in Severe Pediatric Asthma: Certainties and Doubts through a Single-Center Experience and Review of the Literature. Children. 2024; 11(8):895. https://doi.org/10.3390/children11080895
Chicago/Turabian StyleMaglione, Marco, Melissa Borrelli, Alessandro Dorato, Chiara Cimbalo, Luigi Antonio del Giudice, and Francesca Santamaria. 2024. "Mepolizumab in Severe Pediatric Asthma: Certainties and Doubts through a Single-Center Experience and Review of the Literature" Children 11, no. 8: 895. https://doi.org/10.3390/children11080895
APA StyleMaglione, M., Borrelli, M., Dorato, A., Cimbalo, C., del Giudice, L. A., & Santamaria, F. (2024). Mepolizumab in Severe Pediatric Asthma: Certainties and Doubts through a Single-Center Experience and Review of the Literature. Children, 11(8), 895. https://doi.org/10.3390/children11080895