Association between Regional Tissue Oxygenation and Body Temperature in Term and Preterm Infants Born by Caesarean Section
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Postnatal Stabilization and Temperature Management
2.3. Near-Infrared Spectroscopy
2.4. Data Collection
2.5. Group Stratification
2.6. Statistics
3. Results
3.1. Characteristics
3.2. Oxygenation
3.3. Body Temperature
3.4. Respiratory Support
3.5. Short-Term Outcome
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization; Maternal; Newborn Health. Thermal Protection of the Newborn: A Practical Guide; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Knobel, R.B.; Holditch-Davis, D.; Schwartz, T.A. Optimal Body Temperature in Transitional Extremely Low Birth Weight Infants Using Heart Rate and Temperature as Indicators. J. Obstet. Gynecol. Neonatal Nurs. 2010, 39, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, Y.; Shah, P.S.; Ye, X.Y.; Warre, R.; Piedboeuf, B.; Deshpandey, A.; Dunn, M.; Lee, S.K.; Harrison, A.; Synnes, A.; et al. Association between admission temperature and mortality and major morbidity in preterm infants born at fewer than 33weeks’ gestation. JAMA Pediatrics 2015, 169, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Christidis, I.; Zotter, H.; Rosegger, H.; Engele, H.; Kurz, R.; Kerbl, R. Infrared Thermography in Newborns: The First Hour after Birth. Gynakol. Geburtshilfliche. Rundsch. 2003, 43, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Morley, C.J.; Hewson, P.H.; Thornton, A.J.; Cole, T.J. Axillary and rectal temperature measurements in infants. Arch. Dis. Child. 1992, 67, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayama, J.I.; Teng, W.; Uyemoto, J.; Newman, T.B.; Pantell, R.H. Body temperature of newborns: What is normal? Clin. Pediatrics 2000, 39, 503–510. [Google Scholar] [CrossRef]
- Miller, S.S.; Lee, H.C.; Gould, J.B. Hypothermia in very low birth weight infants: Distribution, risk factors and outcomes. J. Perinatol. 2011, 31, S49. [Google Scholar] [CrossRef] [Green Version]
- Lunze, K.; Bloom, D.E.; Jamison, D.T.; Hamer, D.H. The global burden of neonatal hypothermia: Systematic review of a major challenge for newborn survival. BMC Med. 2013, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.; Norman, M.; Wilson, E.; Norman, M.; Wilson, E.; Maier, R.F.; Misselwitz, B.; Howell, E.A.; Zeitlin, J.; Zeitlin, J.; et al. Admission Hypothermia in Very Preterm Infants and Neonatal Mortality and Morbidity. J. Pediatrics 2016, 175, 61–67.e4. [Google Scholar] [CrossRef]
- Baumgart, S. Iatrogenic Hyperthermia and Hypothermia in the Neonate. Clin. Perinatol. 2008, 35, 183–197. [Google Scholar] [CrossRef]
- Pichler, G.; Pocivalnik, M.; Riedl, R.; Pichler-Stachl, E.; Morris, N.; Zotter, H.; Müller, W.; Urlesberger, B. “Multi-associations”: Predisposed to misinterpretation of peripheral tissue oxygenation and circulation in neonates. Physiol. Meas. 2011, 32, 1025–1034. [Google Scholar] [CrossRef]
- Kattwinkel, J.; Perlman, J.M.; Aziz, K.; Colby, C.; Fairchild, K.; Gallagher, J.; Hazinski, M.F.; Halamek, L.P.; Kumar, P.; Little, G.; et al. Part 15: Neonatal Resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122, S909–S919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyllie, J.; Bruinenberg, J.; Roehr, C.C.; Rüdiger, M.; Trevisanuto, D.; Urlesberger, B. European Resuscitation Council Guidelines for Resuscitation 2015. Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 2015, 95, 249–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichler, G.; Binder, C.; Avian, A.; Beckenbach, E.; Schmölzer, G.M.; Urlesberger, B. Reference ranges for regional cerebral tissue oxygen saturation and fractional oxygen extraction in neonates during immediate transition after birth. J. Pediatrics 2013, 163, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Gaasch, M.; Putzer, G.; Schiefecker, A.J.; Martini, J.; Strapazzon, G.; Ianosi, B.; Thome, C.; Paal, P.; Brugger, H.; Mair, P.; et al. Cerebral Autoregulation is Impaired During Deep Hypothermia—A Porcine Multimodal Neuromonitoring Study. Ther. Hypothermia Temp. Manag. 2020, 10, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.J.; da Costa, C.S.; Austin, T.; Brady, K.M.; Czosnyka, M.; Lee, J.K. Neonatal cerebrovascular autoregulation. Pediatric Res. 2018, 84, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Weindling, M.; Paize, F. Peripheral haemodynamics in newborns: Best practice guidelines. Early Hum. Dev. 2010, 86, 159–165. [Google Scholar] [CrossRef]
- Lubkowska, A.; Szymański, S.; Chudecka, M. Surface body temperature of full-term healthy newborns immediately after Birth—Pilot study. Int. J. Environ. Res. Public Health 2019, 16, 1312. [Google Scholar] [CrossRef] [Green Version]
- Knobel, R.B.; Guenther, B.D.; Rice, H.E. Thermoregulation and Thermography in Neonatal Physiology and Disease. Biol. Res. Nurs. 2011, 13, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.A.W.; Kleinman, C.S.; Lister, G.; Talner, N. Cardiovascular Function During Normal Fetal and Neonatal Development and with Hypoxic Stress. In Fetal and Neonatal Physiology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Davies, P.; Maconochie, I. The relationship between body temperature, heart rate and respiratory rate in children. Emerg. Med. J. 2009, 26, 641–643. [Google Scholar] [CrossRef]
- Mitra, S.; Bale, G.; Meek, J.; Uria-Avellanal, C.; Robertson, N.J.; Tachtsidis, I. Relationship Between Cerebral Oxygenation and Metabolism During Rewarming in Newborn Infants After Therapeutic Hypothermia Following Hypoxic-Ischemic Brain Injury. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 245–251. [Google Scholar]
- Wu, T.W.; Tamrazi, B.; Soleymani, S.; Seri, I.; Noori, S. Hemodynamic Changes During Rewarming Phase of Whole-Body Hypothermia Therapy in Neonates with Hypoxic-Ischemic Encephalopathy. J. Pediatrics 2018, 197, 68–74.e2. [Google Scholar] [CrossRef]
- De Almeida, M.F.B.; Guinsburg, R.; Sancho, G.A.; Rosa, I.R.M.; Lamy, Z.C.; Martinez, F.E.; Da Silva, R.P.G.V.C.; Ferrari, L.S.L.; De Souza Rugolo, L.M.S.; Abdallah, V.O.S.; et al. Hypothermia and early neonatal mortality in preterm infants. J. Pediatrics 2014, 164, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Laptook, A.R.; Salhab, W.; Bhaskar, B. Admission Temperature of Low Birth Weight Infants: Predictors and Associated Morbidities. Pediatrics 2007, 119, e643–e649. [Google Scholar] [CrossRef] [PubMed]
- Finn, D.; Ryan, D.H.; Pavel, A.; O’Toole, J.M.; Livingstone, V.; Boylan, G.B.; Kenny, L.C.; Dempsey, E.M. Clamping the Umbilical Cord in Premature Deliveries (CUPiD): Neuromonitoring in the Immediate Newborn Period in a Randomized, Controlled Trial of Preterm Infants Born at <32 Weeks of Gestation. J. Pediatrics 2019, 208, 121–126.e2. [Google Scholar] [CrossRef] [PubMed]
- Pichler, G.; Baik, N.; Urlesberger, B.; Cheung, P.-Y.; Aziz, K.; Avian, A.; Schmölzer, G.M. Cord clamping time in spontaneously breathing preterm neonates in the first minutes after birth: Impact on cerebral oxygenation—A prospective observational study. J. Matern. Neonatal Med. 2016, 29, 1570–1572. [Google Scholar] [CrossRef] [PubMed]
- Katheria, A.C.; Brown, M.K.; Faksh, A.; Hassen, K.O.; Rich, W.; Lazarus, D.; Steen, J.; Daneshmand, S.S.; Finer, N.N. Delayed Cord Clamping in Newborns Born at Term at Risk for Resuscitation: A Feasibility Randomized Clinical Trial. J. Pediatrics 2017, 187, 313–317.e1. [Google Scholar] [CrossRef]
- Russo, A.; McCready, M.; Torres, L.; Theuriere, C.; Venturini, S.; Spaight, M.; Hemway, R.J.; Handrinos, S.; Perlmutter, D.; Huynh, T.; et al. Reducing Hypothermia in Preterm Infants Following Delivery. Pediatrics 2014, 133, e1055–e1062. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.M.B.; Furdon, S.A.; Boynton, S.; Dugan, R.; Reu-Donlon, C.; Jensen, S. Decreasing Hypothermia During Delivery Room Stabilization of Preterm Neonates. Pediatrics 2014, 133, e218–e226. [Google Scholar] [CrossRef] [Green Version]
- Committee on Accident and Poison Prevention. Hyperthermia from malfunctioning radiant heaters. Pediatrics 1977, 59, 1041. [Google Scholar]
- Vohra, S.; Roberts, R.S.; Zhang, B.; Janes, M.; Schmidt, B. Heat Loss Prevention (HeLP) in the delivery room: A randomized controlled trial of polyethylene occlusive skin wrapping in very preterm infants. J. Pediatrics 2004, 145, 750–753. [Google Scholar] [CrossRef]
- Newton, T. Preventing hypothermia at birth in preterm babies: At a cost of overheating some? Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F256. [Google Scholar] [CrossRef] [Green Version]
- Lenclen, R.; Mazraani, M.; Jugie, M.; Couderc, S.; Hoenn, E.; Carbajal, R.; Blanc, P.; Paupe, A. Use of a polyethylene bag: A way to improve the thermal environment of the premature newborn at the delivery room. Arch. Pediatrie 2002, 9, 238–244. [Google Scholar] [CrossRef]
- Meyer, M.P.; Owen, L.S.; te Pas, A.B. Use of Heated Humidified Gases for Early Stabilization of Preterm Infants: A Meta-Analysis. Front. Pediatrics 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Falzon, A.; Grech, V.; Caruana, B.; Magro, A.; Attard-Montalto, S. How reliable is axillary temperature measurement? Acta Paediatr. 2003, 92, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.V.; Lancaster, G.A.; Williamson, P.R.; Smyth, R.L. Temperature measured at the axilla compared with rectum in children and young people: Systematic review. BMJ 2000, 320, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
Total (n = 586) | Term (n = 417) | Preterm (n = 169) | p-Value | EPI (n = 10) | VPI (n = 38) | LPI (n = 121) | |
---|---|---|---|---|---|---|---|
GA (weeks) | 39 (36–39) | 39 (38–39) | 34 (32–35) | <0.001 | 26 (24–27) | 31 (30–31) | 34 (33–36) |
Apgar 1 | 9 (8–9) | 9 (9–9) | 8 (8–9) | <0.001 | 8 (8–9) | 8 (7–8) | 8 (8–9) |
Apgar 5 | 10 (9–10) | 10 (10–10) | 9 (8–10) | <0.001 | 8 (6–8) | 9 (8–9) | 9 (9–10) |
Apgar 10 | 10 (10–10) | 9 (9–10) | 10 (10–10) | <0.001 | 9 (9–10) | 9 (9–10) | 10 (9–10) |
BW (grams) | 3088 (2380–3460) | 3290 (2996–3590) | 1830 (1438–2260) | <0.001 | 700 (626–906) | 1330 (1054–1564) | 2040 (1756–2400) |
pHa | 7.30 (7.28–7.32) | 7.30 (7–28-7.32) | 7.31 (7.28–7.34) | 0.004 | 7.33 (7.31–7.39) | 7.32 (7.29–7.34) | 7.30 (7.27–7.33) |
MABP (mmHg) | 45 ± 10 | 47 ± 9 | 40 ± 9 | <0.001 | 31 ± 7 | 38 ± 8 | 41 ± 9 |
SpO2 (%) | 95.1 (91.7–97.7) | 95.7 (92.7–97.9) | 93.5 (88.5–96.8) | <0.001 | 92.6 (72.1–96.1) | 90.4 (86.9–93.8) | 94.5 (91.1–97.3) |
Heart rate (bpm) | 154 ± 18 | 153 ± 18 | 156 ± 18 | 0.015 | 159 ± 17 | 161 ± 16 | 154 ± 18 |
Body temperature (°C) | 36.8 (36.6–37.0) | 36.8 (36.6–37.0) | 36.7 (36.4–37.0) | 0.001 | 37.0 (36.9–37.4) | 36.7(36.3–37.0) | 36.7 (36.4–37.0) |
crSO2/cTOI (n) | 458 | 342 | 116 | 5 | 22 | 89 | |
crSO2/cTOI (%) | 78.9 (71.0–86.0) | 78.4 (71.0–85.0) | 79.0 (68.7–87.5) | 0.853 | 79.6 (75.6–91.1) | 71.7 (62.0–79.0) | 80.0 (72.0–89.0) |
prSO2 (n) | 355 | 289 | 66 | 1 | 9 | 56 | |
prSO2 (%) | 74.0 (63.0–85.0) | 74.0 (63.0–85.0) | 73.0 (62.0–87.0) | 0.728 | 69.0 (69.0–69.0) | 65.0 (51.0–75.0) | 76 (63–87.5) |
pFTOE | 0.23 (0.12–0.34) | 0.22 (0.12–0.34) | 0.23 (0.11–0.30) | 0.596 | 0.28 (0.28–0.28) | 0.24 (0.16–0.40) | 0.23 (0.09–0.29) |
Total Cohort (n = 586) | Term (n = 417) | Preterm (n = 169) | ||||
---|---|---|---|---|---|---|
Body Temperature (°C) | p-Value | Body Temperature (°C) | p-Value | Body Temperature (°C) | p-Value | |
crSO2/cTOI (%) | ρ = 0.018 | 0.701 | ρ = 0.077 | 0.155 | ρ = −0.102 | 0.275 |
prSO2 (%) | ρ = −0.092 | 0.084 | ρ = −0.044 | 0.461 | ρ = −0.285 | 0.020 |
pFTOE | ρ = 0.042 | 0.443 | ρ = 0.011 | 0.852 | ρ = 0.165 | 0.195 |
Heart rate (bpm) | ρ = 0.210 | <0.001 | ρ = 0.236 | <0.001 | ρ = 0.222 | <0.006 |
SpO2 (%) | ρ = −0.015 | 0.741 | ρ = −0.013 | 0.805 | ρ = −0.125 | 0.111 |
Total (n = 586) | Term (n = 417) | Preterm (n = 169) | EPI (n = 10) | VPI (n = 38) | LPI (n = 121) | |
---|---|---|---|---|---|---|
Normothermia | 461 (78.7) | 347 (83.2) | 114 (67.5) | 7 (70.0) | 23 (60.5) | 84 (69.4) |
Mild hypothermia | 89 (15.2) | 46 (11.0) | 43 (25.4) | 1 (10.0) | 11 (29.0) | 31 (25.6) |
Moderate hypothermia | 11 (1.9) | 4 (1.0) | 7 (4.1) | 0 (0.0) | 3 (7.9) | 4 (3.3) |
Hyperthermia | 25 (4.3) | 20 (4.8) | 5 (3.0) | 2 (20.0) | 1 (2.6) | 2 (1.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruckner, M.; Mileder, L.P.; Richter, A.; Baik-Schneditz, N.; Schwaberger, B.; Binder-Heschl, C.; Urlesberger, B.; Pichler, G. Association between Regional Tissue Oxygenation and Body Temperature in Term and Preterm Infants Born by Caesarean Section. Children 2020, 7, 205. https://doi.org/10.3390/children7110205
Bruckner M, Mileder LP, Richter A, Baik-Schneditz N, Schwaberger B, Binder-Heschl C, Urlesberger B, Pichler G. Association between Regional Tissue Oxygenation and Body Temperature in Term and Preterm Infants Born by Caesarean Section. Children. 2020; 7(11):205. https://doi.org/10.3390/children7110205
Chicago/Turabian StyleBruckner, Marlies, Lukas P. Mileder, Alisa Richter, Nariae Baik-Schneditz, Bernhard Schwaberger, Corinna Binder-Heschl, Berndt Urlesberger, and Gerhard Pichler. 2020. "Association between Regional Tissue Oxygenation and Body Temperature in Term and Preterm Infants Born by Caesarean Section" Children 7, no. 11: 205. https://doi.org/10.3390/children7110205
APA StyleBruckner, M., Mileder, L. P., Richter, A., Baik-Schneditz, N., Schwaberger, B., Binder-Heschl, C., Urlesberger, B., & Pichler, G. (2020). Association between Regional Tissue Oxygenation and Body Temperature in Term and Preterm Infants Born by Caesarean Section. Children, 7(11), 205. https://doi.org/10.3390/children7110205