Impact of Fortified Whole Grain Infant Cereal on the Nutrient Density of the Diet in Brazil, the UAE, and the USA: A Dietary Modeling Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diet Modeling
Selection of the Recipes
2.3. Reported Nutrients
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Observed Diet
3.3. Modeled Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baye, K.; Kennedy, G. Estimates of dietary quality in infants and young children (6-23 mo): Evidence from demographic and health surveys of 49 low-and middle-income countries. Nutrition 2020, 78, 110875. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Catellier, D.J.; Jun, S.; Dwyer, J.T.; Jacquier, E.F.; Anater, A.S.; Eldridge, A.L. Total Usual Nutrient Intakes of US Children (Under 48 Months): Findings from the Feeding Infants and Toddlers Study (FITS) 2016. J. Nutr. 2018, 148, 1557S–1566S. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global estimation of dietary micronutrient inadequacies: A modelling analysis. Lancet Glob. Health 2024, 12, e1590–e1599. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, L.M.; Beal, T.; Larson, L.M.; Cattaneo, F.D. Global Landscape of Malnutrition in Infants and Young Children. Nestle Nutr. Inst. Workshop Ser. 2020, 93, 1–14. [Google Scholar] [CrossRef] [PubMed]
- WHO. Levels and Trends in Child Malnutrition; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Stevens, G.A.; Beal, T.; Mbuya, M.N.N.; Luo, H.; Neufeld, L.M. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. Lancet Glob. Health 2022, 10, e1590–e1599. [Google Scholar] [CrossRef]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Mis, N.F.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
- WHO. Guideline for Complenentary Feeding of Infants and Young Children Age 6 to 23 Months; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Koletzko, B.; Brands, B.; Grote, V.; Kirchberg, F.F.; Prell, C.; Rzehak, P.; Uhl, O.; Weber, M. Long-Term Health Impact of Early Nutrition: The Power of Programming. Ann. Nutr. Metab. 2017, 70, 161–169. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Pediatric Nutrition; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2025; Volume 9. [Google Scholar] [CrossRef]
- DGAC. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services; USDA: Washington, DC, USA, 2020. [CrossRef]
- Campoy, C.; Campos, D.; Cerdó, T.; Diéguez, E.; García-Santos, J.A. Complementary feeding in developed countries: The 3 Ws (when, what, and why?). Ann. Nutr. Metab. 2018, 73, 27–36. [Google Scholar] [CrossRef]
- Csölle, I.; Felső, R.; Szabó, É.; Metzendorf, M.I.; Schwingshackl, L.; Ferenci, T.; Lohner, S. Health outcomes associated with micronutrient-fortified complementary foods in infants and young children aged 6-23 months: A systematic review and meta-analysis. Lancet. Child. Adolesc. Health 2022, 6, 533–544. [Google Scholar] [CrossRef]
- Lutter, C.K.; Grummer-Strawn, L.; Rogers, L. Complementary feeding of infants and young children 6 to 23 months of age. Nutr. Rev. 2021, 79, 825–846. [Google Scholar] [CrossRef]
- De Cosmi, V.; Scaglioni, S.; Agostoni, C. Early Taste Experiences and Later Food Choices. Nutrients 2017, 9, 107. [Google Scholar] [CrossRef] [PubMed]
- Nicklaus, S. The Role of Dietary Experience in the Development of Eating Behavior during the First Years of Life. Ann. Nutr. Metab. 2017, 70, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, A.; De Cosmi, V.; Scaglioni, S.; Agostoni, C. Towards a More Sustainable Nutrition: Complementary Feeding and Early Taste Experiences as a Basis for Future Food Choices. Nutrients 2021, 13, 2695. [Google Scholar] [CrossRef]
- Koletzko, B.; Godfrey, K.M.; Poston, L.; Szajewska, H.; van Goudoever, J.B.; de Waard, M.; Brands, B.; Grivell, R.M.; Deussen, A.R.; Dodd, J.M.; et al. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Ann. Nutr. Metab. 2019, 74, 93–106. [Google Scholar] [CrossRef]
- Scaglioni, S.; De Cosmi, V.; Ciappolino, V.; Parazzini, F.; Brambilla, P.; Agostoni, C. Factors Influencing Children’s Eating Behaviours. Nutrients 2018, 10, 706. [Google Scholar] [CrossRef]
- Klerks, M.; Bernal, M.J.; Roman, S.; Bodenstab, S.; Gil, A.; Sanchez-Siles, L.M. Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients 2019, 11, 473. [Google Scholar] [CrossRef]
- Slavin, J.L.; Sanders, L.M.; Stallings, V.A. Opportunities to increase whole grain intake within the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). Cereal Chem. 2022, 100, 268–276. [Google Scholar] [CrossRef]
- Foster, S.; Beck, E.; Hughes, J.; Grafenauer, S. Whole Grains and Consumer Understanding: Investigating Consumers’ Identification, Knowledge and Attitudes to Whole Grains. Nutrients 2020, 12, 2170. [Google Scholar] [CrossRef]
- Vossenaar, M.; Knight, F.A.; Tumilowicz, A.; Hotz, C.; Chege, P.; Ferguson, E.L. Context-specific complementary feeding recommendations developed using Optifood could improve the diets of breast-fed infants and young children from diverse livelihood groups in northern Kenya. Public Health Nutr. 2017, 20, 971–983. [Google Scholar] [CrossRef]
- Drewnowski, A.; McKeown, N.; Kissock, K.; Beck, E.; Mejborn, H.; Vieux, F.; Smith, J.; Masset, G.; Seal, C.J. Perspective: Why whole grains should be incorporated into nutrient-profile models to better capture nutrient density. Adv. Nutr. 2021, 12, 600–608. [Google Scholar] [CrossRef]
- Zhu, Y.; Sang, S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol. Nutr. Food Res. 2017, 61, 1600852. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Bernal, M.J.; Schutte, S.; Chenoll, E.; Genovés, S.; Codoñer, F.M.; Gil, A.; Sanchez-Siles, L.M. Effects of whole-grain and sugar content in infant cereals on gut microbiota at weaning: A randomized trial. Nutrients 2021, 13, 1496. [Google Scholar] [CrossRef] [PubMed]
- Obbagy, J.E.; English, L.K.; Psota, T.L.; Wong, Y.P.; Butte, N.F.; Dewey, K.G.; Fox, M.K.; Greer, F.R.; Krebs, N.F.; Scanlon, K.S.; et al. Complementary feeding and micronutrient status: A systematic review. Am. J. Clin. Nutr. 2019, 109, 852S–871S. [Google Scholar] [CrossRef]
- Eldridge, A.L.; Catellier, D.J.; Hampton, J.C.; Dwyer, J.T.; Bailey, R.L. Trends in Mean Nutrient Intakes of US Infants, Toddlers, and Young Children from 3 Feeding Infants and Toddlers Studies (FITS). J. Nutr. 2019, 149, 1230–1237. [Google Scholar] [CrossRef]
- Alreshidi, N.M.; Gadora, S.; Habeeb, E.; Alrashidi, L.M. Evaluating knowledge, attitudes, and practices regarding complementary feeding (weaning) among mothers of six-month-old children. J. Nurs. Educ. Pract. 2023, 13, 39. [Google Scholar] [CrossRef]
- Finn, K.; Callen, C.; Bhatia, J.; Reidy, K.; Bechard, L.J.; Carvalho, R. Importance of dietary sources of iron in infants and toddlers: Lessons from the FITS study. Nutrients 2017, 9, 733. [Google Scholar] [CrossRef]
- Bailey, R.L.; Stang, J.S.; Davis, T.A.; Naimi, T.S.; Schneeman, B.O.; Dewey, K.G.; Donovan, S.M.; Novotny, R.; Kleinman, R.E.; Taveras, E.M.; et al. Dietary and Complementary Feeding Practices of US Infants, 6 to 12 Months: A Narrative Review of the Federal Nutrition Monitoring Data. J. Acad. Nutr. Diet. 2022, 122, 2337–2345.e2331. [Google Scholar] [CrossRef]
- Cheikh Ismail, L.; Al Dhaheri, A.S.; Ibrahim, S.; Ali, H.I.; Chokor, F.A.Z.; O’Neill, L.M.; Mohamad, M.N.; Kassis, A.; Ayesh, W.; Kharroubi, S. Nutritional status and adequacy of feeding Practices in Infants and Toddlers 0–23.9 months living in the United Arab Emirates (UAE): Findings from the feeding Infants and Toddlers Study (FITS) 2020. BMC Public Health 2022, 22, 319. [Google Scholar] [CrossRef]
- Nasreddine, L.M.; Kassis, A.N.; Ayoub, J.J.; Naja, F.A.; Hwalla, N.C. Nutritional status and dietary intakes of children amid the nutrition transition: The case of the Eastern Mediterranean Region. Nutr. Res. 2018, 57, 12–27. [Google Scholar] [CrossRef]
- World Bank Group. Data for Brazil Upper Middle Income. Available online: https://data.worldbank.org/?locations=BR-XT (accessed on 8 November 2022).
- Mello, C.S.; Barros, K.V.; Morais, M.B.d. Brazilian infant and preschool children feeding: Literature review. J. Pediatr. 2016, 92, 451–463. [Google Scholar] [CrossRef]
- Kurtz, A.; Thomopoulos, R. Safety vs. Sustainability Concerns of Infant Food Users: French Results and European Perspectives. Sustainability 2021, 13, 10074. [Google Scholar] [CrossRef]
- Dwyer, J.T. The Feeding Infants and Toddlers Study (FITS) 2016: Moving Forward. J. Nutr. 2018, 148, 1575s–1580s. [Google Scholar] [CrossRef] [PubMed]
- Duffy, E.W.; Kay, M.C.; Jacquier, E.; Catellier, D.; Hampton, J.; Anater, A.S.; Story, M. Trends in Food Consumption Patterns of US Infants and Toddlers from Feeding Infants and Toddlers Studies (FITS) in 2002, 2008, 2016. Nutrients 2019, 11, 2807. [Google Scholar] [CrossRef] [PubMed]
- Anater, A.S.; Hampton, J.C.; Lopes, T.d.V.C.; Giuntini, E.B.; Campos, V.C.; Harnack, L.J.; Lorenzana Peasley, J.M.; Eldridge, A.L. Nutrient Intakes among Brazilian Children Need Improvement and Show Differences by Region and Socioeconomic Level. Nutrients 2022, 14, 485. [Google Scholar] [CrossRef]
- IOM. Uses of Dietary Reference; Intakes National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Jeelani, P.; Ghai, A.; Saikia, N.; Kathed, M.; Mitra, A.; Krishnan, A.; Sharma, A.; Chidambaram, R. Baby foods based on cereals. In Food Science, Technology and Nutrition for Babies and Children; Springer: Berlin/Heidelberg, Germany, 2020; pp. 59–97. [Google Scholar]
- O’Neill, L.M.; Dwyer, J.T.; Bailey, R.L.; Reidy, K.C.; Saavedra, J.M. Harmonizing micronutrient intake reference ranges for dietary guidance and menu planning in complementary feeding. Curr. Dev. Nutr. 2020, 4, nzaa017. [Google Scholar] [CrossRef]
- NASEM. Dietary Reference Intakes for Sodium and Potassium; National Academies Press (US): Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- IOM. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B (6), Folate, Vitamin B (12), Pantothenic Acid, Biotin, and Choline; National Academies Press (US): Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- IOM. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- NASEM. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Beaton, G.H. Uses and limits of the use of the Recommended Dietary Allowances for evaluating dietary intake data. Am. J. Clin. Nutr. 1985, 41, 155–164. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Assessing the Performance of the EAR Cut-Point Method for Estimating Prevalence. In DRI Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press (US): Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK222873/ (accessed on 3 November 2022).
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Maciel, B.L.L.; Moraes, M.L.; Soares, A.M.; Cruz, I.F.S.; de Andrade, M.I.R.; Filho, J.Q.; Junior, F.S.; Costa, P.N.; Abreu, C.B.; Ambikapathi, R.; et al. Infant feeding practices and determinant variables for early complementary feeding in the first 8 months of life: Results from the Brazilian MAL-ED cohort site. Public Health Nutr. 2018, 21, 2462–2470. [Google Scholar] [CrossRef]
- Nicklas, T.A.; O’Neil, C.E.; Fulgoni, V.L., III. Nutrient intake, introduction of baby cereals and other complementary foods in the diets of infants and toddlers from birth to 23 months of age. AIMS Public Health 2020, 7, 123. [Google Scholar] [CrossRef]
- Prentice, A.M. The Double Burden of Malnutrition in Countries Passing through the Economic Transition. Ann. Nutr. Metab. 2018, 72 (Suppl. S3), 47–54. [Google Scholar] [CrossRef]
- Chakona, G. Social circumstances and cultural beliefs influence maternal nutrition, breastfeeding and child feeding practices in South Africa. Nutr. J. 2020, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Dhami, M.V.; Ogbo, F.A.; Osuagwu, U.L.; Agho, K.E. Prevalence and factors associated with complementary feeding practices among children aged 6–23 months in India: A regional analysis. BMC Public Health 2019, 19, 1034. [Google Scholar] [CrossRef] [PubMed]
- Claudia, G.-C.; Lucia, M.-S.; Miguel, K.-K.; Patricia, C.; Edgar, D.-G. Association between sociodemographic factors and dietary patterns in children under 24 months of age: A systematic review. Nutrients 2019, 11, 2006. [Google Scholar] [CrossRef] [PubMed]
- MINISTÉRIO DA SAÚDE. Guia Alimentar Para Criancas Brasileiras Menores de 2 Anos; MINISTÉRIO DA SAÚDE: São Paulo, Brazil, 2019.
- Rinaldi, A.E.M. Tendência Secular da Alimentação de Crianças Brasileiras Menores de Cinco Anos Nas Três Últimas Décadas; Universidade de São Paulo: São Paulo, Brazil, 2015. [Google Scholar]
- Carvalho, C.A.; Fonsêca, P.C.; Priore, S.E.; Franceschini Sdo, C.; Novaes, J.F. Food consumption and nutritional adequacy in Brazilian children: A systematic review. Rev. Paul. Pediatr. Orgao Of. Soc. Pediatr. Sao Paulo 2015, 33, 211–221. [Google Scholar] [CrossRef]
- Kassis, A.; Chokor, F.A.Z.; Nasreddine, L.; Hwalla, N.; O’Neill, L. Food Sources of Fiber and Micronutrients of Concern in Infants and Children in the United Arab Emirates: Findings from the Feeding Infants and Toddlers Study (FITS) and the Kids Nutrition and Health Survey (KNHS) 2020. Nutrients 2022, 14, 2819. [Google Scholar] [CrossRef]
- WHO. Wheat Flour Fortification in the Eastern Mediterranean Region; WHO: Cairo, Egypt, 2019; Available online: https://applications.emro.who.int/docs/EMROPUB_2019_EN_22339.pdf (accessed on 3 November 2022).
- Initiative, F.F. Food Fortification Initiative. Available online: https://www.ffinetwork.org/united-arab-emirates/?record=225 (accessed on 18 October 2022).
- Bragg, M.G.; Prado, E.L.; Stewart, C.P. Choline and docosahexaenoic acid during the first 1000 days and children’s health and development in low- and middle-income countries. Nutr Rev 2022, 80, 656–676. [Google Scholar] [CrossRef]
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary choline intake: Current state of knowledge across the life cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef]
- Skau, J.K.; Touch, B.; Chhoun, C.; Chea, M.; Unni, U.S.; Makurat, J.; Filteau, S.; Wieringa, F.T.; Dijkhuizen, M.A.; Ritz, C.; et al. Effects of animal source food and micronutrient fortification in complementary food products on body composition, iron status, and linear growth: A randomized trial in Cambodia. Am. J. Clin. Nutr. 2015, 101, 742–751. [Google Scholar] [CrossRef]
- Weigel, M.M.; Armijos, R.X.; Racines, M.; Cevallos, W. Food Insecurity Is Associated with Undernutrition but Not Overnutrition in Ecuadorian Women from Low-Income Urban Neighborhoods. J. Environ. Public Health 2016, 2016, 8149459. [Google Scholar] [CrossRef]
- FDA. Food Additives Pemitted for Direct Addition to Food for Human Consumption; Vitamin D3; FDA: Silver Spring, MD, USA, 2023.
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; Van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Homann, C.-M.; Rossel, C.A.; Dizzell, S.; Bervoets, L.; Simioni, J.; Li, J.; Gunn, E.; Surette, M.G.; de Souza, R.J.; Mommers, M. Infants’ first solid foods: Impact on gut microbiota development in two intercontinental cohorts. Nutrients 2021, 13, 2639. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 2017, 66, 515–522. [Google Scholar] [CrossRef]
- Ratsika, A.; Codagnone, M.C.; O’Mahony, S.; Stanton, C.; Cryan, J.F. Priming for life: Early life nutrition and the microbiota-gut-brain axis. Nutrients 2021, 13, 423. [Google Scholar] [CrossRef]
- Osadchiy, V.; Martin, C.R.; Mayer, E.A. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, 322–332. [Google Scholar] [CrossRef]
- Borewicz, K.; Suarez-Diez, M.; Hechler, C.; Beijers, R.; de Weerth, C.; Arts, I.; Penders, J.; Thijs, C.; Nauta, A.; Lindner, C. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci. Rep. 2019, 9, 2434. [Google Scholar] [CrossRef]
- Koo, H.C.; Poh, B.K.; Abd Talib, R. The GReat-Child™ Trial: A Quasi-Experimental Intervention on Whole Grains with Healthy Balanced Diet to Manage Childhood Obesity in Kuala Lumpur, Malaysia. Nutrients 2018, 10, 156. [Google Scholar] [CrossRef]
- Albertson, A.M.; Reicks, M.; Joshi, N.; Gugger, C.K. Whole grain consumption trends and associations with body weight measures in the United States: Results from the cross sectional National Health and Nutrition Examination Survey 2001–2012. Nutr J 2016, 15, 8. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef]
- Perez-Plazola, M.; Diaz, J.; Stewart, C.P.; Arnold, C.D.; Caswell, B.L.; Lutter, C.K.; Werner, E.R.; Maleta, K.; Turner, J.; Prathibha, P.; et al. Plasma mineral status after a six-month intervention providing one egg per day to young Malawian children: A randomized controlled trial. Sci. Rep. 2023, 13, 6698. [Google Scholar] [CrossRef] [PubMed]
- Pfluger, B.A.; Giunta, A.; Calvimontes, D.M.; Lamb, M.M.; Delgado-Zapata, R.; Ramakrishnan, U.; Ryan, E.P. Pilot Study of Heat-Stabilized Rice Bran Acceptability in Households of Rural Southwest Guatemala and Estimates of Fiber, Protein, and Micro-Nutrient Intakes among Mothers and Children. Nutrients 2024, 16, 460. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, D.; Wang, L.-J.; Wang, Y. Microstructure of Extrusion-Cooked Whole Grain in Controlling Product Quality. Food Rev. Int. 2024, 40, 1621–1646. [Google Scholar] [CrossRef]
- Uyoga, M.A.; Mzembe, G.; Stoffel, N.U.; Moretti, D.; Zeder, C.; Phiri, K.; Sabatier, M.; Hays, N.P.; Zimmermann, M.B.; Mwangi, M.N. Iron Bioavailability from Infant Cereals Containing Whole Grains and Pulses: A Stable Isotope Study in Malawian Children. J. Nutr. 2022, 152, 826–834. [Google Scholar] [CrossRef]
- Finn, K.; Quick, S.; Anater, A.; Hampton, J.; Kineman, B.; Klish, W. Breastfed and mixed fed infants who do not consume infant cereal are at risk for inadequate iron intake: Data from the feeding infants and toddlers study 2016, a cross-sectional survey. BMC Pediatr. 2022, 22, 219. [Google Scholar] [CrossRef]
- Ibsen, D.B.; Laursen, A.S.D.; Würtz, A.M.L.; Dahm, C.C.; Rimm, E.B.; Parner, E.T.; Overvad, K.; Jakobsen, M.U. Food substitution models for nutritional epidemiology. Am. J. Clin. Nutr. 2021, 113, 294–303. [Google Scholar] [CrossRef]
- Grieger, J.A.; Johnson, B.J.; Wycherley, T.P.; Golley, R.K. Comparing the nutritional impact of dietary strategies to reduce discretionary choice intake in the Australian adult population: A simulation modelling study. Nutrients 2017, 9, 442. [Google Scholar] [CrossRef]
- Mak, T.N.; Angeles-Agdeppa, I.; Tassy, M.; Capanzana, M.V.; Offord, E.A. Contribution of Milk Beverages to Nutrient Adequacy of Young Children and Preschool Children in the Philippines. Nutrients 2020, 12, 392. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. Whole Grains and Pulses: A Comparison of the Nutritional and Health Benefits. J. Agric. Food Chem. 2014, 62, 7029–7049. [Google Scholar] [CrossRef]
Brazil (n = 108) | US (n = 911) | UAE (n = 72) | p-Value | ||||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Gender | |||||||
Boys | 60 | 55.6 | 493 | 54.1 | 34 | 47.2 | 0.491 |
Girls | 48 | 44.4 | 418 | 45.9 | 38 | 52.8 | |
Age | 0.407 | ||||||
6 to 8.9 months | 51 | 47.2 | 481 | 52.8 | 41 | 56.9 | |
9 to 11.9 months | 57 | 52.8 | 430 | 47.2 | 31 | 43.0 | |
Parent’s education | <0.001 | ||||||
Less than high school | 38 | 35.2 | 33 | 3.6 | 4 | 5.6 | |
High school level | 59 | 54.6 | 163 | 17.9 | 29 | 40.3 | |
Higher educational level | 7 | 6.5 | 712 | 78.2 | 39 | 54.2 | |
Other (special education) | 0 | 0 | 2 | 0.2 | 0 | 0 | |
Unknown | 4 | 3.7 | 0 | 0 | 0 | 0 | |
Attends daycare | <0.001 | ||||||
Yes | 14 | 13.0 | 286 | 31.4 | 5 | 6.9 | |
No | 94 | 87.0 | 625 | 68.6 | 67 | 93.1 | |
Ever breastfed | 0.032 | ||||||
Yes | 100 | 92.6 | 778 | 85.4 | 67 | 93.1 | |
No | 8 | 7.4 | 132 | 14.5 | 5 | 6.9 | |
Mean ratio of energy provided by milk/by CF | 54/46 | 59/41 | 60/40 |
Brazil (n = 108) | US (n = 911) | UAE (n = 72) | |||||||
---|---|---|---|---|---|---|---|---|---|
Nutrients 1 | Non-IC Consumers (n = 75) | IC Consumers (n = 33) | p-Value 2,3 | Non-IC Consumers (n = 463) | IC Consumers (n = 448) | p-Value | Non-IC Consumers (n = 43) | IC Consumers (n = 29) | p-Value |
Protein (g) | 2.7 | 3.3 | 0.003 | 2.6 | 2.4 | 0.006 | 2.5 | 2.6 | 0.402 |
Total fat (g) | 4.3 | 3.4 | <0.001 | 4.7 | 4.3 | <0.001 | 4.7 | 4.0 | 0.018 |
Carbohydrates (g) | 13.1 | 14.2 | 0.010 | 12.3 | 13.4 | <0.001 | 12.0 | 13.2 | 0.088 |
Dietary fiber (g) | 0.7 | 0.8 | 0.650 | 0.7 | 0.8 | <0.001 | 0.5 | 0.5 | 0.854 |
Calcium (mg) | 65.0 | 120.4 | <0.001 | 64.9 | 78.7 | <0.001 | 58.6 | 79.6 | 0.006 |
Choline (mg) | 18.8 | 16.5 | 0.005 | 21.0 | 19.2 | <0.001 | 15.3 | 12.7 | 0.176 |
Folate (μg DFE) | 16.1 | 22.5 | <0.001 | 15.4 | 18.1 | <0.001 | 19.7 | 21.2 | 0.375 |
Iron (mg) | 0.6 | 2.5 | <0.001 | 0.9 | 2.0 | <0.001 | 0.7 | 1.1 | 0.018 |
Magnesium (mg) | 11.5 | 14.3 | 0.003 | 10.7 | 12.5 | <0.001 | 10.6 | 9.1 | 0.211 |
Phosphorus (mg) | 48.7 | 73.2 | <0.001 | 47.9 | 48.9 | 0.137 | 46.3 | 53.7 | 0.077 |
Potassium (mg) | 142.7 | 161.9 | 0.043 | 126.0 | 136.0 | <0.001 | 128.3 | 127.7 | 0.532 |
Sodium (mg) | 67.7 | 78.6 | 0.051 | 61.5 | 44.2 | <0.001 | 49.8 | 45.3 | 0.375 |
Zinc (mg) | 0.5 | 0.7 | <0.001 | 0.6 | 0.7 | <0.001 | 0.4 | 0.5 | 0.006 |
Thiamin (mg) | 0.06 | 0.12 | <0.001 | 0.07 | 0.09 | <0.001 | 0.08 | 0.09 | 0.261 |
Niacin (mg) | 0.6 | 1.2 | <0.001 | 0.9 | 1.1 | <0.001 | 0.7 | 0.9 | 0.077 |
Vitamin A (μg RAE) | 105.8 | 149.9 | <0.001 | 90.0 | 100.1 | 0.002 | 89.8 | 64.2 | 0.051 |
Vitamin D (μg) | 0.4 | 1.4 | <0.001 | 0.6 | 0.8 | <0.001 | 0.2 | 0.8 | 0.026 |
MAR | 0.809 | 0.977 | <0.001 | 0.840 | 0.915 | <0.001 | 0.808 | 0.846 | 0.329 |
Brazil (n = 108) | US (n = 911) | UAE (n = 72) | |||||||
---|---|---|---|---|---|---|---|---|---|
Nutrients | Non-IC Consumers (n = 75) | IC Consumers (n = 33) | p-Value 2,3 | Non-IC Consumers (n = 463) | IC Consumers (n = 448) | p-Value | Non-IC Consumers (n = 43) | IC Consumers (n = 29) | p-Value |
Calcium | 19 1 | 0 | 0.005 | 17 | 4 | <0.001 | 14 | 0 | 0.133 |
Choline | 57 | 42 | 0.209 | 52 | 47 | 0.098 | 77 | 93 | 0.618 |
Folate | 28 | 0 | <0.001 | 30 | 11 | <0.001 | 23 | 24 | 0.678 |
Iron | 77 | 6 | <0.001 | 50 | 14 | <0.001 | 60 | 52 | 0.354 |
Magnesium | 43 | 6 | <0.001 | 41 | 24 | <0.001 | 53 | 62 | 0.618 |
Phosphorus | 43 | 3 | <0.001 | 35 | 23 | <0.001 | 28 | 21 | 0.447 |
Potassium | 35 | 6 | 0.002 | 39 | 26 | <0.001 | 40 | 34 | 0.447 |
Sodium | 37 | 3 | <0.001 | 53 | 67 | <0.001 | 51 | 66 | 0.750 |
Zinc | 41 | 3 | <0.001 | 25 | 8 | <0.001 | 58 | 17 | 0.003 |
Thiamin | 31 | 0 | <0.001 | 27 | 9 | <0.001 | 26 | 3 | 0.039 |
Niacin | 49 | 6 | <0.001 | 29 | 11 | <0.001 | 26 | 24 | 0.618 |
Vitamin A | 37 | 0 | <0.001 | 30 | 20 | 0.001 | 49 | 55 | 0.618 |
Vitamin D | 93 | 39 | <0.001 | 79 | 71 | 0.010 | 86 | 90 | 0.447 |
Brazil (n = 33) | US (n = 448) | UAE (n = 29) | |||||||
---|---|---|---|---|---|---|---|---|---|
Nutrients 1 | Current Intakes | Modeled Intakes | p-Value 2,3 | Current Intakes | Modeled Intakes | p-Value | Current Intakes | Modeled Intakes | p-Value |
Protein (g) | 3.3 | 3.5 | <0.001 | 2.4 | 2.5 | <0.001 | 2.6 | 2.7 | <0.001 |
Total fat (g) | 3.4 | 3.5 | <0.001 | 4.3 | 4.2 | <0.001 | 4.0 | 4.0 | <0.001 |
Carbohydrates (g) | 14.2 | 14.8 | <0.001 | 13.4 | 13.3 | <0.001 | 13.2 | 12.8 | <0.001 |
Dietary fiber (g) | 0.8 | 0.9 | <0.001 | 0.8 | 0.9 | <0.001 | 0.5 | 0.7 | <0.001 |
Calcium (mg) | 120.4 | 122.5 | <0.001 | 78.7 | 82.9 | 0.100 | 79.6 | 81.9 | <0.001 |
Choline (mg) | 16.5 | 28.1 | <0.001 | 19.2 | 21.0 | <0.001 | 12.7 | 16.9 | <0.001 |
Folate (μg DFE) | 22.5 | 25.4 | <0.001 | 18.1 | 15.2 | <0.001 | 21.2 | 19.8 | <0.001 |
Iron (mg) | 2.5 | 2.9 | <0.001 | 2.0 | 2.6 | <0.001 | 1.1 | 1.3 | <0.001 |
Magnesium (mg) | 14.3 | 15.2 | <0.001 | 12.5 | 14.7 | <0.001 | 9.1 | 13.9 | <0.001 |
Phosphorus (mg) | 73.2 | 144.9 | <0.001 | 48.9 | 45.6 | <0.001 | 53.7 | 61.5 | <0.001 |
Potassium (mg) | 161.9 | 163.4 | 0.002 | 136.0 | 130.6 | <0.001 | 127.7 | 115.1 | <0.001 |
Sodium (mg) | 78.6 | 80.6 | <0.001 | 44.2 | 41.7 | 0.310 | 45.3 | 48.1 | <0.001 |
Zinc (mg) | 0.7 | 1.2 | <0.001 | 0.7 | 1.0 | <0.001 | 0.5 | 0.6 | <0.001 |
Thiamin (mg) | 0.12 | 0.1 | <0.001 | 0.09 | 0.08 | <0.001 | 0.09 | 0.09 | <0.001 |
Niacin (mg) | 1.2 | 1.0 | <0.001 | 1.1 | 1.0 | <0.001 | 0.9 | 0.9 | <0.001 |
Vitamin A (μg RAE) | 149.9 | 144.9 | 0.01 | 100.1 | 93.7 | <0.001 | 64.2 | 85.7 | <0.001 |
Vitamin D (μg) | 1.4 | 1.6 | <0.001 | 0.8 | 1.1 | <0.001 | 0.8 | 0.9 | <0.001 |
MAR | 0.977 | 0.980 | <0.001 | 0.915 | 0.931 | <0.001 | 0.846 | 0.894 | <0.001 |
Brazil (n = 33) | US (n = 448) | UAE (n = 29) | |||||||
---|---|---|---|---|---|---|---|---|---|
Nutrients 1 | Current Levels | Modeled Levels | p-Value 2,3 | Current Levels | Modeled Levels | p-Value | Current Levels | Modeled Levels | p-Value |
Calcium | 0 | 0 | 1.000 | 4 | 4 | 1.000 | 0 | 0 | 1.000 |
Choline | 42 | 6 | 0.014 | 47 | 33 | <0.001 | 93 | 76 | 0.375 |
Folate | 0 | 0 | 1.000 | 11 | 16 | 0.175 | 24 | 28 | 1.000 |
Iron | 6 | 3 | 1.000 | 14 | 11 | 0.874 | 52 | 28 | 0.346 |
Magnesium | 6 | 3 | 1.000 | 24 | 17 | 0.067 | 62 | 21 | 0.039 |
Phosphorus | 3 | 0 | 1.000 | 23 | 32 | 1.000 | 21 | 17 | 1.000 |
Potassium | 6 | 6 | 1.000 | 26 | 24 | 0.874 | 34 | 66 | 0.151 |
Sodium | 3 | 3 | 1.000 | 67 | 67 | 1.000 | 66 | 62 | 1.000 |
Zinc | 3 | 0 | 1.000 | 8 | 5 | 0.265 | 17 | 7 | 0.873 |
Thiamin | 0 | 0 | 1.000 | 9 | 9 | 1.000 | 3 | 3 | 1.000 |
Niacin | 6 | 6 | 1.000 | 11 | 13 | 0.874 | 24 | 24 | 1.000 |
Vitamin A | 0 | 0 | 1.000 | 20 | 22 | 0.874 | 55 | 24 | 0.151 |
Vitamin D | 39 | 39 | 1.000 | 71 | 71 | 1.000 | 90 | 79 | 0.873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Neill, L.; Vasiloglou, M.F.; Salesse, F.; Bailey, R.; Nogueira-de-Almeida, C.A.; Al Dhaheri, A.; Cheikh Ismail, L.; Hwalla, N.; Mak, T.N. Impact of Fortified Whole Grain Infant Cereal on the Nutrient Density of the Diet in Brazil, the UAE, and the USA: A Dietary Modeling Study. Children 2025, 12, 384. https://doi.org/10.3390/children12030384
O’Neill L, Vasiloglou MF, Salesse F, Bailey R, Nogueira-de-Almeida CA, Al Dhaheri A, Cheikh Ismail L, Hwalla N, Mak TN. Impact of Fortified Whole Grain Infant Cereal on the Nutrient Density of the Diet in Brazil, the UAE, and the USA: A Dietary Modeling Study. Children. 2025; 12(3):384. https://doi.org/10.3390/children12030384
Chicago/Turabian StyleO’Neill, Lynda, Maria F. Vasiloglou, Fanny Salesse, Regan Bailey, Carlos Alberto Nogueira-de-Almeida, Ayesha Al Dhaheri, Leila Cheikh Ismail, Nahla Hwalla, and Tsz Ning Mak. 2025. "Impact of Fortified Whole Grain Infant Cereal on the Nutrient Density of the Diet in Brazil, the UAE, and the USA: A Dietary Modeling Study" Children 12, no. 3: 384. https://doi.org/10.3390/children12030384
APA StyleO’Neill, L., Vasiloglou, M. F., Salesse, F., Bailey, R., Nogueira-de-Almeida, C. A., Al Dhaheri, A., Cheikh Ismail, L., Hwalla, N., & Mak, T. N. (2025). Impact of Fortified Whole Grain Infant Cereal on the Nutrient Density of the Diet in Brazil, the UAE, and the USA: A Dietary Modeling Study. Children, 12(3), 384. https://doi.org/10.3390/children12030384