Cardiopulmonary Exercise Testing in Congenital Heart Disease: A Never-Ending Story from Paediatrics to Adult Life
Abstract
1. Introduction
2. Adults with Congenital Heart Disease
2.1. Indications and Timings
- Stage A (“at risk”)—Includes asymptomatic patients, with either repaired or unrepaired CHD, without anatomical, haemodynamic, or rhythm abnormalities who maintain normal exercise capacity and organ function.
- Stage B—Mildly symptomatic patients with mild structural or functional abnormalities, such as trivial shunts, mild valve disease or ventricular dilation, or arrhythmias that do not require treatment; objective exercise testing may reveal early limitations.
- Stage C—Patients with clinical symptoms, typically NYHA class III, due to moderate or greater valvular or ventricular dysfunction, significant shunts, or pulmonary hypertension (Arrhythmias may be present but are controlled, and organ dysfunction, if present, is generally responsive to therapy.
- Stage D—Advanced disease, characterized by severe functional limitation (NYHA IV), refractory arrhythmias, cyanosis or severe hypoxemia, Eisenmenger physiology, and end-organ dysfunction that is no longer responsive to treatment.
- In atrial septal defects (ASDs), ventricular septal defects (VSDs), atrioventricular septal defects (AVSDs), and patent ductus arteriosus (PDA): as needed for stages A or B, every 12–24 months for stage C, and every 6–12 months for stage D;
- In mitral stenosis, subaortic and supravalvular aortic stenosis: as needed for stage A, every 2 years for stage B and C, and annually for stage D;
- In pulmonary stenosis and double-chambered RV: every 2 years for stage B and C and yearly for stage D;
- In aortic coarctation and Ebstein’s anomaly: every 3 years (stage A), every 2 years (stage B or C), or yearly (stage D);
- In tetralogy of Fallot (ToF): every 3–5 years (stage A), every 2–5 years (stage B), or every 1–2 years (stage C or D);
- In right ventricular-to-pulmonary artery (RV-PA) conduit patients: as needed (stage A/B) or every 12–24 months (stage C/D);
- In arterial switch operation: every 3–5 years (stage A/B), every 2–3 years (stage C), or every 1–2 years (stage D).
2.2. General Considerations on CPET Parameters in Adults with Congenital Heart Disease
2.3. Prognostic Role of CPET
2.4. Specific Categories
2.5. Biventricular Circulation with a Systemic Morphologically Left Ventricle
2.6. Biventricular Circulation with a Systemic Morphologically Right Ventricle
2.7. Univentricular Heart
2.8. Eisenmenger Syndrome
3. Children with Congenital Heart Disease
3.1. Indications and Characteristics
3.2. General Considerations on CPET Parameters in Children with Congenital Heart Disease
3.3. Future Perspective and Unmet Needs
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
ACHD | Adult Congenital Heart Disease |
ASD | Atrial Septal Defect |
AT | Anaerobic Threshold |
AVSD | Atrioventricular Septal Defect |
BR | Breathing Reserve |
ccTGA | Congenitally Corrected Transposition of the Great Arteries |
CHD | Congenital Heart Disease |
CI | Chronotropic Incompetence |
CPET | Cardiopulmonary Exercise Testing |
D-TGA | Dextro-Transposition of the Great Arteries |
EOV | Exercise Oscillatory Ventilation |
ES | Eisenmenger Syndrome |
FEV1 | Forced Expiratory Volume in one second |
FVC | Forced Vital Capacity |
HF | Heart Failure |
HR | Heart Rate |
HRQoL | Health-Related Quality of Life |
HRR | Heart Rate Reserve |
IPAH | Idiopathic Pulmonary Arterial Hypertension |
MACE | Major Adverse Cardiovascular Events |
MVV | Maximum Voluntary Ventilation |
NYHA | New York Heart Association |
PDA | Patent Ductus Arteriosus |
PH | Pulmonary Hypertension |
RER | Respiratory Exchange Ratio |
RV | Right Ventricle |
RV-PA | Right Ventricle to Pulmonary Artery |
RVOTO | Right Ventricular Outflow Tract Obstruction |
SpO2 | Peripheral Oxygen Saturation |
TGA | Transposition of the Great Arteries |
ToF | Tetralogy of Fallot |
rToF | repaired ToF—Tetralogy of Fallot |
VCO2 | Carbon Dioxide Output |
VD/VT | Dead Space to Tidal Volume Ratio |
VE | Minute Ventilation |
VE/VCO2 slope | Ventilation to Carbon Dioxide Output Slope |
VE/VO2 | Ventilation to Oxygen Uptake Slope |
VO2 | Oxygen Consumption |
VO2 peak/Peak VO2 | Peak Oxygen Consumption |
VSD | Ventricular Septal Defect |
References
- Dimopoulos, K.; Diller, G.-P.; Piepoli, M.F.; Gatzoulis, M.A. Exercise intolerance in adults with congenital heart disease. Cardiol. Clin. 2006, 24, 641–660. [Google Scholar] [CrossRef]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults with Congenital Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, E637–E697. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef] [PubMed]
- Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, 5th ed.; Wasserman, K., Ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; ISBN 978-1-60913-899-8. [Google Scholar]
- Guazzi, M.; Arena, R.; Halle, M.; Piepoli, M.F.; Myers, J.; Lavie, C.J. 2016 focused update: Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur. Heart J. 2016, 39, 1144–1161. [Google Scholar] [CrossRef] [PubMed]
- Mezzani, A.; Agostoni, P.; Cohen-Solal, A.; Corrà, U.; Jegier, A.; Kouidi, E.; Mazic, S.; Meurin, P.; Piepoli, M.; Simon, A.; et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: A report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur. J. Prev. Cardiol. 2009, 16, 249–267. [Google Scholar] [CrossRef]
- Wadey, C.A.; Weston, M.E.; Dorobantu, D.M.; Pieles, G.E.; Stuart, G.; Barker, A.R.; Taylor, R.S.; Williams, C.A. The role of cardiopulmonary exercise testing in predicting mortality and morbidity in people with congenital heart disease: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2022, 29, 513–533. [Google Scholar] [CrossRef]
- Arena, R.; Myers, J.; Williams, M.A.; Gulati, M.; Kligfield, P.; Balady, G.J.; Collins, E.; Fletcher, G.; American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Nursing. Assessment of Functional Capacity in Clinical and Research Settings: A Scientific Statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation 2007, 116, 329–343. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- van Dissel, A.C.; Blok, I.M.; Hooglugt, J.-L.Q.; de Haan, F.H.; Jørstad, H.T.; Mulder, B.J.M.; Bouma, B.J.; Winter, M.M. Safety and effectiveness of home-based, self-selected exercise training in symptomatic adults with congenital heart disease: A prospective, randomised, controlled trial. Int. J. Cardiol. 2019, 278, 59–64. [Google Scholar] [CrossRef]
- Mantegazza, V.; Apostolo, A.; Hager, A. Cardiopulmonary Exercise Testing in Adult Congenital Heart Disease. Ann. Am. Thorac. Soc. 2017, 14, S93–S101. [Google Scholar] [CrossRef]
- Aguiar Rosa, S.; Agapito, A.; Soares, R.M.; Sousa, L.; Oliveira, J.A.; Abreu, A.; Silva, A.S.; Alves, S.; Aidos, H.; Pinto, F.F.; et al. Congenital heart disease in adults: Assessmentof functional capacity using cardiopulmonary exercise testing. Rev. Port. Cardiol. 2018, 37, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Kempny, A.; Dimopoulos, K.; Uebing, A.; Moceri, P.; Swan, L.; Gatzoulis, M.A.; Diller, G.-P. Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life–single centre experience and review of published data. Eur. Heart J. 2012, 33, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, R.; Diller, G.-P.; Borgia, F.; Benson, L.; Tay, E.L.W.; Alonso-Gonzalez, R.; Silva, M.; Charalambides, M.; Swan, L.; Dimopoulos, K.; et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 2012, 125, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Wilkoff, B.L.; Miller, R.E. Exercise Testing for Chronotropic Assessment. Cardiol. Clin. 1992, 10, 705–717. [Google Scholar] [CrossRef]
- Diller, G.-P.; Okonko, D.O.; Uebing, A.; Dimopoulos, K.; Bayne, S.; Sutton, R.; Francis, D.P.; Gatzoulis, M.A. Impaired heart rate response to exercise in adult patients with a systemic right ventricle or univentricular circulation: Prevalence, relation to exercise, and potential therapeutic implications. Int. J. Cardiol. 2009, 134, 59–66. [Google Scholar] [CrossRef]
- Chen, S.S.M.; Dimopoulos, K.; Sheehan, F.H.; Gatzoulis, M.A.; Kilner, P.J. Physiologic determinants of exercise capacity in patients with different types of right-sided regurgitant lesions: Ebstein’s malformation with tricuspid regurgitation and repaired tetralogy of Fallot with pulmonary regurgitation. Int. J. Cardiol. 2016, 205, 1–5. [Google Scholar] [CrossRef]
- Salvioni, E.; Mapelli, M.; Bonomi, A.; Magrì, D.; Piepoli, M.; Frigerio, M.; Paolillo, S.; Corrà, U.; Raimondo, R.; Lagioia, R.; et al. Pick Your Threshold: A Comparison Among Different Methods of Anaerobic Threshold Evaluation in Heart Failure Prognostic Assessment. Chest 2022, 162, 1106–1115. [Google Scholar] [CrossRef]
- Lui, G.K.; Silversides, C.K.; Khairy, P.; Fernandes, S.M.; Valente, A.M.; Nickolaus, M.J.; Earing, M.G.; Aboulhosn, J.A.; Rosenbaum, M.S.; Cook, S.; et al. Heart rate response during exercise and pregnancy outcome in women with congenital heart disease. Circulation 2011, 123, 242–248. [Google Scholar] [CrossRef]
- Giardini, A.; Specchia, S.; Tacy, T.A.; Coutsoumbas, G.; Gargiulo, G.; Donti, A.; Formigari, R.; Bonvicini, M.; Picchio, F.M. Usefulness of Cardiopulmonary Exercise to Predict Long-Term Prognosis in Adults with Repaired Tetralogy of Fallot. Am. J. Cardiol. 2007, 99, 1462–1467. [Google Scholar] [CrossRef]
- Udholm, S.; Aldweib, N.; Hjortdal, V.E.; Veldtman, G.R. Prognostic power of cardiopulmonary exercise testing in Fontan patients: A systematic review. Open Heart 2018, 5, e000812. [Google Scholar] [CrossRef]
- Babu-Narayan, S.V.; Diller, G.-P.; Gheta, R.R.; Bastin, A.J.; Karonis, T.; Li, W.; Pennell, D.J.; Uemura, H.; Sethia, B.; Gatzoulis, M.A.; et al. Clinical outcomes of surgical pulmonary valve replacement after repair of tetralogy of Fallot and potential prognostic value of preoperative cardiopulmonary exercise testing. Circulation 2014, 129, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Kipps, A.K.; Graham, D.A.; Harrild, D.M.; Lewis, E.; Powell, A.J.; Rhodes, J. Longitudinal Exercise Capacity of Patients With Repaired Tetralogy of Fallot. Am. J. Cardiol. 2011, 108, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Mezzani, A.; Giordano, A.; Moussa, N.B.; Micheletti, A.; Negura, D.; Saracino, A.; Canal, E.; Giannuzzi, P.; Chessa, M.; Carminati, M. Hemodynamic, not ventilatory, inefficiency is associated with high VE/VCO2 slope in repaired, noncyanotic congenital heart disease. Int. J. Cardiol. 2015, 191, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Beauchesne, L.M.; Warnes, C.A.; Connolly, H.M.; Ammash, N.M.; Tajik, A.J.; Danielson, G.K. Outcome of the unoperated adult who presents with congenitally corrected transposition of the great arteries. J. Am. Coll. Cardiol. 2002, 40, 285–290. [Google Scholar] [CrossRef]
- Tay, E.L.W.; Frogoudaki, A.; Inuzuka, R.; Giannakoulas, G.; Prapa, M.; Li, W.; Pantely, G.; Dimopoulos, K.; Gatzoulis, M.A. Exercise intolerance in patients with congenitally corrected transposition of the great arteries relates to right ventricular filling pressures. Int. J. Cardiol. 2011, 147, 219–223. [Google Scholar] [CrossRef]
- Shachar, G.B.; Fuhrman, B.P.; Wang, Y.; Lucas, R.V.; Lock, J.E. Rest and exercise hemodynamics after the Fontan procedure. Circulation 1982, 65, 1043–1048. [Google Scholar] [CrossRef]
- Diller, G.-P.; Giardini, A.; Dimopoulos, K.; Gargiulo, G.; Müller, J.; Derrick, G.; Giannakoulas, G.; Khambadkone, S.; Lammers, A.E.; Picchio, F.M.; et al. Predictors of morbidity and mortality in contemporary Fontan patients: Results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur. Heart J. 2010, 31, 3073–3083. [Google Scholar] [CrossRef]
- Peled, Y.; Ducharme, A.; Kittleson, M.; Bansal, N.; Stehlik, J.; Amdani, S.; Saeed, D.; Cheng, R.; Clarke, B.; Dobbels, F.; et al. International Society for Heart and Lung Transplantation Guidelines for the Evaluation and Care of Cardiac Transplant Candidates—2024. J. Heart Lung Transplant. 2024, 43, 1529–1628.e54. [Google Scholar] [CrossRef]
- Daliento, L.; Somerville, J.; Presbitero, P.; Menti, L.; Brach-Prever, S.; Rizzoli, G.; Stone, S. Eisenmenger syndrome. Factors relating to deterioration and death. Eur. Heart J. 1998, 19, 1845–1855. [Google Scholar] [CrossRef]
- Samaranayake, C.B.; Warren, C.; Siewers, K.; Craig, S.; Price, L.C.; Kempny, A.; Dimopoulos, K.; Gatzoulis, M.; Hopkinson, N.S.; Wort, S.J.; et al. Impact of cyanosis on ventilatory responses during stair climb exercise in Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Int. J. Cardiol. 2021, 341, 84–87. [Google Scholar] [CrossRef]
- Samaranayake, C.B.; McNiven, R.; Kempny, A.; Harries, C.; Price, L.C.; Gatzoulis, M.; Dimopoulos, K.; Wort, S.J.; McCabe, C. Exercise ventilatory reserve predicts survival in adult congenital heart disease associated pulmonary arterial hypertension with Eisenmenger physiology. Int. J. Cardiol. Congenit. Heart Dis. 2022, 7, 100331. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Okonko, D.O.; Diller, G.-P.; Broberg, C.S.; Salukhe, T.V.; Babu-Narayan, S.V.; Li, W.; Uebing, A.; Bayne, S.; Wensel, R.; et al. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation 2006, 113, 2796–2802. [Google Scholar] [CrossRef]
- Rowland, T.W.; American College of Sports Medicine, and North American Society for Pediatric Exercise Medicine. Cardiopulmonary Exercise Testing in Children and Adolescents; Human Kinetics: Champaign, IL, USA, 2019; ISBN 9781492544470 (print)/9781492544487 (e-book). [Google Scholar]
- Moalla, W.; Elloumi, M.; Chamari, K.; Dupont, G.; Maingourd, Y.; Tabka, Z.; Ahmaidi, S. Training effects on peripheral muscle oxygenation and performance in children with congenital heart diseases. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2012, 37, 621–630. [Google Scholar] [CrossRef]
- Paridon, S.M.; Alpert, B.S.; Boas, S.R.; Cabrera, M.E.; Caldarera, L.L.; Daniels, S.R.; Kimball, T.R.; Knilans, T.K.; Nixon, P.A.; Rhodes, J.; et al. Clinical stress testing in the pediatric age group: A statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation 2006, 113, 1905–1920. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Ubeda Tikkanen, A.; Jenkins, K.J. Exercise Testing and Training in Children with Congenital Heart Disease. Circulation 2010, 122, 1957–1967. [Google Scholar] [CrossRef]
- Van Brussel, M.; Bongers, B.C.; Hulzebos, E.H.J.; Burghard, M.; Takken, T. A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics. Pediatr. Exerc. Sci. 2019, 31, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Harkel, A.D.J.T.; Takken, T.; Van Osch-Gevers, M.; Helbing, W.A. Normal values for cardiopulmonary exercise testing in children. Eur. J. Cardiovasc. Prev. Rehabil. 2011, 18, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, S.; Davies, C.T.; Wozniak, E.; Barnes, C.A. Cardio-respiratory response to exercise in normal children. Clin. Sci. 1971, 40, 419–431. [Google Scholar] [CrossRef]
- Rückert, J.; Michaelis, A.; Markel, F.; Kalden, P.; Löffelbein, F.; Klehs, S.; Dähnert, I.; Schöffl, I.; Rottermann, K.; Paech, C. Open Field Exercise Testing in Pediatric Congenital Heart Disease Patients: A Subsumption of Cardiovascular Parameters. Pediatr. Cardiol. 2023, 44, 1831–1838. [Google Scholar] [CrossRef]
- Amedro, P.; Gavotto, A.; Guillaumont, S.; Bertet, H.; Vincenti, M.; Villeon, G.D.L.; Bredy, C.; Acar, P.; Ovaert, C.; Picot, M.-C.; et al. Cardiopulmonary fitness in children with congenital heart diseases versus healthy children. Heart 2018, 104, 1026–1036. [Google Scholar] [CrossRef]
- Amedro, P.; Picot, M.C.; Moniotte, S.; Dorka, R.; Bertet, H.; Guillaumont, S.; Barrea, C.; Vincenti, M.; De La Villeon, G.; Bredy, C.; et al. Correlation between cardio-pulmonary exercise test variables and health-related quality of life among children with congenital heart diseases. Int. J. Cardiol. 2016, 203, 1052–1060. [Google Scholar] [CrossRef]
- Reybrouck, T.; Mertens, L.; Brusselle, S.; Weymans, M.; Eyskens, B.; Defoor, J.; Gewillig, M. Oxygen uptake versus exercise intensity: A new concept in assessing cardiovascular exercise function in patients with congenital heart disease. Heart 2000, 84, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, P.; Pluchinotta, F.R.; Salvioni, E.; Mapelli, M.; Galotta, A.; Bonomi, A.; Magrì, D.; Perna, E.; Paolillo, S.; Corrà, U.; et al. Heart failure patients with improved ejection fraction: Insights from the MECKI score database. Eur. J. Heart Fail. 2023, 25, 1976–1984. [Google Scholar] [CrossRef] [PubMed]
- Constantine, A.; Barradas-Pires, A.; Dimopoulos, K. Cardiopulmonary exercise testing in congenital heart disease: Towards serial testing as part of long-term follow-up. Eur. J. Prev. Cardiol. 2022, 29, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Mapelli, M.; Salvioni, E.; Bonomi, A.; Paneroni, M.; Raimondo, R.; Gugliandolo, P.; Mattavelli, I.; Bidoglio, J.; Mirza, K.K.; La Rovere, M.T.; et al. Taking a walk on the heart failure side: Comparison of metabolic variables during walking and maximal exertion. ESC Heart Fail. 2024, 11, 1269–1274. [Google Scholar] [CrossRef]
- Mapelli, M.; Salvioni, E.; Mattavelli, I.; Gugliandolo, P.; Bonomi, A.; Palermo, P.; Rossi, M.; Stolfo, D.; Gustafsson, F.; Piepoli, M.; et al. Activities of daily living in heart failure patients and healthy subjects: When the cardiopulmonary assessment goes beyond traditional exercise test protocols. Eur. J. Prev. Cardiol. 2023, 30, ii47–ii53. [Google Scholar] [CrossRef]
- Mapelli, M.; Salvioni, E.; Bonomi, A.; Gugliandolo, P.; De Martino, F.; Vignati, C.; Berna, G.; Agostoni, P. How Patients With Heart Failure Perform Daily Life Activities: An Innate Energy-Saving Strategy. Circ. Heart Fail. 2020, 13, e007503. [Google Scholar] [CrossRef]
- Larsson, L.; Johansson, B.; Wadell, K.; Thilén, U.; Sandberg, C. Adults with congenital heart disease overestimate their physical activity level. Int. J. Cardiol. Heart Vasc. 2018, 22, 13–17. [Google Scholar] [CrossRef]
- Agostoni, P.; Paolillo, S.; Mapelli, M.; Gentile, P.; Salvioni, E.; Veglia, F.; Bonomi, A.; Corrà, U.; Lagioia, R.; Limongelli, G.; et al. Multiparametric prognostic scores in chronic heart failure with reduced ejection fraction: A long-term comparison. Eur. J. Heart Fail. 2018, 20, 700–710. [Google Scholar] [CrossRef]
- Opotowsky, A.R.; Khairy, P.; Diller, G.; Kasparian, N.A.; Brophy, J.; Jenkins, K.; Lopez, K.N.; McCoy, A.; Moons, P.; Ollberding, N.J.; et al. Clinical Risk Assessment and Prediction in Congenital Heart Disease Across the Lifespan: JACC Scientific Statement. J. Am. Coll. Cardiol. 2024, 83, 2092–2111. [Google Scholar] [CrossRef]
- Amedro, P.; Gavotto, A.; Huguet, H.; Souilla, L.; Huby, A.-C.; Matecki, S.; Cadene, A.; De La Villeon, G.; Vincenti, M.; Werner, O.; et al. Early hybrid cardiac rehabilitation in congenital heart disease: The QUALIREHAB trial. Eur. Heart J. 2024, 45, 1458–1473. [Google Scholar] [CrossRef]
- Takken, T.; Blank, A.C.; Hulzebos, E.H.; van Brussel, M.; Groen, W.G.; Helders, P.J. Cardiopulmonary exercise testing in congenital heart disease: Equipment and test protocols. Neth. Heart J. 2009, 17, 339–344. [Google Scholar] [CrossRef]
CPET Parameter | Description | Normal Values |
---|---|---|
Peak VO2 | The maximal O2 uptake during exercise, reflecting global aerobic capacity | >85% of predicted (age-, sex-, and body size-adjusted); typically 30–40 mL/kg/min in healthy young adults [4,5,6] |
VE/VCO2 | Ratio of ventilation to CO2 output, indicating ventilatory efficiency | <30 in healthy adults. Values >34–36 indicate ventilatory inefficiency; >38 strongly predicts poor outcomes in HF and CHD [4,5,7] |
Anaerobic Threshold (AT) | Exercise intensity or the VO2 level at which metabolism shifts from aerobic to anaerobic pathways | Normally reached at 40–60% of predicted VO2 max, corresponding to 11–14 mL/kg/min in healthy individuals [4,6,8] |
Heart Rate Reserve (HRR) | Difference between peak and resting heart rate, reflecting chronotropic response | >72–80 bpm or achieving ≥80–85% of the age-predicted maximum HR is considered normal. Chronotropic index ≥0.8 [4,8] |
CHD Type | Stage A | Stage B | Stage C | Stage D |
---|---|---|---|---|
ASD—VSD—AVSD—PDA | As needed | As needed | 12–24 months | 6–12 months |
Mitral stenosis Subaortic stenosis Supravalvular aortic stenosis | As needed | 2 years | 2 years | 12 months |
Pulmonary stenosis DCRV | As needed | 2 years | 2 years | 12 months |
CoA Ebstein’s anomaly | 3 years | 2 years | 2 years | 12 months |
ToF | 3–5 years | 2–5 years | 1–2 years | 1–2 years |
RV-PA conduit | As needed | As needed | 12–24 months | 12–24 months |
Arterial switch operation | 3–5 years | 3–5 years | 2–3 years | 1–2 years |
Systemic RV | 3 years | 3 years | 2 years | 12 months |
Univentricular circulation | 3 years | 2 years | 12 months | 12 months |
Eisenmenger syndrome | - | - | 6–12 months | 6–12 months |
CHD Type | Peak VO2 | VE/VCO2 Slope | Anaerobic Threshold (AT) | Heart Rate Reserve (HRR) |
---|---|---|---|---|
Biventricular circulation with systemic LV (e.g., rTOF) | ~71% predicted [13]; prognostic cut-off ≤36% predicted [20] | ~37 [13]; prognostic cut-off >39 [20] | Often reduced | Frequently reduced. Low HRR is an independent predictor of adverse outcomes |
Biventricular circulation with systemic RV | ~63–67% predicted [13] | ~ 35 [13] | Reduced | Frequently reduced; chronotropic incompetence is very common |
Fontan circulation | ~59% predicted [13]; Absolute, 21–27 mL/kg/min; serial decline more predictive than single value [21] | ~34 [13]; elevated but less consistent for mortality | Reduced; inconsistent prognostic value across studies | Frequently reduced; strong predictor of mortality, transplant risk, and hospitalization |
Eisenmenger syndrome | ~42% predicted [13]; absolute, 11–17 mL/kg/min [1] | ~57 [1]; highest VE/VCO2 among CHD groups | Markedly reduced; early onset during exercise | Frequently reduced; chronotropic incompetence is very common |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guglielmi, G.; Moscatelli, S.; Rocchetti, G.; Agostoni, P.; Chessa, M.; Mapelli, M. Cardiopulmonary Exercise Testing in Congenital Heart Disease: A Never-Ending Story from Paediatrics to Adult Life. Children 2025, 12, 1175. https://doi.org/10.3390/children12091175
Guglielmi G, Moscatelli S, Rocchetti G, Agostoni P, Chessa M, Mapelli M. Cardiopulmonary Exercise Testing in Congenital Heart Disease: A Never-Ending Story from Paediatrics to Adult Life. Children. 2025; 12(9):1175. https://doi.org/10.3390/children12091175
Chicago/Turabian StyleGuglielmi, Giulia, Sara Moscatelli, Giorgia Rocchetti, Piergiuseppe Agostoni, Massimo Chessa, and Massimo Mapelli. 2025. "Cardiopulmonary Exercise Testing in Congenital Heart Disease: A Never-Ending Story from Paediatrics to Adult Life" Children 12, no. 9: 1175. https://doi.org/10.3390/children12091175
APA StyleGuglielmi, G., Moscatelli, S., Rocchetti, G., Agostoni, P., Chessa, M., & Mapelli, M. (2025). Cardiopulmonary Exercise Testing in Congenital Heart Disease: A Never-Ending Story from Paediatrics to Adult Life. Children, 12(9), 1175. https://doi.org/10.3390/children12091175