Somatosensory Testing in Pediatric Patients with Chronic Pain: An Exploration of Clinical Utility
Abstract
:1. Introduction
Aims and Hypotheses
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Questionnaires
2.3.2. Somatosensory Stimulus–Response Testing
Cutaneous Stimuli Responses
Deep Pressure Pain Threshold via Handheld Pressure Algometry
Temporal Summation of Pain
Determination of Hyperesthetic and Hypoesthetic Responses
Determination of Implied Central Sensitization Classification
Deep Pressure Pain Threshold and Temporal Summation of Pain via Manually Inflated Cuff Algometry
2.4. Statistical Analyses
3. Results
3.1. Sample Descriptives
3.2. Categorisation of Normal, Hyposensitive, Hypersensitive and Allodynia Responses to Cutaneous and Deep Stimuli
3.3. Associations with Cutaneous Allodynia
3.4. Deep Pressure Pain Threshold
3.5. Inter-Relationships between Cutaneous and Deep Stimuli and Pain Outcomes
3.6. Correlations between Deep SST Responses, Pain Outcomes and Psychosocial Measures
3.7. Role of Deep SST Responses as Statistical Predictors of Pain, Functional Disability and Impaired Sleep
3.8. Implied Central Sensitization Using SST and Comparison between Those with Chronic Pain Who Did and Did Not Meet the Criteria
3.9. Utility of Manually Inflated Cuff Algometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arendt-Nielsen, L.; Graven-Nielsen, T. Translational musculoskeletal pain research. Best Pract. Res. Clin. Rheumatol. 2011, 25, 209–226. [Google Scholar] [CrossRef]
- Arendt-Nielsen, L.; Morlion, B.; Perrot, S.; Dahan, A.; Dickenson, A.; Kress, H.G.; Wells, C.; Bouhassira, D.; Mohr Drewes, A. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain 2018, 22, 216–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, M.; Forstenpointner, J.; Hartmann, A.; Otto, J.C.; Vollert, J.; Gierthmühlen, J.; Klein, T.; Hüllemann, P.; Baron, R. Sensory bedside testing: A simple stratification approach for sensory phenotyping. Pain Rep. 2020, 5, e820. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.W.; Gunaratne, Y.; Jaaniste, T.; McCormick, M.; Champion, D. Somatosensory Test Responses and Physical and Psychological Functioning of Children and Adolescents with Chronic Non-neuropathic Pain: An Exploratory Study. Clin. J. Pain 2017, 33, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, S.; Champion, D.; Jaaniste, T.; Yee, A.; Chapman, C. Somatosensory test responses in children with growing pains. J. Pain Res. 2011, 4, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Yarnitsky, D. Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain 2015, 156 (Suppl. 1), S24–S31. [Google Scholar] [CrossRef]
- Porreca, F.; Navratilova, E. Reward, motivation, and emotion of pain and its relief. Pain 2017, 158 (Suppl. 1), S43–S49. [Google Scholar] [CrossRef]
- Descalzi, G.; Ikegami, D.; Ushijima, T.; Nestler, E.J.; Zachariou, V.; Narita, M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015, 38, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Haight, E.S.; Forman, T.E.; Cordonnier, S.A.; James, M.L.; Tawfik, V.L. Microglial Modulation as a Target for Chronic Pain: From the Bench to the Bedside and Back. Anesth. Analg. 2019, 128, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Pas, R.; Ickmans, K.; Van Oosterwijck, S.; Van der Cruyssen, K.; Foubert, A.; Leysen, L.; Nijs, J.; Meeus, M. Hyperexcitability of the Central Nervous System in Children with Chronic Pain: A Systematic Review. Pain Med. 2018, 19, 2504–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, K.K.; Simonsen, O.; Laursen, M.B.; Arendt-Nielsen, L. The Role of Preoperative Radiologic Severity, Sensory Testing, and Temporal Summation on Chronic Postoperative Pain Following Total Knee Arthroplasty. Clin. J. Pain 2018, 34, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendt-Nielsen, L.; Egsgaard, L.L.; Petersen, K.K.; Eskehave, T.N.; Graven-Nielsen, T.; Hoeck, H.C.; Simonsen, O. A mechanism-based pain sensitivity index to characterize knee osteoarthritis patients with different disease stages and pain levels. Eur. J. Pain 2015, 19, 1406–1417. [Google Scholar] [CrossRef] [PubMed]
- Chaves, T.C.; Nagamine, H.M.; de Sousa, L.M.; de Oliveira, A.S.; Grossi, D.B. Intra- and interrater agreement of pressure pain threshold for masticatory structures in children reporting orofacial pain related to temporomandibular disorders and symptom-free children. J. Orofac. Pain 2007, 21, 133–142. [Google Scholar] [PubMed]
- Hogeweg, J.A.; Kuis, W.; Oostendorp, R.A.; Helders, P.J. The influence of site of stimulation, age, and gender on pain threshold in healthy children. Phys. Ther. 1996, 76, 1331–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durga, P.; Wudaru, S.R.; Khambam, S.K.; Chandra, S.J.; Ramachandran, G. Validation of simple and inexpensive algometry using sphygmomanometer cuff and neuromuscular junction monitor with standardized laboratory algometer. J. Anaesthesiol. Clin. Pharmacol. 2016, 32, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, A.; Dreyer, L.; Kendall, S.; Graven-Nielsen, T.; Arendt-Nielsen, L.; Bliddal, H.; Danneskiold-Samsoe, B. Computerized cuff pressure algometry: A new method to assess deep-tissue hypersensitivity in fibromyalgia. Pain 2007, 131, 57–62. [Google Scholar] [CrossRef]
- Jespersen, A.; Amris, K.; Graven-Nielsen, T.; Arendt-Nielsen, L.; Bartels, E.M.; Torp-Pedersen, S.; Bliddal, H.; Danneskiold-Samsoe, B. Assessment of pressure-pain thresholds and central sensitization of pain in lateral epicondylalgia. Pain Med. 2013, 14, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Kvistgaard Olsen, J.; Fener, D.K.; Waehrens, E.E.; Wulf Christensen, A.; Jespersen, A.; Danneskiold-Samsøe, B.; Bartels, E.M. Reliability of Pain Measurements Using Computerized Cuff Algometry: A DoloCuff Reliability and Agreement Study. Pain Pract. 2017, 17, 708–717. [Google Scholar] [CrossRef]
- Lemming, D.; Graven-Nielsen, T.; Sörensen, J.; Arendt-Nielsen, L.; Gerdle, B. Widespread pain hypersensitivity and facilitated temporal summation of deep tissue pain in whiplash associated disorder: An explorative study of women. J. Rehabil. Med. 2012, 44, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polianskis, R.; Graven-Nielsen, T.; Arendt-Nielsen, L. Spatial and temporal aspects of deep tissue pain assessed by cuff algometry. Pain 2002, 100, 19–26. [Google Scholar] [CrossRef]
- Graven-Nielsen, T.; Arendt-Nielsen, L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat. Rev. Rheumatol. 2010, 6, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Lindskou, T.A.; Christensen, S.W.; Graven-Nielsen, T. Cuff Algometry for Estimation of Hyperalgesia and Pain Summation. Pain Med. 2017, 18, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Arafat, M.; Mattoo, T.K. Measurement of blood pressure in children: Recommendations and perceptions on cuff selection. Pediatrics 1999, 104, e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.S.; Ranganekar, A.G.; Saifi, A.Q. Pain threshold in relation to sex hormones. Indian J. Physiol. Pharmacol. 1987, 31, 250–254. [Google Scholar] [PubMed]
- Pincus, T.; Noel, M.; Jordan, A.; Serbic, D. Perceived diagnostic uncertainty in pediatric chronic pain. Pain 2018, 159, 1198–1201. [Google Scholar] [CrossRef]
- Starkweather, A.R.; Heineman, A.; Storey, S.; Rubia, G.; Lyon, D.E.; Greenspan, J.; Dorsey, S.G. Methods to measure peripheral and central sensitization using quantitative sensory testing: A focus on individuals with low back pain. Appl. Nurs. Res. 2016, 29, 237–241. [Google Scholar] [CrossRef]
- Stinson, J.N.; Connelly, M.; Jibb, L.A.; Schanberg, L.E.; Walco, G.; Spiegel, L.R.; Tse, S.M.; Chalom, E.C.; Chira, P.; Rapoff, M. Developing a standardized approach to the assessment of pain in children and youth presenting to pediatric rheumatology providers: A Delphi survey and consensus conference process followed by feasibility testing. Pediatr. Rheumatol. Online J. 2012, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Hicks, C.L.; von Baeyer, C.L.; Spafford, P.A.; van Korlaar, I.; Goodenough, B. The Faces Pain Scale-Revised: Toward a common metric in pediatric pain measurement. Pain 2001, 93, 173–183. [Google Scholar] [CrossRef]
- Eccleston, C.; Jordan, A.; McCracken, L.M.; Sleed, M.; Connell, H.; Clinch, J. The Bath Adolescent Pain Questionnaire (BAPQ): Development and preliminary psychometric evaluation of an instrument to assess the impact of chronic pain on adolescents. Pain 2005, 118, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Stucky, B.D.; Thissen, D.; Dewitt, E.M.; Irwin, D.E.; Lai, J.S.; Yeatts, K.; Dewalt, D.A. PROMIS Pediatric Pain Interference Scale: An item response theory analysis of the pediatric pain item bank. J. Pain 2010, 11, 1109–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, P.A.; Seifert, C.E.; Speechley, K.N.; Booth, J.C.; Stitt, L.; Gibson, M.C. A new analogue scale for assessing children’s pain: An initial validation study. Pain 1996, 64, 435–443. [Google Scholar] [CrossRef]
- Bulloch, B.; Garcia-Filion, P.; Notricia, D.; Bryson, M.; McConahay, T. Reliability of the color analog scale: Repeatability of scores in traumatic and nontraumatic injuries. Acad. Emerg. Med. 2009, 16, 465–469. [Google Scholar] [CrossRef]
- Blankenburg, M.; Boekens, H.; Hechler, T.; Maier, C.; Krumova, E.; Scherens, A.; Magerl, W.; Aksu, F.; Zernikow, B. Reference values for quantitative sensory testing in children and adolescents: Developmental and gender differences of somatosensory perception. Pain 2010, 149, 76–88. [Google Scholar] [CrossRef]
- Rolke, R.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Bötefür, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef]
- Tham, S.W.; Palermo, T.M.; Holley, A.L.; Zhou, C.; Stubhaug, A.; Furberg, A.S.; Nielsen, C.S. A population-based study of quantitative sensory testing in adolescents with and without chronic pain. Pain 2016, 157, 2807–2815. [Google Scholar] [CrossRef]
- Powell, C.V.; Kelly, A.M.; Williams, A. Determining the minimum clinically significant difference in visual analog pain score for children. Ann. Emerg. Med. 2001, 37, 28–31. [Google Scholar] [CrossRef]
- Cohen, J. Set Correlation and Contingency Tables. Appl. Psychol. Meas. 1988, 12, 425–434. [Google Scholar] [CrossRef]
- Nicholas, M.; Vlaeyen, J.W.S.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; et al. The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weissmann, R.; Uziel, Y. Pediatric complex regional pain syndrome: A review. Pediatr. Rheumatol. Online J. 2016, 14, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauridsen, M.H.; Kristensen, A.D.; Hjortdal, V.E.; Jensen, T.S.; Nikolajsen, L. Chronic pain in children after cardiac surgery via sternotomy. Cardiol. Young 2014, 24, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Raieli, V.; Trapolino, D.; Giordano, G.; Spitaleri, C.; Consolo, F.; Santangelo, G.; Buffa, D.; Vanadia, F.; D’Amelio, M. Juvenile migraine and allodynia: Results of a retrospective study. Headache 2015, 55, 413–418. [Google Scholar] [CrossRef]
- Johansen, A.; Romundstad, L.; Nielsen, C.S.; Schirmer, H.; Stubhaug, A. Persistent postsurgical pain in a general population: Prevalence and predictors in the Tromsø study. Pain 2012, 153, 1390–1396. [Google Scholar] [CrossRef]
- Moriwaki, K.; Yuge, O. Topographical features of cutaneous tactile hypoesthetic and hyperesthetic abnormalities in chronic pain. Pain 1999, 81, 1–6. [Google Scholar] [CrossRef]
- Catley, M.J.; O’Connell, N.E.; Berryman, C.; Ayhan, F.F.; Moseley, G.L. Is tactile acuity altered in people with chronic pain? A systematic review and meta-analysis. J. Pain 2014, 15, 985–1000. [Google Scholar] [CrossRef] [Green Version]
- Apkarian, A.V.; Stea, R.A.; Manglos, S.H.; Szeverenyi, N.M.; King, R.B.; Thomas, F.D. Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neurosci. Lett. 1992, 140, 141–147. [Google Scholar] [CrossRef]
- Mailis-Gagnon, A.; Giannoylis, I.; Downar, J.; Kwan, C.L.; Mikulis, D.J.; Crawley, A.P.; Nicholson, K.; Davis, K.D. Altered central somatosensory processing in chronic pain patients with “hysterical” anesthesia. Neurology 2003, 60, 1501–1507. [Google Scholar] [CrossRef]
- Vartiainen, N.; Kirveskari, E.; Kallio-Laine, K.; Kalso, E.; Forss, N. Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. J. Pain 2009, 10, 854–859. [Google Scholar] [CrossRef] [PubMed]
Self-Reported Measure | Questionnaire | Description and Reference |
---|---|---|
Number and location of pain sites | Body map [29] | The distribution and number of pain sites in the last two weeks was recorded on a body map with a front and back view of the body demarcated into 21 regions. |
Pain intensity | Faces Pain Scale—Revised (FPS-R) [30] | The FPS-R consists of 6 faces expressing increasing degrees of pain intensity corresponding to scores of 0 to 10. Validated in children above 5 years of age. |
Depression, General anxiety, Pain specific anxiety | The Bath Adolescent Pain Questionnaire (BAPQ) [31] | Each subscale contains 6 or 7 questions scored on a 5-point frequency scale ranging from 0 = never to 4 = always. A composite emotional functioning measurement was also calculated by adding scores for all three subscales. |
Pain related functioning | Patient Reported Outcome Measurement Informative Systems Paediatric Pain Interference Scale—Short Form (PROMIS) [32] | The PROMIS—Short Form Interference Scale consists of 8 questions assessing the effect of pain on physical, social and emotional function, scored on a 5-point frequency scale ranging from 1 = never to 5 = almost always. The PROMIS has been found to have sound psychometric properties. |
Sleep Impairment | Composite measure | The composite sleep impairment score was determined as the sum of the responses to four sleep related questions from the other questionnaires. |
Stimulus | Instrument | Method (Control and Pain Sites) | CAS * Anchors | Indicators Relevant to Pain Hypersensitivity |
---|---|---|---|---|
Static light touch | Soft artist’s brush | Brush lightly pressed onto site at 45° | “No touch” to “very strong touch” Pain yes/no | Abnormally high “touch” response Pain, highly unpleasant sensations |
Dynamic light touch | Soft artist’s brush | Brush stroked in single direction ×10 | “No touch” to “very strong touch” Pain yes/no | Abnormally high “touch” response Pain, unpleasant sensations, after-sensations |
Punctate pressure | von Frey filament 12 ** | Pressed at site until it starts to bend | “No touch” to “very strong touch” Pain yes/no | Abnormally high “touch” response Pain, unpleasant sensations |
Repetitive Punctate pressure | von Frey filament 12 | Pressed at site until it bends ×10 | “No touch” to “very strong touch/pain” Pain yes/no | Pain, temporal summation of sensory intensity to pain |
Cool Stimuli | Thermo-roller 22 °C | Rolled along skin in single direction for 3 s | “Not cold at all” to “Freezing cold” Pain yes/no | Intensely cold response Pain, highly unpleasant sensations |
Deep pressure | Fischer pressure algometer | Pressure applied perpendicular to site, until begins to hurt | “No push/ pain” to “very strong push to just pain” | Low deep pressure pain threshold |
Manually inflating 13-cm blood-pressure cuff | Pressure by inflating cuff by ~10 mmHg/s, until begins to hurt | “No push pain” to “very strong push to just pain” | Low deep pressure pain threshold | |
Repetitive deep pressure | Fischer pressure algometer | Pressure ×10 applied at predetermined pain threshold. | CAS after 10 repetitions minus CAS at threshold (designated 1) | Temporal summation of pressure pain intensity |
Manually inflating 13-cm blood-pressure cuff | Inflating cuff 10 mmHg/s to pain threshold, maintaining for 30 s. | CAS after 30 s minus CAS at threshold (designated 1) | Temporal summation of pressure pain intensity |
Normal n (%) | Hypoesthetic n (%) | Hyperesthetic n (%) | Allodynia n (%) | |
---|---|---|---|---|
Static Light Touch | 38 (38.8%) | 24 (24.5%) | 36 (36.7%) | 13 (22.4%) |
Dynamic Light Touch | 56 (57.1%) | 18 (8.2%) | 24 (24.5%) | 21 (36.2%) |
Punctate Pressure (single) | 49 (50%) | 10 (10.2%) | 39 (39.8%) | 36 (62.1%) |
Punctate Pressure (repeated) | 38 (38.8%) | 15 (15.3%) | 45 (46.0%) | 44 (75.9%) |
Cool | 32 (32.7%) | 13 (13.3%) | 53 (54.1%) | 10 (17.2%) |
Allodynia to at least one modality | 47 (81.0%) |
Site of Stimulus Application | Pressure Pain Threshold (kg) Mean (SD) | Low Pressure Pain Threshold n (%) |
---|---|---|
Pain site (adjacent) | 1.43 (1.40) | 83 (84.7%) |
Control site 1—opposite pain site | 2.14 (1.46) | 75 (76.5%) |
Control site 2—Contralateral distal limb (thenar eminence or ball of big toe) | 3.14 (1.96) | 43 (43.9%) |
Control site 3—ipsilateral distal limb (thenar eminence or ball of big toe distal limb) | 3.25 (2.12) | 41 (41.8%) |
Control site 4—opposite proximal limb (dorsal forearm or tibialis anterior) | 3.25 (2.14) | 45 (45.9%) |
Control site 5—ipsilateral proximal limb (dorsal forearm or tibialis anterior) | 3.15 (2.25) | 46 (46.9%) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1. Static Light Touch | 1 | 0.728 ** | 0.666 ** | 0.549 ** | 0.262 ** | −0.211 * | −0.021 | −0.059 |
2. Dynamic Light Touch | 1 | 0.741 ** | 0.577 ** | 0.254 * | −0.152 | 0.011 | −0.017 | |
3. Punctate Pressure—single | 1 | 0.740 ** | 0.400 ** | −0.286 ** | 0.021 | −0.001 | ||
4. Punctate Pressure (×10) | 1 | 0.377 ** | −0.133 * | 0.011 | −0.015 | |||
5. Cool | 1 | −0.065 | −0.121 | 0.080 | ||||
6. Deep Pressure—single (kg) | 1 | −0.206 * | −0.248 * | |||||
7. Current Pain intensity | 1 | 0.321 ** | ||||||
8. Functional interference | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1. Deep pressure pain threshold | 1 | −0.217 * | −0.206 * | 0.020 | −0.068 | −0.138 | 0.178 |
2. Temporal summation of pain | 1 | 0.027 | 0.150 | 0.202 | 0.236 * | 0.153 | |
3. Pain intensity (Current) | 1 | 0.321 ** | 0.308 ** | 0.388 ** | 0.255 ** | ||
4. Functional interference | 1 | 0.483 ** | 0.574 ** | ||||
5. Depression symptoms | 1 | 0.697 ** | 0.582 ** | ||||
6. Pain-specific anxiety | 1 | 0.452 ** | |||||
7. Sleep impairment | 1 |
ICS (n = 58) * Mean (SD) | No ICS (n = 40) * Mean (SD) | p | |
---|---|---|---|
General anxiety | 13.58 (5.35) | 10.24 (4.85) | 0.003 |
Pain-specific anxiety | 13.65 (5.43) | 11.38 (5.04) | 0.048 |
Depression | 11.55 (5.19) | 9.39 (4.87) | 0.050 |
Sleep impairment | 10.27 (3.53) | 8.51 (2.87) | 0.014 |
Pain intensity | 3.59 (2.73) | 3.03 (2.33) | 0.297 |
Functional interference | 27.69 (7.67) | 25.58 (7.35) | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kersch, A.; Perera, P.; Mercado, M.; Gorrie, A.; Sainsbury, D.; McGrath, T.; Aouad, P.; Sarraf, S.; Jaaniste, T.; Champion, D. Somatosensory Testing in Pediatric Patients with Chronic Pain: An Exploration of Clinical Utility. Children 2020, 7, 275. https://doi.org/10.3390/children7120275
Kersch A, Perera P, Mercado M, Gorrie A, Sainsbury D, McGrath T, Aouad P, Sarraf S, Jaaniste T, Champion D. Somatosensory Testing in Pediatric Patients with Chronic Pain: An Exploration of Clinical Utility. Children. 2020; 7(12):275. https://doi.org/10.3390/children7120275
Chicago/Turabian StyleKersch, Anna, Panchalee Perera, Melanie Mercado, Andrew Gorrie, David Sainsbury, Tara McGrath, Phillip Aouad, Sara Sarraf, Tiina Jaaniste, and David Champion. 2020. "Somatosensory Testing in Pediatric Patients with Chronic Pain: An Exploration of Clinical Utility" Children 7, no. 12: 275. https://doi.org/10.3390/children7120275