Addressing the Humans in the Delivery Room—Optimising Neonatal Monitoring and Decision-Making in Transition
Abstract
:1. Introduction
2. Technical Factors in the Delivery Room
2.1. Oxygen Saturation Monitoring and Titration Strategies
2.2. Heart Rate Assessment
2.3. Potential Role of Respiratory Function Monitoring
2.4. Potential Role of Cerebral Oxygenation Monitoring
2.5. Potential Role of Video Laryngoscopy
3. Human Factors and Decision-Making in the Delivery Room
3.1. Team Composition and Team Performance
3.2. Methodological Caveats in Understanding Human Factors in Decision-Making
3.3. The Decision Making Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOC | Automatic oxygen control |
DR | Delivery Room |
ECG | Electrocardiography |
HR | Heart rate |
NICU | Neonatal intensive care unit |
NIRS | Near-infrared spectroscopy |
O2 | Oxygen |
PPV | Positive-pressure ventilation |
RFM | Respiratory function monitor |
RPDM | Recognition-primed decision making |
SpO2 | pulse oximetry measured hemoglobin O2 saturation |
TOTS | Transitional Oxygen Targeting System |
VL | Video laryngoscopy |
Vt | Tidal volume |
References
- Hutten, M.C.; Goos, T.G.; Ophelders, D.; Nikiforou, M.; Kuypers, E.; Willems, M.; Niemarkt, H.J.; Dankelman, J.; Andriessen, P.; Mohns, T.; et al. Fully automated predictive intelligent control of oxygenation (PRICO) in resuscitation and ventilation of preterm lambs. Pediatr. Res. 2015, 78, 657–663. [Google Scholar] [CrossRef]
- Li, E.S.; Cheung, P.Y.; O’Reilly, M.; Schmolzer, G.M. Change in tidal volume during cardiopulmonary resuscitation in newborn piglets. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F530–F533. [Google Scholar] [CrossRef] [PubMed]
- Hooper, S.B.; Kitchen, M.J.; Wallace, M.J.; Yagi, N.; Uesugi, K.; Morgan, M.J.; Hall, C.; Siu, K.K.; Williams, I.M.; Siew, M.; et al. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 2007, 21, 3329–3337. [Google Scholar] [CrossRef]
- te Pas, A.B.; Siew, M.; Wallace, M.J.; Kitchen, M.J.; Fouras, A.; Lewis, R.A.; Yagi, N.; Uesugi, K.; Donath, S.; Davis, P.G.; et al. Establishing functional residual capacity at birth: The effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr. Res. 2009, 65, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Polglase, G.R.; Wallace, E.M.; Te Pas, A.B.; Hooper, S.B. Ventilation before Umbilical Cord Clamping Improves the Physiological Transition at Birth. Front. Pediatr. 2014, 2, 113. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Fanaroff, J.; Andrews, B.; Caldarelli, L.; Lagatta, J.; Plesha-Troyke, S.; Lantos, J.; Meadow, W. Resuscitation in the “gray zone” of viability: Determining physician preferences and predicting infant outcomes. Pediatrics 2007, 120, 519–526. [Google Scholar] [CrossRef]
- Manley, B.J.; Dawson, J.A.; Kamlin, C.O.; Donath, S.M.; Morley, C.J.; Davis, P.G. Clinical assessment of extremely premature infants in the delivery room is a poor predictor of survival. Pediatrics 2010, 125, e559–e564. [Google Scholar] [CrossRef]
- Garingo, A.; Friedlich, P.; Tesoriero, L.; Patil, S.; Jackson, P.; Seri, I. The use of mobile robotic telemedicine technology in the neonatal intensive care unit. J. Perinatol. 2012, 32, 55–63. [Google Scholar] [CrossRef]
- den Boer, M.C.; Martherus, T.; Houtlosser, M.; Root, L.; Witlox, R.; Te Pas, A.B. Improving the Quality of Provided Care: Lessons Learned From Auditing Neonatal Stabilization. Front. Pediatr. 2020, 8, 560. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Wyllie, J.; Aziz, K.; de Almeida, M.F.; Fabres, J.W.; Fawke, J.; Guinsburg, R.; Hosono, S.; Isayama, T.; Kapadia, V.S.; et al. Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation 2020, 156, A156–A187. [Google Scholar] [CrossRef]
- Welsford, M.; Nishiyama, C.; Shortt, C.; Weiner, G.; Roehr, C.C.; Isayama, T.; Dawson, J.A.; Wyckoff, M.H.; Rabi, Y.; International Liaison Committee on Resuscitation Neonatal Life Support Task Force. Initial Oxygen Use for Preterm Newborn Resuscitation: A Systematic Review With Meta-analysis. Pediatrics 2019, 143, e20181828. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Maconochie, I.; Wyckoff, M.H.; Olasveengen, T.M.; Singletary, E.M.; Greif, R.; Aickin, R.; Bhanji, F.; Donnino, M.W.; Mancini, M.E.; et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation 2019, 145, 95–150. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulos, J.X.; Oei, J.L.; Schmolzer, G.M.; Libesman, S.; Hunter, K.E.; Williams, J.G.; Webster, A.C.; Vento, M.; Kapadia, V.; Rabi, Y.; et al. Initial Oxygen Concentration for the Resuscitation of Infants Born at Less Than 32 Weeks’ Gestation: A Systematic Review and Individual Participant Data Network Meta-Analysis. JAMA Pediatr. 2024, 178, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Liyakat, N.A.; Kumar, P.; Sundaram, V. Room air versus 100% oxygen for delivery room resuscitation of preterm neonates in low resource settings: A randomised, blinded, controlled trial. J. Paediatr. Child Health 2023, 59, 794–801. [Google Scholar] [CrossRef]
- Dekker, J.; Hooper, S.B.; Croughan, M.K.; Crossley, K.J.; Wallace, M.J.; McGillick, E.V.; DeKoninck, P.L.J.; Thio, M.; Martherus, T.; Ruben, G.; et al. Increasing Respiratory Effort With 100% Oxygen During Resuscitation of Preterm Rabbits at Birth. Front. Pediatr. 2019, 7, 427. [Google Scholar] [CrossRef]
- Wolfsberger, C.H.; Schwaberger, B.; Urlesberger, B.; Avian, A.; Goeral, K.; Hammerl, M.; Perme, T.; Dempsey, E.M.; Springer, L.; Lista, G.; et al. Reference Ranges for Arterial Oxygen Saturation, Heart Rate, and Cerebral Oxygen Saturation during Immediate Postnatal Transition in Neonates Born Extremely or Very Preterm. J. Pediatr. 2024, 273, 114132. [Google Scholar] [CrossRef]
- Brouwer, E.; Knol, R.; Vernooij, A.S.N.; van den Akker, T.; Vlasman, P.E.; Klumper, F.; DeKoninck, P.; Polglase, G.R.; Hooper, S.B.; Te Pas, A.B. Physiological-based cord clamping in preterm infants using a new purpose-built resuscitation table: A feasibility study. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F396–F402. [Google Scholar] [CrossRef]
- Luong, D.H.; Cheung, P.Y.; O’Reilly, M.; Lee, T.F.; Schmolzer, G.M. Electrocardiography vs. Auscultation to Assess Heart Rate During Cardiac Arrest With Pulseless Electrical Activity in Newborn Infants. Front. Pediatr. 2018, 6, 366. [Google Scholar] [CrossRef]
- Murphy, M.C.; De Angelis, L.; McCarthy, L.K.; O’Donnell, C.P.F. Randomised study comparing heart rate measurement in newly born infants using a monitor incorporating electrocardiogram and pulse oximeter versus pulse oximeter alone. Arch. Dis. Child.-Fetal Neonatal Ed. 2019, 104, F547–F550. [Google Scholar] [CrossRef]
- Iglesias, B.; Rodrí Guez, M.A.J.; Aleo, E.; Criado, E.; Martí Nez-Orgado, J.; Arruza, L. 3-lead electrocardiogram is more reliable than pulse oximetry to detect bradycardia during stabilisation at birth of very preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F233–F237. [Google Scholar] [CrossRef]
- Phillipos, E.; Solevag, A.L.; Aziz, K.; van Os, S.; Pichler, G.; O’Reilly, M.; Cheung, P.Y.; Schmolzer, G.M. Oxygen Saturation and Heart Rate Ranges in Very Preterm Infants Requiring Respiratory Support at Birth. J. Pediatr. 2017, 182, 41–46.e2. [Google Scholar] [CrossRef] [PubMed]
- Bresesti, I.; Avian, A.; Bruckner, M.; Binder-Heschl, C.; Schwaberger, B.; Baik-Schneditz, N.; Schmolzer, G.; Pichler, G.; Urlesberger, B. Impact of bradycardia and hypoxemia on oxygenation in preterm infants requiring respiratory support at birth. Resuscitation 2021, 164, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Luong, D.; Cheung, P.Y.; Barrington, K.J.; Davis, P.G.; Unrau, J.; Dakshinamurti, S.; Schmolzer, G.M. Cardiac arrest with pulseless electrical activity rhythm in newborn infants: A case series. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F572–F574. [Google Scholar] [CrossRef]
- Dawson, J.A.; Bastrenta, P.; Cavigioli, F.; Thio, M.; Ong, T.; Siew, M.L.; Hooper, S.B.; Davis, P.G. The precision and accuracy of Nellcor and Masimo oximeters at low oxygen saturations (70%) in newborn lambs. Arch. Dis. Childhood. Fetal Neonatal Ed. 2014, 99, F278–F281. [Google Scholar] [CrossRef]
- Barker, S.J.; Shah, N.K. The effects of motion on the performance of pulse oximeters in volunteers (revised publication). Anesthesiology 1997, 86, 101–108. [Google Scholar] [CrossRef]
- Urschitz, M.S.; Von, E.V.; Seyfang, A.; Poets, C.F. Use of pulse oximetry in automated oxygen delivery to ventilated infants. Anesth Analg. 2002, 94, S37–S40. [Google Scholar] [PubMed]
- Pritisanac, E.; Urlesberger, B.; Schwaberger, B.; Pichler, G. Accuracy of Pulse Oximetry in the Presence of Fetal Hemoglobin-A Systematic Review. Children 2021, 8, 361. [Google Scholar] [CrossRef]
- Kapadia, V.; Rabi, Y.; Oei, J.L. The Goldilocks principle. Oxygen in the delivery room: When is it too little, too much, and just right? Semin. Fetal Neonatal Med. 2018, 23, 347–354. [Google Scholar] [CrossRef]
- Vento, M.; Saugstad, O.D. Targeting Oxygen in Term and Preterm Infants Starting at Birth. Clin. Perinatol. 2019, 46, 459–473. [Google Scholar] [CrossRef]
- White, L.N.; Thio, M.; Owen, L.S.; Kamlin, C.O.; Sloss, S.; Hooper, S.B.; Davis, P.G.; Dawson, J.A. Achievement of saturation targets in preterm infants <32 weeks’ gestational age in the delivery room. Arch. Dis. Child.-Fetal Neonatal Ed. 2017, 102, F423–F427. [Google Scholar] [CrossRef]
- Oei, J.L.; Finer, N.N.; Saugstad, O.D.; Wright, I.M.; Rabi, Y.; Tarnow-Mordi, W.; Rich, W.; Kapadia, V.; Rook, D.; Smyth, J.P.; et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F446–F454. [Google Scholar] [CrossRef]
- Sotiropoulos, J.X.; Binoy, S.; Pham, T.A.N.; Yates, K.; Allgood, C.L.; Kunjunju, A.; Tracy, M.; Smyth, J.; Oei, J.L. Air or Oxygen for Infant Resuscitation: A Prospective Cohort Study of Moderate-Late Preterm Infants Requiring Delivery Room Resuscitation. Neonatology 2024, 121, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Vento, M.; Asensi, M.; Sastre, J.; Lloret, A.; Garcia-Sala, F.; Minana, J.B.; Vina, J. Hyperoxemia caused by resuscitation with pure oxygen may alter intracellular redox status by increasing oxidized glutathione in asphyxiated newly born infants. Semin. Perinatol. 2002, 26, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Vento, M.; Sastre, J.; Asensi, M.A.; Vina, J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am. J. Respir. Crit. Care Med. 2005, 172, 1393–1398. [Google Scholar] [CrossRef]
- Lamberska, T.; Vankova, J.; Plavka, R. Efficacy of FiO2 increase during the initial resuscitation of premature infants < 29 weeks: An observational study. Pediatr. Neonatol. 2013, 54, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, B.; Rich, W.; Finer, N. Achieving targeted pulse oximetry values in preterm infants in the delivery room. J. Pediatr. 2013, 163, 412–415. [Google Scholar] [CrossRef]
- Fathabadi, O.S.; Gale, T.J.; Lim, K.; Salmon, B.P.; Wheeler, K.I.; Olivier, J.C.; Dargaville, P.A. Assessment of validity and predictability of the FiO2-SpO2 transfer-function in preterm infants. Physiol. Meas. 2014, 35, 1425–1437. [Google Scholar] [CrossRef]
- Fathabadi, O.S.; Gale, T.J.; Lim, K.; Salmon, B.P.; Dawson, J.A.; Wheeler, K.I.; Olivier, J.C.; Dargaville, P.A. Characterisation of the Oxygenation Response to Inspired Oxygen Adjustments in Preterm Infants. Neonatology 2016, 109, 37–43. [Google Scholar] [CrossRef]
- Follett, G.; Cheung, P.Y.; Pichler, G.; Aziz, K.; Schmölzer, G.M. Time needed to achieve changes in oxygen concentration at the T-Piece resuscitator during respiratory support in preterm infants in the delivery room. Paediatr. Child Health 2015, 20, e10–e12. [Google Scholar] [CrossRef]
- Dekker, J.; Stenning, F.J.; Willms, L.; Martherus, T.; Hooper, S.B.; Te Pas, A.B. Time to achieve desired fraction of inspired oxygen using a T-piece ventilator during resuscitation of preterm infants at birth. Resuscitation 2019, 136, 100–104. [Google Scholar] [CrossRef]
- Schwarz, C.E.; Lightbody, G.; Muller-Hansen, I.; Arand, J.; Poets, C.F.; Franz, A.R. In vitro evaluation of delays in the adjustment of the fraction of inspired oxygen during CPAP: Effect of flow and volume. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Tejkl, L.; Ráfl, J.; Kudrna, P. The Time Delay of Air/Oxygen Mixture Delivery after the Change of Set FiO2: An Improvement of a Neonatal Mathematical Model. Lékař A Tech.-Clin. Technol. 2020, 49, 77–82. [Google Scholar] [CrossRef]
- Ali, S.K.; Jayakar, R.V.; Marshall, A.P.; Gale, T.J.; Dargaville, P.A. Preliminary study of automated oxygen titration at birth for preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 539–544. [Google Scholar] [CrossRef]
- Kapadia, V.; Oei, J.L.; Finer, N.; Rich, W.; Rabi, Y.; Wright, I.M.; Rook, D.; Vermeulen, M.J.; Tarnow-Mordi, W.O.; Smyth, J.P.; et al. Outcomes of delivery room resuscitation of bradycardic preterm infants: A retrospective cohort study of randomised trials of high vs low initial oxygen concentration and an individual patient data analysis. Resuscitation 2021, 167, 209–217. [Google Scholar] [CrossRef]
- Phillipos, E.; Solevag, A.L.; Pichler, G.; Aziz, K.; van Os, S.; O’Reilly, M.; Cheung, P.Y.; Schmolzer, G.M. Heart Rate Assessment Immediately after Birth. Neonatology 2016, 109, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, G.A.; Hawkes, C.P.; Kenosi, M.; Demeulemeester, J.; Livingstone, V.; Ryan, C.A.; Dempsey, E.M. Auscultate, palpate and tap: Time to re-evaluate. Acta Paediatr. 2016, 105, 178–182. [Google Scholar] [CrossRef]
- Mizumoto, H.; Tomotaki, S.; Shibata, H.; Ueda, K.; Akashi, R.; Uchio, H.; Hata, D. Electrocardiogram shows reliable heart rates much earlier than pulse oximetry during neonatal resuscitation. Pediatr. Int. 2012, 54, 205–207. [Google Scholar] [CrossRef]
- Katheria, A.; Rich, W.; Finer, N. Electrocardiogram provides a continuous heart rate faster than oximetry during neonatal resuscitation. Pediatrics 2012, 130, e1177–e1181. [Google Scholar] [CrossRef]
- van Vonderen, J.J.; Hooper, S.B.; Kroese, J.K.; Roest, A.A.; Narayen, I.C.; van Zwet, E.W.; te Pas, A.B. Pulse oximetry measures a lower heart rate at birth compared with electrocardiography. J. Pediatr. 2015, 166, 49–53. [Google Scholar] [CrossRef]
- Murphy, M.C.; De Angelis, L.; McCarthy, L.K.; O’Donnell, C.P.F. Comparison of infant heart rate assessment by auscultation, ECG and oximetry in the delivery room. Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F490–F492. [Google Scholar] [CrossRef]
- Berg, K.M.; Bray, J.E.; Ng, K.-C.; Liley, H.G.; Greif, R.; Carlson, J.N.; Morley, P.T.; Drennan, I.R.; Smyth, M.; Scholefield, B.R.; et al. 2023 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. Circulation 2023, 148, e187–e280. [Google Scholar] [CrossRef]
- Kapadia, V.S.; Kawakami, M.D.; Strand, M.L.; Gately, C.; Spencer, A.; Schmolzer, G.M.; Rabi, Y.; Wylie, J.; Weiner, G.; Liley, H.G.; et al. Newborn heart rate monitoring methods at birth and clinical outcomes: A systematic review. Resusc. Plus 2024, 19, 100665. [Google Scholar] [CrossRef] [PubMed]
- Bush, J.B.; Cooley, V.; Perlman, J.; Chang, C. NeoBeat offers rapid newborn heart rate assessment. Arch. Dis. Childhood. Fetal Neonatal Ed. 2021, 106, 550–552. [Google Scholar] [CrossRef] [PubMed]
- van Wyk, L.; Austin, T.; Barzilay, B.; Bravo, M.C.; Breindahl, M.; Czernik, C.; Dempsey, E.; de Boode, W.P.; de Vries, W.; Eriksen, B.H.; et al. A recommendation for the use of electrical biosensing technology in neonatology. Pediatr. Res. 2024. [Google Scholar] [CrossRef]
- Freidl, T.; Baik, N.; Pichler, G.; Schwaberger, B.; Zingerle, B.; Avian, A.; Urlesberger, B. Haemodynamic Transition after Birth: A New Tool for Non-Invasive Cardiac Output Monitoring. Neonatology 2017, 111, 55–60. [Google Scholar] [CrossRef]
- McCarthy, K.N.; Pavel, A.; Garvey, A.A.; Hawke, A.L.; Levins, C.; Livingstone, V.; Dempsey, E.M. Feasibility of non-invasive cardiac output monitoring at birth using electrical bioreactance in term infants. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 431–434. [Google Scholar] [CrossRef]
- Fuerch, J.H.; Thio, M.; Halamek, L.P.; Liley, H.G.; Wyckoff, M.H.; Rabi, Y. Respiratory function monitoring during neonatal resuscitation: A systematic review. Resusc. Plus 2022, 12, 100327. [Google Scholar] [CrossRef]
- Schmolzer, G.M.; Morley, C.J.; Kamlin, O. Enhanced monitoring during neonatal resuscitation. Semin. Perinatol. 2019, 43, 151177. [Google Scholar] [CrossRef]
- Schmolzer, G.M.; Kamlin, O.C.; O’Donnell, C.P.; Dawson, J.A.; Morley, C.J.; Davis, P.G. Assessment of tidal volume and gas leak during mask ventilation of preterm infants in the delivery room. Arch. Dis. Childhood. Fetal Neonatal Ed. 2010, 95, F393–F397. [Google Scholar] [CrossRef]
- Yang, K.C.; Te Pas, A.B.; Weinberg, D.D.; Foglia, E.E. Corrective steps to enhance ventilation in the delivery room. Arch. Dis. Childhood. Fetal Neonatal Ed. 2020, 105, 605–608. [Google Scholar] [CrossRef]
- van Vonderen, J.J.; van Zanten, H.A.; Schilleman, K.; Hooper, S.B.; Kitchen, M.J.; Witlox, R.S.; Te Pas, A.B. Cardiorespiratory Monitoring during Neonatal Resuscitation for Direct Feedback and Audit. Front. Pediatr. 2016, 4, 38. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; Kamlin, O.C.; Dawson, J.A.; te Pas, A.B.; Morley, C.J.; Davis, P.G. Respiratory monitoring of neonatal resuscitation. Arch. Dis. Child. Fetal Neonatal Ed. 2010, 95, F295–F303. [Google Scholar] [CrossRef]
- Flecknoe, S.J.; Crossley, K.J.; Zuccala, G.M.; Searle, J.E.; Allison, B.J.; Wallace, M.J.; Hooper, S.B. Increased lung expansion alters lung growth but not alveolar epithelial cell differentiation in newborn lambs. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L454–L461. [Google Scholar] [CrossRef] [PubMed]
- Schmolzer, G.M.; Morley, C.J.; Davis, P.G. Respiratory function monitoring to reduce mortality and morbidity in newborn infants receiving resuscitation. Cochrane Database Syst. Rev. 2010, 9, CD008437. [Google Scholar] [CrossRef]
- Schmölzer, G.M.; Roehr, C.C. Use of respiratory function monitors during simulated neonatal resuscitation. Klin. Padiatr. 2011, 223, 261–266. [Google Scholar] [CrossRef] [PubMed]
- O’Currain, E.; Thio, M.; Dawson, J.A.; Donath, S.M.; Davis, P.G. Respiratory monitors to teach newborn facemask ventilation: A randomised trial. Arch. Dis. Childhood. Fetal Neonatal Ed. 2019, 104, F582–F586. [Google Scholar] [CrossRef]
- Binder, C.; Schmolzer, G.M.; O’Reilly, M.; Schwaberger, B.; Urlesberger, B.; Pichler, G. Human or monitor feedback to improve mask ventilation during simulated neonatal cardiopulmonary resuscitation. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F120–F123. [Google Scholar] [CrossRef]
- Ni Chathasaigh, C.M.; Smiles, L.; O’Currain, E.; Curley, A.E. Integration of a respiratory function monitor into newborn positive pressure ventilation training; development of a standardised training intervention. Resusc. Plus 2024, 18, 100602. [Google Scholar] [CrossRef]
- Schmolzer, G.M.; Morley, C.J.; Wong, C.; Dawson, J.A.; Kamlin, C.O.; Donath, S.M.; Hooper, S.B.; Davis, P.G. Respiratory function monitor guidance of mask ventilation in the delivery room: A feasibility study. J. Pediatr. 2012, 160, 377–381.e2. [Google Scholar] [CrossRef]
- Zehnder, E.C.; Schmolzer, G.M.; van Manen, M.; Law, B.H.Y. Using eye-tracking augmented cognitive task analysis to explore healthcare professionals’ cognition during neonatal resuscitation. Resusc. Plus 2021, 6, 100119. [Google Scholar] [CrossRef]
- Sarrato, G.Z.; Luna, M.S.; Sarrato, S.Z.; Perez, A.P.; Chamorro, I.P.; Cano, J.M.B. New Strategies of Pulmonary Protection of Preterm Infants in the Delivery Room with the Respiratory Function Monitoring. Am. J. Perinatol. 2019, 36, 1368–1376. [Google Scholar] [CrossRef]
- van Zanten, H.A.; Kuypers, K.; van Zwet, E.W.; van Vonderen, J.J.; Kamlin, C.O.F.; Springer, L.; Lista, G.; Cavigioli, F.; Vento, M.; Nunez-Ramiro, A.; et al. A multi-centre randomised controlled trial of respiratory function monitoring during stabilisation of very preterm infants at birth. Resuscitation 2021, 167, 317–325. [Google Scholar] [CrossRef]
- de Medeiros, S.M.; Mangat, A.; Polglase, G.R.; Sarrato, G.Z.; Davis, P.G.; Schmolzer, G.M. Respiratory function monitoring to improve the outcomes following neonatal resuscitation: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Foglia, E.E.; Weinberg, D.D.; Te Pas, A.B.; Dekker, J.; Hsu, J.Y. Reliability of respiratory function monitor interpretation for neonatal resuscitation. Arch. Dis. Childhood. Fetal Neonatal Ed. 2023, 108, 321–322. [Google Scholar] [CrossRef]
- Kuypers, K.; van Zanten, H.A.; Heesters, V.; Kamlin, O.; Springer, L.; Lista, G.; Cavigioli, F.; Vento, M.; Nunez-Ramiro, A.; Kuester, H.; et al. Resuscitators’ opinions on using a respiratory function monitor during neonatal resuscitation. Acta Paediatr. 2023, 112, 63–68. [Google Scholar] [CrossRef]
- O’Riordan, G.D. An Investigation into the Underlying Causes of Information Systems Failure and Success: Case of a National Clinical System in Ireland. Ph.D. Thesis, University College Cork, Cork, Ireland, 2019. [Google Scholar]
- Herrick, H.; Weinberg, D.; Cecarelli, C.; Fishman, C.E.; Newman, H.; den Boer, M.C.; Martherus, T.; Katz, T.A.; Nadkarni, V.; Te Pas, A.B.; et al. Provider visual attention on a respiratory function monitor during neonatal resuscitation. Arch. Dis. Childhood. Fetal Neonatal Ed. 2020, 105, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Baik-Schneditz, N.; Schwaberger, B.; Bresesti, I.; Fuchs, H.; Lara, I.; Nakstad, B.; Lista, G.; Vento, M.; Binder-Heschl, C.; Pichler, G.; et al. Fetal to neonatal transition: What additional information can be provided by cerebral near infrared spectroscopy? Pediatr. Res. 2022, 96, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, M.; Pichler, G.; Urlesberger, B. NIRS in the fetal to neonatal transition and immediate postnatal period. Semin. Fetal Neonatal Med. 2020, 25, 101079. [Google Scholar] [CrossRef]
- Schwaberger, B.; Pichler, G.; Binder-Heschl, C.; Baik-Schneditz, N.; Avian, A.; Urlesberger, B. Cerebral Blood Volume During Neonatal Transition in Term and Preterm Infants With and Without Respiratory Support. Front. Pediatr. 2018, 6, 132. [Google Scholar] [CrossRef]
- Baik, N.; Urlesberger, B.; Schwaberger, B.; Schmolzer, G.M.; Mileder, L.; Avian, A.; Pichler, G. Reference Ranges for Cerebral Tissue Oxygen Saturation Index in Term Neonates during Immediate Neonatal Transition after Birth. Neonatology 2015, 108, 283–286. [Google Scholar] [CrossRef]
- Pichler, G.; Binder, C.; Avian, A.; Beckenbach, E.; Schmolzer, G.M.; Urlesberger, B. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J. Pediatr. 2013, 163, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Carnicero, L.B.; Carbonero, S.C. Reference Ranges for Regional Cerebral Oxygen Saturation with Masimo O3 after Birth and Differences with Other Devices. Am. J. Perinatol. 2024, 41, 1736–1742. [Google Scholar] [CrossRef]
- Baik, N.; Urlesberger, B.; Schwaberger, B.; Schmolzer, G.M.; Avian, A.; Pichler, G. Cerebral haemorrhage in preterm neonates: Does cerebral regional oxygen saturation during the immediate transition matter? Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F422–F427. [Google Scholar] [CrossRef]
- Fuchs, H.; Lindner, W.; Buschko, A.; Almazam, M.; Hummler, H.D.; Schmid, M.B. Brain oxygenation monitoring during neonatal resuscitation of very low birth weight infants. J. Perinatol. 2012, 32, 356–362. [Google Scholar] [CrossRef]
- Pansy, J.; Baik, N.; Schwaberger, B.; Scheuchenegger, A.; Pichler-Stachl, E.; Avian, A.; Schmolzer, G.M.; Urlesberger, B.; Pichler, G. Cerebral hypoxia during immediate transition after birth and short term neurological outcome. Early Hum. Dev. 2017, 110, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Wolfsberger, C.H.; Pichler-Stachl, E.; Holler, N.; Mileder, L.P.; Schwaberger, B.; Avian, A.; Urlesberger, B.; Pichler, G. Cerebral oxygenation immediately after birth and long-term outcome in preterm neonates-a retrospective analysis. BMC Pediatr. 2023, 23, 145. [Google Scholar] [CrossRef]
- Pichler, G.; Urlesberger, B.; Baik, N.; Schwaberger, B.; Binder-Heschl, C.; Avian, A.; Pansy, J.; Cheung, P.Y.; Schmolzer, G.M. Cerebral Oxygen Saturation to Guide Oxygen Delivery in Preterm Neonates for the Immediate Transition after Birth: A2-Center Randomized Controlled Pilot Feasibility Trial. J. Pediatr. 2016, 170, 73–78.e4. [Google Scholar] [CrossRef]
- Pichler, G.; Goeral, K.; Hammerl, M.; Perme, T.; Dempsey, E.M.; Springer, L.; Lista, G.; Szczapa, T.; Fuchs, H.; Karpinski, L.; et al. Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth (COSGOD III): Multicentre randomised phase 3 clinical trial. BMJ 2023, 380, e072313. [Google Scholar] [CrossRef]
- Lingappan, K.; Neveln, N.; Arnold, J.L.; Fernandes, C.J.; Pammi, M. Videolaryngoscopy versus direct laryngoscopy for tracheal intubation in neonates. Cochrane Database Syst. Rev. 2023, 5, CD009975. [Google Scholar] [CrossRef]
- Geraghty, L.E.; Dunne, E.A.; Ni Chathasaigh, C.M.; Vellinga, A.; Adams, N.C.; O’Currain, E.M.; McCarthy, L.K.; O’Donnell, C.P.F. Video versus Direct Laryngoscopy for Urgent Intubation of Newborn Infants. N. Engl. J. Med. 2024, 390, 1885–1894. [Google Scholar] [CrossRef]
- Kelly, F.E.; Hoogenboom, E.M.; Groom, P. Human factors and teaching benefits of videolaryngoscopes are based on evidence. Anaesthesia 2023, 78, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Mulcahy, K.; Fox, J.; Cook, T.M.; Kelly, F.E. C-MAC© videolaryngoscopy: The anaesthetic assistant’s view. J. Perioper. Pract. 2018, 28, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.B.; Sang, K.; Zhou, M.; Yi, L.; Liu, J.Q.; Yang, C.Z.; Law, B.H.Y.; Schmolzer, G.M.; Cheung, P.Y. The perceived workload of first-line healthcare professionals during neonatal resuscitation. Resusc. Plus 2025, 21, 100866. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.; Kennally, K.; Shields, R.; Overly, F. Does simulation booster impact retention of resuscitation procedural skills and teamwork? J. Perinatol. 2014, 34, 664–668. [Google Scholar] [CrossRef]
- Chae, S.; Shon, S. Effectiveness of simulation-based interprofessional education on teamwork and communication skills in neonatal resuscitation. BMC Med. Educ. 2024, 24, 602. [Google Scholar] [CrossRef]
- Heling, A.Z.; Price, W.A.; McNeal-Trice, K.A.; Aliaga, S.R. Teamwork, communication and resident leadership at resident-attended, neonatal delivery room resuscitations. J. Perinatol. 2021, 41, 627–633. [Google Scholar] [CrossRef]
- Thomas, E.J.; Taggart, B.; Crandell, S.; Lasky, R.E.; Williams, A.L.; Love, L.J.; Sexton, J.B.; Tyson, J.E.; Helmreich, R.L. Teaching teamwork during the Neonatal Resuscitation Program: A randomized trial. J. Perinatol. 2007, 27, 409–414. [Google Scholar] [CrossRef]
- Torrance, E.P. Crew Performance in a Test Situation as a Predictor of Field and Combat Performance (No. 33); Bolling Air Force Base, Human Factors Operations Research Laboratories: Washington, DC, USA, 1953. [Google Scholar]
- Torrance, E.P. The Behavior of Small Groups Under the Stress Conditions of “Survival”. Am. Sociol. Rev. 1954, 19, 751–755. [Google Scholar]
- Torrance, E.P. Sociometric techniques for diagnosing group ills. Sociometry 1955, 18, 341–356. [Google Scholar]
- Vergales, B.D.; Dwyer, E.J.; Wilson, S.M.; Nicholson, E.A.; Nauman, R.C.; Jin, L.; Sinkin, R.A.; Kaufman, D.A. NASCAR pit-stop model improves delivery room and admission efficiency and outcomes for infants <27 weeks’ gestation. Resuscitation 2015, 92, 7–13. [Google Scholar] [CrossRef]
- Bavelas, A. A mathematical model for group structures. Appl. Anthropol. 1948, 7, 16–30. [Google Scholar]
- Lewin, K. Field Theory in Social Science: Selected Theoretical Papers; Harper & Brothers: New York, NY, USA, 1951. [Google Scholar]
- Baron, R.A.; Byrne, D. Social Psychology Understanding Human Interaction; Allyn and Bacon Inc.: Boston, MA, USA, 1977. [Google Scholar]
- Ediger, K.; Rashid, M.; Law, B.H.Y. What Is Teamwork? A Mixed Methods Study on the Perception of Teamwork in a Specialized Neonatal Resuscitation Team. Front. Pediatr. 2022, 10, 845671. [Google Scholar] [CrossRef]
- Weiner, G.M.; Zaichkin, J. Textbook of Neonatal Resuscitation; American Academy of Pediatrics: Itasca, IL, USA, 2021. [Google Scholar]
- Sawyer, T.; Laubach, V.A.; Hudak, J.; Yamamura, K.; Pocrnich, A. Improvements in teamwork during neonatal resuscitation after interprofessional TeamSTEPPS training. Neonatal Netw. 2013, 32, 26–33. [Google Scholar] [CrossRef]
- Brogaard, L.; Hvidman, L.; Esberg, G.; Finer, N.; Hjorth-Hansen, K.R.; Manser, T.; Kierkegaard, O.; Uldbjerg, N.; Henriksen, T.B. Teamwork and Adherence to Guideline on Newborn Resuscitation-Video Review of Neonatal Interdisciplinary Teams. Front. Pediatr. 2022, 10, 828297. [Google Scholar] [CrossRef]
- Thomas, E.J.; Sexton, J.B.; Lasky, R.E.; Helmreich, R.L.; Crandell, D.S.; Tyson, J. Teamwork and quality during neonatal care in the delivery room. J. Perinatol. 2006, 26, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Gurung, S.; Putet, G.; Touzet, S.; Gauthier-Moulinier, H.; Jordan, I.; Beissel, A.; Labaune, J.M.; Blanc, S.; Amamra, N.; Balandras, C.; et al. In situ simulation training for neonatal resuscitation: An RCT. Pediatrics 2014, 134, e790–e797. [Google Scholar] [CrossRef]
- Curley, L.J.; Peddie, N. A critique of the experimental study of juror decision-making. In Contemporary Challenges in the Jury System: A Comparative Perspective; Chapter 12; Taylor & Francis Group: Abingdon, UK, 2024; p. 189. [Google Scholar]
- Cristofaro, M. Herbert Simon’s Bounded Rationality: Its Historical Evolution in Management and Cross-fertilizing Contribution. J. Manag. Hist. 2017, 23, 170–219. [Google Scholar]
- Klein, G.A. A Recognition Primed Decision (RPD) Model of Rapid Decision Making. In Decision Making in Action; Ablex: New York, NY, USA, 1993. [Google Scholar]
- Kahneman, D. A perspective on judgment and choice: Mapping bounded rationality. Am. Psychol. 2003, 58, 697–720. [Google Scholar] [CrossRef]
- Hayashi, A.M. When to trust your gut. Harv Bus Rev. 2001, 79, 58–65, 155. [Google Scholar]
- Bonabeau, E. Don’t trust your gut. Harv Bus Rev. 2003, 81, 116–123, 130. [Google Scholar]
- Gigerenzer, G. Fast and Frugal Heuristics: The Tools of Bounded Rationality. In Blackwell Handbook of Judgment and Decision Making; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 62–88. [Google Scholar]
- Gigerenzer, G.; Goldstein, D.G. Reasoning the fast and frugal way: Models of bounded rationality. Psychol. Rev. 1996, 103, 650–669. [Google Scholar] [CrossRef] [PubMed]
Proposals for Future Research |
---|
Experiment with embedding new tools and new measurements pertaining to oxygen monitoring, heart rate assessment, respiratory function monitoring and cerebral oxygenation monitoring in the DR Explore the visualization, interpretation and subsequent impact on decision-making that arises from their use Explore the broader impact of their implementation on the process and outcomes of care Integrate new tools and techniques into the overall patient monitoring systems to help healthcare providers perceive and respond appropriately to these additional signals, even in the high-stress context of neonatal emergency situations in the DR Explore the possible impact on efficacy and speed of decision-making of analysis, modeling, synthesis and abstraction of multiple data streams Explore the efficacy of feedback and control loops (human-mediated or otherwise) in stabilizing oxygenation Explore the applicability of decision space theories in formulating relationships between physiological data, team efficacy and patient outcomes Develop specific training procedures that ensure that operators understand how to apply, interpret and analyze the data provided by the new instruments Understand the importance of human factors, particularly non-technical factors, on the performance of DR teams Measure the occurrence of stress and the impact of extreme time pressures in the DR Investigate the importance of the composition of the DR team Explore the importance of the personality and communication abilities of the leader Explore opportunities offered by newly developed training protocols for non-technical skills Explore the importance of leveraging the expertise and experience of team members and the role of intuition in accelerating diagnosis and decision-making Investigate whether fast and frugal decision-making takes place in the DR Apply the latest video recording equipment to generate high-quality multi-orientation video analysis of team movement and communication in the DR Design simulation/experiments that associate both realism and ethical considerations Bring to bear three fundamental bodies of knowledge: (1) the medical science of neonatology, (2) technologies and techniques that are imported from other domains and (3) team dynamics and decision-making processes to deliver a safe and effective environment for decision-making in the DR which promotes rapid response, to the same extent as it promotes objectivity and evidence-based decision making |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, C.E.; Schwaberger, B.; Flore, A.I.; Joyce, R.; Woodworth, S.; Adam, F.; Dempsey, E.M. Addressing the Humans in the Delivery Room—Optimising Neonatal Monitoring and Decision-Making in Transition. Children 2025, 12, 402. https://doi.org/10.3390/children12040402
Schwarz CE, Schwaberger B, Flore AI, Joyce R, Woodworth S, Adam F, Dempsey EM. Addressing the Humans in the Delivery Room—Optimising Neonatal Monitoring and Decision-Making in Transition. Children. 2025; 12(4):402. https://doi.org/10.3390/children12040402
Chicago/Turabian StyleSchwarz, Christoph E., Bernhard Schwaberger, Alice Iride Flore, Robert Joyce, Simon Woodworth, Frederic Adam, and Eugene M. Dempsey. 2025. "Addressing the Humans in the Delivery Room—Optimising Neonatal Monitoring and Decision-Making in Transition" Children 12, no. 4: 402. https://doi.org/10.3390/children12040402
APA StyleSchwarz, C. E., Schwaberger, B., Flore, A. I., Joyce, R., Woodworth, S., Adam, F., & Dempsey, E. M. (2025). Addressing the Humans in the Delivery Room—Optimising Neonatal Monitoring and Decision-Making in Transition. Children, 12(4), 402. https://doi.org/10.3390/children12040402