Adolescents’ Assessment of Several Step Tracker Mobile Applications Based on Their Previous Level of Physical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Randomization and Blinding
2.4. Instruments
2.5. Procedure
2.6. Mobile Apps Interventions
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
H1 | Hypothesis 1 |
H2 | Hypothesis 2 |
H3 | Hypothesis 3 |
H4 | Hypothesis 4 |
ESO | Compulsory Secondary Education |
SD | standard deviation |
CI | confidence interval |
PAQ-A | Physical Activity Questionnaire for Adolescents questionnaire |
CERM | Questionnaire of Mobile-Phone-Related Experiences |
uMars | user version mobile application rating scale |
χ2 | Chi-square test |
ES | effect size |
References
- Hayba, N.; Rissel, C.; Allman Farinelli, M. Effectiveness of Lifestyle Interventions in Preventing Harmful Weight Gain among Adolescents: A Systematic Review of Systematic Reviews. Obes. Rev. 2021, 22, e13109. [Google Scholar] [CrossRef] [PubMed]
- Dimitri, P.; Joshi, K.; Jones, N. Moving More: Physical Activity and Its Positive Effects on Long Term Conditions in Children and Young People. Arch. Dis. Child. 2020, 105, 1035–1040. [Google Scholar] [CrossRef]
- Kallio, P.; Pahkala, K.; Heinonen, O.J.; Tammelin, T.H.; Pälve, K.; Hirvensalo, M.; Juonala, M.; Loo, B.-M.; Magnussen, C.G.; Rovio, S.; et al. Physical Inactivity from Youth to Adulthood and Adult Cardiometabolic Risk Profile. Prev. Med. 2021, 145, 106433. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; So, W.-Y.; Youn, H.-S.; Kim, J. Effects of School-Based Physical Activity Programs on Health-Related Physical Fitness of Korean Adolescents: A Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 2976. [Google Scholar] [CrossRef]
- Moreno-Díaz, M.I.; Vaquero-Solís, M.; Tapia-Serrano, M.Á.; Sánchez-Miguel, P.A. Physical Activity, Body Composition, Physical Fitness, and Body Dissatisfaction in Physical Education of Extremadura Adolescents: An Exploratory Study. Children 2024, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, X.; Huang, Z.; Shao, T. Effect of Exercise Intervention on Depression in Children and Adolescents: A Systematic Review and Network Meta-Analysis. BMC Public Health 2023, 23, 1918. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global Trends in Insufficient Physical Activity among Adolescents: A Pooled Analysis of 298 Population-Based Surveys with 1·6 Million Participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Khan, A.; Mandic, S.; Uddin, R. Association of Active School Commuting with Physical Activity and Sedentary Behaviour among Adolescents: A Global Perspective from 80 Countries. J. Sci. Med. Sport 2021, 24, 567–572. [Google Scholar] [CrossRef]
- Larouche, R.; Saunders, T.J.; John Faulkner, G.E.; Colley, R.; Tremblay, M. Associations between Active School Transport and Physical Activity, Body Composition, and Cardiovascular Fitness: A Systematic Review of 68 Studies. J. Phys. Act. Health 2014, 11, 206–227. [Google Scholar] [CrossRef]
- Barroso Rodríguez, J.; Ries, F. Intervenciones de La Escuela Activa: Revisión de Posibles Propuestas. Rev. Esp. Educ. Fís. Y Deportes 2023, 437, 1–13. [Google Scholar] [CrossRef]
- Parrish, A.-M.; Chong, K.H.; Moriarty, A.L.; Batterham, M.; Ridgers, N.D. Interventions to Change School Recess Activity Levels in Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 2145–2173. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Borrego, F.; Corral-Pernía, J.A.; Castañeda Vázquez, C. Condición Física En Jóvenes y Su Relación Con La Actividad Física Escolar y Extraescolar. Rev. Interuniv. Form. Profr. 2020, 95, 99–114. [Google Scholar] [CrossRef]
- Mendoza, J.A.; Watson, K.; Nguyen, N.; Cerin, E.; Baranowski, T.; Nicklas, T.A. Active Commuting to School and Association with Physical Activity and Adiposity among US Youth. J. Phys. Act. Health 2011, 8, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Pulido Sánchez, S.; Iglesias Gallego, D. Evidence-Based Overview of Accelerometer-Measured Physical Activity during School Recess: An Updated Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 578. [Google Scholar] [CrossRef]
- Borde, R.; Smith, J.J.; Sutherland, R.; Nathan, N.; Lubans, D.R. Methodological Considerations and Impact of School-based Interventions on Objectively Measured Physical Activity in Adolescents: A Systematic Review and Meta-analysis. Obes. Rev. 2017, 18, 476–490. [Google Scholar] [CrossRef]
- Love, R.; Adams, J.; van Sluijs, E.M.F. Are School-based Physical Activity Interventions Effective and Equitable? A Meta-analysis of Cluster Randomized Controlled Trials with Accelerometer-assessed Activity. Obes. Rev. 2019, 20, 859–870. [Google Scholar] [CrossRef]
- Baumann, H.; Fiedler, J.; Wunsch, K.; Woll, A.; Wollesen, B. MHealth Interventions to Reduce Physical Inactivity and Sedentary Behavior in Children and Adolescents: Systematic Review and Meta-Analysis of Randomized Controlled Trials. JMIR Mhealth Uhealth 2022, 10, e35920. [Google Scholar] [CrossRef]
- Seah, M.L.C.; Koh, K.T. The Efficacy of Using Mobile Applications in Changing Adolescent Girls’ Physical Activity Behaviour during Weekends. Eur. Phys. Educ. Rev. 2020, 27, 113–131. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; Abenza-Cano, L.; Albaladejo-Saura, M.D.; Vaquero-Cristóbal, R. Mandatory After-School Use of Step Tracker Apps Improves Physical Activity, Body Composition and Fitness of Adolescents. Educ. Inf. Technol. 2023, 28, 10235–10266. [Google Scholar] [CrossRef]
- He, Z.; Wu, H.; Yu, F.; Fu, J.; Sun, S.; Huang, T.; Wang, R.; Chen, D.; Zhao, G.; Quan, M. Effects of Smartphone-Based Interventions on Physical Activity in Children and Adolescents: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth 2021, 9, e22601. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; Abenza-Cano, L.; Vaquero-Cristóbal, R. Importance of Perceived Quality and Usability of Step Tracker Mobile Apps for Their Use by Adolescents. Int. J. Adolesc. Youth 2024, 29, 2389310. [Google Scholar] [CrossRef]
- Ponce-Ramírez, C.M.; Mateo-Orcajada, A.; Abenza-Cano, L.; Vaquero-Cristóbal, R. Assessment of Step Tracker Mobile Applications for the Promotion of Physical Activity by Adolescents Based on Their Weight Status. Int. J. Telemed. Appl. 2024, 2024, 8038334. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Orcajada, A.; Abenza-Cano, L.; López-Miñarro, P.Á.; Meroño, L.; Gallardo-Guerrero, A.M.; Morales-Belando, M.; González-Gálvez, N.; Espeso-García, A.; Abelleira-Lamela, T.; Gómez-Cuesta, N.; et al. Analyzing the Keys to the Design of a Mobile Application for Physical Activity for School and Out-of-School Use from the Perspective of Adolescents, Teachers, Coaches, Managers, and Experts. PLoS ONE 2025, in press. [Google Scholar]
- You, Y.; Yang-Huang, J.; Raat, H.; Van Grieken, A. Social Media Use and Health-Related Quality of Life among Adolescents: Cross-Sectional Study. JMIR Ment. Health 2022, 9, e39710. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cuesta, N.; Mateo-Orcajada, A.; Meroño, L.; Abenza-Cano, L.; Vaquero-Cristóbal, R. A Mobile App-Based Intervention Improves Anthropometry, Body Composition and Fitness, Regardless of Previous Active-Inactive Status: A Randomized Controlled Trial. Front. Public Health 2024, 12, 1380621. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials. Int. J. Surg. 2010, 9, 672–677. [Google Scholar] [CrossRef]
- Kowalski, K.C.; Crocker, P.R.E.; Columbia, B.; Donen, R.M. The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual; College of Kinesiology, University of Saskatchewan: Saskatoon, SK, Canda, 2004. [Google Scholar]
- Martínez-Gómez, D.; Martínez-de-Haro, V.; Pozo, T.; Welk, G.J.; Villagra, A.; Calle, M.E.; Marcos, A.; Veiga, O.L. Fiabilidad y Validez Del Cuestionario de Actividad Física PAQ-A En Adolescentes Españoles. Rev. Esp. Salud Publica 2009, 83. [Google Scholar] [CrossRef]
- Benítez-Porres, J.; Alvero-Cruz, J.R.; Sardinha, L.B.; López-Fernández, I.; Carnero, E.A. Cut-off Values for Classifying Active Children and Adolescentes Using the Physical Activity Questionnaire: PAQ-C and PAQ-A. Nutr. Hosp. 2016, 33, 1036–1044. [Google Scholar] [CrossRef]
- Beranuy Fargues, M.; Chamarro Lusar, A.; Graner Jordania, C.; Carbonell Sánchez, X. Validación de Dos Escalas Breves Para Evaluar La Adicción a Internet y El Abuso de Móvil. Psicothema 2009, 21, 480–485. [Google Scholar]
- Stoyanov, S.R.; Hides, L.; Kavanagh, D.J.; Wilson, H. Development and Validation of the User Version of the Mobile Application Rating Scale (UMARS). JMIR Mhealth Uhealth 2016, 4, e72. [Google Scholar] [CrossRef]
- Martin-Payo, R.; Carrasco-Santos, S.; Cuesta, M.; Stoyan, S.; Gonzalez-Mendez, X.; Fernandez-Alvarez, M.d.M. Spanish Adaptation and Validation of the User Version of the Mobile Application Rating Scale (UMARS). J. Am. Med. Inform. Assoc. 2021, 28, 2681–2686. [Google Scholar] [CrossRef]
- Bondaronek, P.; Alkhaldi, G.; Slee, A.; Hamilton, F.L.; Murray, E. Quality of Publicly Available Physical Activity Apps: Review and Content Analysis. JMIR Mhealth Uhealth 2018, 6, e53. [Google Scholar] [CrossRef]
- Lee, J.E.; Zeng, N.; Oh, Y.; Lee, D.; Gao, Z. Effects of Pokémon GO on Physical Activity and Psychological and Social Outcomes: A Systematic Review. J. Clin. Med. 2021, 10, 1860. [Google Scholar] [CrossRef] [PubMed]
- Khamzina, M.; Parab, K.V.; An, R.; Bullard, T.; Grigsby-Toussaint, D.S. Impact of Pokémon Go on Physical Activity: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2020, 58, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Orcajada, A.; Vaquero-Cristóbal, R.; Abenza-Cano, L. Importance of Training Volume through the Use of Step Trackers Apps Promoted from the Subject of Physical Education to Change Body Composition, Physical Fitness and Physical Activity in Adolescents and the Influence of Gender. Physiol. Behav. 2024, 273, 114402. [Google Scholar] [CrossRef] [PubMed]
- Morency, C.; Demers, M.; Lapierre, L. How Many Steps Do You Have in Reserve? Transp. Res. Rec. J. Transp. Res. Board 2007, 1, 1–6. [Google Scholar] [CrossRef]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; Vaquero-Cristóbal, R.; Abenza-Cano, L. Gender and Academic Year as Moderators of the Efficacy of Mobile App Interventions to Promote Physical Activity in Adolescents: A Randomized Controlled Trial. Humanit. Soc. Sci. Commun. 2023, 10, 980. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; Vaquero-Cristóbal, R.; Abenza-Cano, L. The Use of Physical Activity Mobile Apps Improves the Psychological State of Adolescents: A Randomized Controlled Trial. Hum. Behav. Emerg. Technol. 2024, 2024, 4687827. [Google Scholar] [CrossRef]
- Martínez-López, E.J.; López-Serrano, S.; De La Torre-Cruz, M.; Ruiz-Ariza, A. Effects of the Augmented Reality Game Pokémon GO on Fitness and Fatness in Secondary School Students. Health Educ. J. 2022, 81, 54–68. [Google Scholar] [CrossRef]
- Winand, M.; Ng, A.; Byers, T. Pokémon “Go” but for How Long?: A Qualitative Analysis of Motivation to Play and Sustainability of Physical Activity Behaviour in Young Adults Using Mobile Augmented Reality. Manag. Sport Leis. 2022, 27, 421–438. [Google Scholar] [CrossRef]
- Alha, K.; Koskinen, E.; Paavilainen, J.; Hamari, J. Why Do People Play Location-Based Augmented Reality Games: A Study on Pokémon GO. Comput. Hum. Behav. 2019, 93, 114–122. [Google Scholar] [CrossRef]
- Gao, Z.; Lee, J.E. Emerging Technology in Promoting Physical Activity and Health: Challenges and Opportunities. J. Clin. Med. 2019, 8, 1830. [Google Scholar] [CrossRef] [PubMed]
- Kantomaa, M.T.; Stamatakis, E.; Kankaanpää, A.; Kajantie, E.; Taanila, A.; Tammelin, T. Associations of Physical Activity and Sedentary Behavior with Adolescent Academic Achievement. J. Res. Adolesc. 2016, 26, 432–442. [Google Scholar] [CrossRef]
- Haapala, E.A.; Haapala, H.L.; Syväoja, H.; Tammelin, T.H.; Finni, T.; Kiuru, N. Longitudinal Associations of Physical Activity and Pubertal Development with Academic Achievement in Adolescents. J. Sport Health Sci. 2020, 9, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Lawler, M.; Heary, C.; Nixon, E. Variations in Adolescents’ Motivational Characteristics across Gender and Physical Activity Patterns: A Latent Class Analysis Approach. BMC Public Health 2017, 17, 661. [Google Scholar] [CrossRef]
- Nogg, K.A.; Vaughn, A.A.; Levy, S.S.; Blashill, A.J. Motivation for Physical Activity among U.S. Adolescents: A Self-Determination Theory Perspective. Ann. Behav. Med. 2020, 55, 133–143. [Google Scholar] [CrossRef]
- Sejdija, S.; Maggio, A.B. Exploration of Motivation to Be Physically Active among Overweight Adolescents in Switzerland. Clin. Child Psychol. Psychiatry 2025, 30, 491–501. [Google Scholar] [CrossRef]
- Lambrecht, A.; Vuillerme, N.; Raab, C.; Simon, D.; Messner, E.-M.; Hagen, M.; Bayat, S.; Kleyer, A.; Aubourg, T.; Schett, G.; et al. Quality of a Supporting Mobile App for Rheumatic Patients: Patient-Based Assessment Using the User Version of the Mobile Application Scale (UMARS). Front. Med. 2021, 8, 715345. [Google Scholar] [CrossRef]
- Gil-Espinosa, F.J.; Nielsen-Rodríguez, A.; Romance, R.; Burgueño, R. Smartphone Applications for Physical Activity Promotion from Physical Education. Educ. Inf. Technol. 2022, 27, 11759–11779. [Google Scholar] [CrossRef]
- Schoeppe, S.; Alley, S.; Rebar, A.L.; Hayman, M.; Bray, N.A.; Van Lippevelde, W.; Gnam, J.-P.; Bachert, P.; Direito, A.; Vandelanotte, C. Apps to Improve Diet, Physical Activity and Sedentary Behaviour in Children and Adolescents: A Review of Quality, Features and Behaviour Change Techniques. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 83. [Google Scholar] [CrossRef]
- Conroy, D.E.; Yang, C.-H.; Maher, J.P. Behavior Change Techniques in Top-Ranked Mobile Apps for Physical Activity. Am. J. Prev. Med. 2014, 46, 649–652. [Google Scholar] [CrossRef]
- Gomes, L.; Teixeira, D.; Slawinska, M.; Davis, P.; López-Flores, M.; Nyström, M.; Silva, M.; Palmeira, A.; Pereira, H. Adolescents’ Perspectives on Smartphone Applications for Physical Activity Promotion: Insights from Focus Group Discussions. Retos 2024, 56, 85–94. [Google Scholar] [CrossRef]
- Olander, A.; Wilhelmsson, J.; Davis, P.A.; Gomes, L.; Pereira, H.V.; Teixeira, D.S.; Nyström, M.B.T. An Exploration of Swedish Adolescents’ Experiences of Mobile Apps for Physical Activity. Psihol. Teme 2024, 33, 91–114. [Google Scholar] [CrossRef]
- Feliz de Vargas Viñado, J.; Herrera Mor, E.M. Motivación Hacia La Educación Física y Actividad Física Habitual En Adolescentes. Ágora Educ. Física Y Deporte 2020, 22, 187–208. [Google Scholar] [CrossRef]
- Shannon, H.; Bush, K.; Villeneuve, P.J.; Hellemans, K.G.; Guimond, S. Problematic Social Media Use in Adolescents and Young Adults: Systematic Review and Meta-Analysis. JMIR Ment. Health 2022, 9, e33450. [Google Scholar] [CrossRef]
- Paakkari, L.; Tynjälä, J.; Lahti, H.; Ojala, K.; Lyyra, N. Problematic Social Media Use and Health among Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 1885. [Google Scholar] [CrossRef]
- Gath, M.E.; Monk, L.; Scott, A.; Gillon, G.T. Smartphones at School: A Mixed-Methods Analysis of Educators’ and Students’ Perspectives on Mobile Phone Use at School. Educ. Sci. 2024, 14, 351. [Google Scholar] [CrossRef]
- Meziane Cherif, K.; Azzouz, L.; Bendania, A.; Djaballah, S. The Teachers’ Ban or Permission of Smartphone Use in Algerian Secondary School Classrooms. Educ. Dimens. 2024, 11, 176–192. [Google Scholar] [CrossRef]
- Kuznekoff, J.H.; Titsworth, S. The Impact of Mobile Phone Usage on Student Learning. Commun. Educ. 2013, 62, 233–252. [Google Scholar] [CrossRef]
- Jašarević, D.; Avdić, B.; Kuduzović, E.; Kobelja, L.; Andrejaš, M. The Role of Schools in Educating Children for Leisure Time and in Leisure Time. Res. Educ. Rehabil. 2024, 7, 237–247. [Google Scholar] [CrossRef]
- Borraccino, A.; Lazzeri, G.; Kakaa, O.; Bad’ura, P.; Bottigliengo, D.; Dalmasso, P.; Lemma, P. The Contribution of Organised Leisure-Time Activities in Shaping Positive Community Health Practices among 13- and 15-Year-Old Adolescents: Results from the Health Behaviours in School-Aged Children Study in Italy. Int. J. Environ. Res. Public Health 2020, 17, 6637. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Orcajada, A.; González-Gálvez, N.; Abenza-Cano, L.; Vaquero-Cristóbal, R. Differences in Physical Fitness and Body Composition between Active and Sedentary Adolescents: A Systematic Review and Meta-Analysis. J. Youth Adolesc. 2022, 51, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Papastergiou, M.; Natsis, P.; Vernadakis, N.; Antoniou, P. Introducing Tablets and a Mobile Fitness Application into Primary School Physical Education. Educ. Inf. Technol. 2021, 26, 799–816. [Google Scholar] [CrossRef]
- Maněnová, M.; Knajfl, P.; Wolf, J. Motivation and Performance of Students in School Physical Education in Which Mobile Applications Are Used. Sustainability 2022, 14, 9016. [Google Scholar] [CrossRef]
- Yu, H.; Kulinna, P.H.; Lorenz, K.A. An Integration of Mobile Applications into Physical Education Programs. Strategies 2018, 31, 13–19. [Google Scholar] [CrossRef]
- Vega-Ramírez, L.; Notario, R.O.; Ávalos-Ramos, M.A. The Relevance of Mobile Applications in the Learning of Physical Education. Educ. Sci. 2020, 10, 329. [Google Scholar] [CrossRef]
- Mateo-Orcajada, A.; Abenza-Cano, L.; Vaquero-Cristóbal, R.; Martínez-Castro, S.M.; Leiva-Arcas, A.; Gallardo-Guerrero, A.M.; Sánchez-Pato, A. Influence of Gender Stereotypes, Type of Sport Watched and Close Environment on Adolescent Sport Practice According to Gender. Sustainability 2021, 13, 11863. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Riebe, D., Ehrman, J., Liguori, G., Magal, M., Eds.; ACSM Group: Beijing, China, 2016. [Google Scholar]
Time Moment | Activity Level | Weekly Activity Days | Adj Res. Dropout/Non Dropout | Group Diff. (χ2, p) | Contingency Coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
0/1 | 2 | 3 | 4 | 5 | |||||
Walking | |||||||||
Pre | Active | 12 (11.8%) | 29 (28.4%) | 18 (17.6%) | 17 (16.7%) | 26 (25.5%) | −2.6; 2.6 | 12.16; p = 0.016 | 0.220 |
Inactive | 31 (22.6%) | 45 (32.8%) | 30 (21.9%) | 8 (10.2%) | 17 (12.4%) | ||||
Post | Active | 6 (5.9%) | 28 (27.5%) | 32 (31.4%) | 15 (14.7%) | 21 (20.6%) | −1.2; 1.2 | 4.30; p = 0.367 | 0.134 |
Inactive | 13 (9.5%) | 48 (35.0%) | 42 (30.7%) | 13 (9.5%) | 21 (15.3%) | ||||
Running | |||||||||
Pre | Active | 13 (12.7%) | 31 (30.4%) | 25 (24.5%) | 22 (21.6%) | 11 (10.8%) | 5.4; −5.4 | 47.47; p < 0.001 | 0.446 |
Inactive | 62 (45.3%) | 47 (34.3%) | 20 (14.6%) | 4 (2.9%) | 4 (2.9%) | ||||
Post | Active | 14 (13.7%) | 38 (37.3%) | 22 (21.6%) | 19 (18.6%) | 9 (8.8%) | 3.7; −3.7 | 25.55; p < 0.001 | 0.327 |
Inactive | 48 (35.0%) | 42 (30.7%) | 36 (26.3%) | 6 (4.4%) | 5 (3.6%) |
App Used | Initial Sample (n) | Final Sample (n, %) | Dropout (n; %) | Adj Res. Dropout/Non Dropout | Group Diff. (χ2, p) | Contingency Coefficient |
---|---|---|---|---|---|---|
Total sample according to mobile app used | ||||||
Pokémon Go | 59 | 42 (71.19%) | 17 (28.81%) | −1.7/1.7 | χ2 = 3.525; p = 0.318 | 0.120 |
Strava | 74 | 59 (79.73%) | 15 (20.27%) | 0.1/−0.1 | ||
Pacer | 60 | 49 (81.67%) | 11 (18.33%) | 0.6/−0.6 | ||
MapMyWalk | 47 | 40 (85.11%) | 7 (14.89%) | 1.1/−1.1 | ||
Sample divided according to level of physical activity and app used | ||||||
Pokémon Go—IN | 29 | 16 (55.2%) | 13 (44.8%) | −3.2/3.2 | χ2 = 10.997; p = 0.012 | 0.272 |
Strava—IN | 43 | 37 (86.0%) | 6 (14.0%) | 1.6/−1.6 | ||
Pacer—IN | 37 | 31 (83.8%) | 6 (16.2%) | 1.1/−1.1 | ||
MapMyWalk—IN | 29 | 23 (79.3%) | 6 (20.7%) | 0.3/−0.3 | ||
Pokémon Go—A | 30 | 26 (86.7%) | 4 (13.3%) | 0.9/−0.9 | χ2 = 4.945; p = 0.176 | 0.215 |
Strava—A | 31 | 22 (71.0%) | 9 (29.0%) | −1.8/1.8 | ||
Pacer—A | 23 | 18 (78.3%) | 5 (21.7%) | −0.4/0.4 | ||
MapMyWalk—A | 18 | 17 (94.4%) | 1 (5.6%) | 1.6/−1.6 |
App Used | Active | Inactive | Mean Diff. (Normal-Over) | F | p | 95% CI | Effect Size | |
---|---|---|---|---|---|---|---|---|
Engagement | Pokémon Go | 3.43 ± 1.39 | 3.34 ± 1.49 | 0.095 ± 0.320 | 0.089 | 0.766 | −0.535; 0.726 | 0.001 |
Strava | 3.52 ± 1.16 | 3.43 ± 1.11 | 0.088 ± 0.289 | 0.093 | 0.761 | −0.482; 0.659 | 0.001 | |
Pacer | 3.38 ± 1.14 | 3.51 ± 0.80 | −0.131 ± 0.326 | 0.161 | 0.689 | −0.774; 0.512 | 0.001 | |
Map My Walk | 3.37 ± 1.36 | 3.15 ± 1.42 | 0.215 ± 0.369 | 0.340 | 0.560 | −0.511; 0.941 | 0.001 | |
Functionality | Pokémon Go | 3.39 ± 1.40 | 3.28 ± 1.56 | 0.107 ± 0.338 | 0.101 | 0.751 | −0.558; 0.773 | 0.001 |
Strava | 3.68 ± 1.23 | 3.67 ± 1.15 | 0.009 ± 0.306 | 0.001 | 0.977 | −0.593; 0.611 | 0.001 | |
Pacer | 3.96 ± 1.23 | 3.92 ± 0.80 | 0.038 ± 0.344 | 0.012 | 0.913 | −0.641; 0.716 | 0.001 | |
Map My Walk | 3.68 ± 1.49 | 3.46 ± 1.58 | 0.224 ± 0.389 | 0.330 | 0.566 | −0.543; 0.990 | 0.001 | |
Aesthetics | Pokémon Go | 3.39 ± 1.46 | 3.24 ± 1.71 | 0.148 ± 0.344 | 0.184 | 0.669 | −0.530; 0.825 | 0.001 |
Strava | 3.67 ± 1.23 | 3.68 ± 1.18 | −0.016 ± 0.311 | 0.002 | 0.960 | −0.629; 0.598 | 0.001 | |
Pacer | 3.86 ± 1.15 | 3.76 ± 0.88 | 0.098 ± 0.351 | 0.079 | 0.780 | −0.593; 0.790 | 0.001 | |
Map My Walk | 3.52 ± 1.51 | 3.39 ± 1.48 | 0.128 ± 0.396 | 0.104 | 0.748 | −0.653; 0.909 | 0.001 | |
Information | Pokémon Go | 3.21 ± 1.50 | 3.15 ± 1.72 | 0.062 ± 0.354 | 0.030 | 0.862 | −0.635; 0.759 | 0.001 |
Strava | 3.79 ± 1.16 | 3.57 ± 1.24 | 0.221 ± 0.320 | 0.475 | 0.492 | −0.410; 0.851 | 0.002 | |
Pacer | 3.87 ± 1.25 | 3.76 ± 0.94 | 0.113 ± 0.361 | 0.098 | 0.755 | −0.598; 0.824 | 0.001 | |
Map My Walk | 3.71 ± 1.55 | 3.37 ± 1.57 | 0.338 ± 0.408 | 0.686 | 0.408 | −0.466; 1.141 | 0.003 | |
Usability | Pokémon Go | 2.62 ± 1.37 | 2.54 ± 1.43 | 0.074 ± 0.297 | 0.061 | 0.805 | −0.512; 0.659 | 0.001 |
Strava | 3.17 ± 1.00 | 2.89 ± 1.01 | 0.280 ± 0.269 | 1.084 | 0.299 | −0.250; 0.809 | 0.005 | |
Pacer | 3.25 ± 1.03 | 3.03 ± 0.72 | 0.216 ± 0.303 | 0.510 | 0.476 | −0.380; 0.813 | 0.002 | |
Map My Walk | 3.00 ± 1.31 | 2.72 ± 1.28 | 0.284 ± 0.342 | 0.691 | 0.407 | −0.390; 0.959 | 0.003 | |
Perceived impact | Pokémon Go | 2.81 ± 1.52 | 2.66 ± 1.56 | 0.156 ± 0.336 | 0.215 | 0.643 | −0.507; 0.818 | 0.001 |
Strava | 3.17 ± 1.23 | 2.77 ± 1.14 | 0.395 ± 0.304 | 1.689 | 0.195 | −0.204; 0.995 | 0.007 | |
Pacer | 3.09 ± 1.26 | 3.06 ± 0.90 | 0.028 ± 0.343 | 0.007 | 0.934 | −0.647; 0.704 | 0.001 | |
Map My Walk | 2.65 ±1.40 | 2.75 ± 1.38 | −0.105 ± 0.387 | 0.073 | 0.787 | −0.868; 0.659 | 0.001 |
Physical Activity Level | Pokémon Go | Strava | Pacer | MapMyWalk | F | p | Effect Size | |
---|---|---|---|---|---|---|---|---|
Engagement | Active | 3.43 ± 1.39 | 3.52 ± 1.16 | 3.38 ± 1.14 | 3.37 ± 1.36 | 0.078 | 0.972 | 0.001 |
Inactive | 3.34 ± 1.49 | 3.43 ± 1.11 | 3.51 ± 0.80 | 3.15 ± 1.42 | 0.511 | 0.675 | 0.007 | |
Functionality | Active | 3.39 ± 1.40 | 3.68 ± 1.23 | 3.96 ± 1.23 | 3.68 ± 1.49 | 0.832 | 0.477 | 0.011 |
Inactive | 3.28 ± 1.56 | 3.67 ± 1.15 | 3.92 ± 0.80 | 3.46 ± 1.58 | 1.473 | 0.223 | 0.019 | |
Aesthetics | Active | 3.39 ± 1.46 | 3.67 ± 1.23 | 3.86 ± 1.15 | 3.52 ± 1.51 | 0.590 | 0.622 | 0.008 |
Inactive | 3.24 ± 1.71 | 3.68 ± 1.18 | 3.76 ± 0.88 | 3.39 ± 1.48 | 1.113 | 0.345 | 0.014 | |
Information | Active | 3.21 ± 1.50 | 3.79 ± 1.16 | 3.87 ± 1.25 | 3.71 ± 1.55 | 1.364 | 0.255 | 0.017 |
Inactive | 3.15 ± 1.72 | 3.57 ± 1.24 | 3.76 ± 0.94 | 3.37 ± 1.57 | 1.217 | 0.304 | 0.015 | |
Usability | Active | 2.62 ± 1.37 | 3.17 ± 1.00 | 3.25 ± 1.03 | 3.00 ± 1.31 | 1.725 | 0.163 | 0.022 |
Inactive | 2.54 ± 1.43 | 2.89 ± 1.01 | 3.03 ± 0.72 | 2.72 ± 1.28 | 1.137 | 0.335 | 0.014 | |
Perceived impact | Active | 2.81 ± 1.52 | 3.17 ± 1.23 | 3.09 ± 1.26 | 2.65 ± 1.40 | 0.8221 | 0.484 | 0.011 |
Inactive | 2.66 ± 1.56 | 2.77 ± 1.14 | 3.06 ± 0.90 | 2.75 ± 1.38 | 0.625 | 0.599 | 0.008 |
Descriptors (M ± SD) | Covariate Quality of the App | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mobile App | Pre | Post | Mean Diff. | p | 95% CI | Effect Size | p | 95% CI | Effect Size | ||
CERM score | Active | Pokémon Go | 16.27 ± 5.30 | 15.77 ± 7.69 | 0.500 ± 0.994 | 0.616 | −1.459; 2.459 | 0.001 | 0.765 | −1.606; 2.182 | 0.001 |
Strava | 15.03 ± 3.73 | 14.45 ± 3.48 | 0.581 ± 0.978 | 0.553 | −1.347; 2.508 | 0.002 | 0.442 | −1.134; 2.590 | 0.003 | ||
Pacer | 14.74 ± 4.08 | 14.65 ± 2.87 | 0.087 ± 1.136 | 0.939 | −2.151; 2.325 | 0.001 | 0.747 | −1.809; 2.519 | 0.001 | ||
MapMyWalk | 14.78 ± 2.96 | 15.56 ± 6.35 | −0.778 ± 1.284 | 0.545 | −3.307; 1.752 | 0.002 | 0.551 | −3.183; 1.702 | 0.002 | ||
Inactive | Pokémon Go | 14.93 ± 5.83 | 15.31 ± 5.25 | −0.379 ± 1.011 | 0.708 | −2.372; 1.614 | 0.001 | 0.468 | −2.642; 1.219 | 0.002 | |
Strava | 15.42 ± 3.67 | 14.86 ± 3.01 | 0.558 ± 0.831 | 0.502 | −1.078; 2.196 | 0.002 | 0.442 | −0.963; 2.197 | 0.003 | ||
Pacer | 15.59 ± 5.42 | 17.41 ± 4.95 | −1.811 ± 0.895 | 0.044 | −3.575;−0.047 | 0.017 | 0.070 | −3.284; 0.130 | 0.014 | ||
MapMyWalk | 14.69 ± 3.49 | 14.52 ± 5.58 | 0.172 ± 1.011 | 0.865 | −1.820; 2.165 | 0.001 | 0.955 | −1.982; 1.872 | 0.001 | ||
Conflictive use | Active | Pokémon Go | 6.70 ± 2.52 | 6.77 ± 3.75 | −0.067 ± 0.452 | 0.883 | −0.957; 0.823 | 0.001 | 0.738 | −1.018; 0.722 | 0.001 |
Strava | 6.32 ± 1.78 | 6.23 ± 1.82 | 0.097 ± 0.444 | 0.828 | −0.779; 0.972 | 0.001 | 0.724 | −0.702; 1.009 | 0.001 | ||
Pacer | 6.09 ± 1.70 | 5.91 ± 0.10 | 0.174 ± 0.516 | 0.736 | −0.843; 1.191 | 0.001 | 0.584 | −0.717; 1.271 | 0.001 | ||
MapMyWalk | 6.50 ± 1.54 | 7.33 ± 4.28 | −0.833 ± 0.583 | 0.154 | −1.982; 0.316 | 0.009 | 0.152 | −1.941 ± 0.303 | 0.009 | ||
Inactive | Pokémon Go | 6.45 ± 2.73 | 6.69 ± 2.77 | −0.241 ± 0.460 | 0.600 | −1.147; 0.664 | 0.001 | 0.413 | 1.256; 0.518 | 0.003 | |
Strava | 6.28 ± 1.58 | 6.16 ± 1.54 | 0.116 ± 0.377 | 0.758 | −0.627; 0.860 | 0.001 | 0.707 | −0.587; 0.865 | 0.001 | ||
Pacer | 6.43 ± 2.18 | 7.22 ± 2.44 | −0.784 ± 0.407 | 0.055 | −1.585; 0.018 | 0.016 | 0.082 | −1.478; 0.090 | 0.013 | ||
MapMyWalk | 5.93 ± 1.69 | 6.24 ± 2.55 | −0.310 ± 0.460 | 0.500 | −1.216; 0.595 | 0.002 | 0.377 | −1.283; 0.488 | 0.003 | ||
Emotional use | Active | Pokémon Go | 9.57 ± 3.29 | 9.00 ± 4.30 | 0.567 ± 0.621 | 0.362 | −0.656; 1.790 | 0.004 | 0.469 | −0.748; 1.620 | 0.002 |
Strava | 8.71 ± 2.47 | 8.23 ± 2.25 | 0.484 ± 0.611 | 0.429 | −0.719; 1.687 | 0.003 | 0.332 | −0.589; 1.738 | 0.004 | ||
Pacer | 8.65 ± 2.71 | 8.74 ± 2.36 | −0.087 ± 0.709 | 0.902 | −1.484; 1.310 | 0.001 | 0.909 | −1.274; 1.431 | 0.001 | ||
MapMyWalk | 8.28 ± 1.78 | 8.22 ± 2.53 | 0.056 ± 0.801 | 0.945 | −1.523; 1.635 | 0.001 | 0.919 | −1.448; 1.605 | 0.001 | ||
Inactive | Pokémon Go | 8.48 ± 3.47 | 8.62 ± 2.90 | −0.138 ± 0.631 | 0.827 | −1.382; 1.106 | 0.001 | 0.576 | −1.549; 0.863 | 0.001 | |
Strava | 9.14 ± 2.51 | 8.70 ± 1.95 | 0.442 ± 0.519 | 0.395 | −0.580; 1.463 | 0.003 | 0.341 | −0.509; 1.466 | 0.004 | ||
Pacer | 9.16 ± 3.68 | 10.19 ± 2.94 | −1.027 ± 0.559 | 0.067 | −2.128; 0.074 | 0.014 | 0.104 | −1.950; 0.184 | 0.011 | ||
MapMyWalk | 8.76 ± 2.33 | 8.28 ± 3.38 | 0.483 ± 0.631 | 0.445 | −0.761; 1.727 | 0.003 | 0.575 | −0.861; 1.547 | 0.001 |
Inactive | |||||||||
Training Volume | Engagement | Functionality | Aesthetics | Information | Usability | Perceived Impact | CERM Total Score | Conflictive Use | |
Training volume | - | - | - | - | - | - | - | - | |
Engagement | 0.007; p = 0.933 | - | - | - | - | - | - | - | |
Functionality | 0.034; p = 0.695 | 0.905; p < 0.001 | - | - | - | - | - | - | |
Aesthetics | −0.001; p = 0.992 | 0.870; p < 0.001 | 0.926; p < 0.001 | - | - | - | - | - | |
Information | 0.074; p = 0.387 | 0.859; p < 0.001 | 0.911; p < 0.001 | 0.927; p < 0.001 | - | - | - | - | |
Usability | −0.013; p = 0.884 | 0.804; p < 0.001 | 0.812; p < 0.001 | 0.822; p < 0.001 | 0.824; p < 0.001 | - | - | - | |
Perceived impact | −0.067; p = 0.432 | 0.732; p < 0.001 | 0.777; p < 0.001 | 0.759; p < 0.001 | 0.740; p < 0.001 | 0.827; p < 0.001 | - | - | |
CERM total score | −0.114; p = 0.184 | 0.106; p = 0.218 | 0.125; p = 0.144 | 0.091; p = 0.290 | 0.099; p = 0.250 | 0.158; p = 0.064 | 0.176; p = 0.038 | - | |
Conflictive use | −0.118; p = 0.168 | 0.077; p = 0.369 | 0.082; p = 0.340 | 0.079; p = 0.360 | 0.088; p = 0.304 | 0.162; p = 0.058 | 0.198; p = 0.020 | 0.902; p < 0.001 | |
Emotional use | −0.094; p = 0.274 | 0.114; p = 0.184 | 0.142; p = 0.096 | 0.088; p = 0.307 | 0.093; p = 0.278 | 0.132; p = 0.122 | 0.133; p = 0.119 | 0.936; p < 0.001 | 0.693; p < 0.001 |
Active | |||||||||
Training volume | Engagement | Functionality | Aesthetics | Information | Usability | Perceived Impact | CERM Total Score | Conflictive Use | |
Training volume | - | - | - | - | - | - | - | - | |
Engagement | 0.080; p = 0.423 | - | - | - | - | - | - | - | |
Functionality | 0.015; p = 0.879 | 0.884; p < 0.001 | - | - | - | - | - | - | |
Aesthetics | −0.070; p = 0.485 | 0.878; p < 0.001 | 0.907; p < 0.001 | - | - | - | - | - | |
Information | −0.009; p = 0.927 | 0.833; p < 0.001 | 0.868; p < 0.001 | 0.876; p < 0.001 | - | - | - | - | |
Usability | −0.006; p = 0.952 | 0.820; p < 0.001 | 0.853; p < 0.001 | 0.834; p < 0.001 | 0.896; p < 0.001 | - | - | - | |
Perceived impact | −0.056; p = 0.573 | 0.681; p < 0.001 | 0.723; p < 0.001 | 0.722; p < 0.001 | 0.791; p < 0.001 | 0.793; p < 0.001 | - | - | |
CERM total score | 0.225; p = 0.023 | 0.424; p < 0.001 | 0.348; p < 0.001 | 0.311; p = 0.001 | 0.302; p = 0.002 | 0.332; p < 0.001 | 0.190; p = 0.055 | - | |
Conflictive use | 0.236; p = 0.017 | 0.342; p < 0.001 | 0.264; p = 0.007 | 0.215; p = 0.030 | 0.225; p = 0.023 | 0.256; p = 0.009 | 0.160; p = 0.107 | 0.907; p < 0.001 | |
Emotional use | 0.174; p = 0.080 | 0.428; p < 0.001 | 0.368; p < 0.001 | 0.349; p < 0.001 | 0.323; p < 0.001 | 0.347; p < 0.001 | 0.186; p = 0.061 | 0.914; p < 0.001 | 0.659; p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cuesta, N.; Mateo-Orcajada, A.; Meroño, L.; Abenza-Cano, L.; Vaquero-Cristóbal, R. Adolescents’ Assessment of Several Step Tracker Mobile Applications Based on Their Previous Level of Physical Activity. Children 2025, 12, 554. https://doi.org/10.3390/children12050554
Gómez-Cuesta N, Mateo-Orcajada A, Meroño L, Abenza-Cano L, Vaquero-Cristóbal R. Adolescents’ Assessment of Several Step Tracker Mobile Applications Based on Their Previous Level of Physical Activity. Children. 2025; 12(5):554. https://doi.org/10.3390/children12050554
Chicago/Turabian StyleGómez-Cuesta, Nerea, Adrián Mateo-Orcajada, Lourdes Meroño, Lucía Abenza-Cano, and Raquel Vaquero-Cristóbal. 2025. "Adolescents’ Assessment of Several Step Tracker Mobile Applications Based on Their Previous Level of Physical Activity" Children 12, no. 5: 554. https://doi.org/10.3390/children12050554
APA StyleGómez-Cuesta, N., Mateo-Orcajada, A., Meroño, L., Abenza-Cano, L., & Vaquero-Cristóbal, R. (2025). Adolescents’ Assessment of Several Step Tracker Mobile Applications Based on Their Previous Level of Physical Activity. Children, 12(5), 554. https://doi.org/10.3390/children12050554