Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review
Abstract
:1. Introduction
The Adolescent Brain
2. Materials and Methods
2.1. Search Strategy Criteria
2.2. Selection Criteria
2.3. Quality Assessment and Data Extraction
2.4. Search Results and Selection of Studies
2.5. Compliance with Ethics Guidelines
3. Results
3.1. Study Characteristics
3.2. Results of Individual Studies
3.2.1. Results of Structural Imaging Studies
MRI Studies
MRS Studies
DTI Studies
3.2.2. Results of Functional Imaging Studies
fMRI Studies
SPECT Studies
4. Discussion
4.1. Discussion of Structural Imaging Studies
4.1.2. Discussion of Functional Imaging Studies
4.1.3. Overall, Synthesis and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gonzalez, A.; Kohn, M.R.; Clarke, S.D. Eating disorders in adolescents. Aust. Fam. Physician 2007, 36, 614–619. [Google Scholar]
- Nicholls, D.; Viner, R.M. Eating disorders and weight problems. BMJ 2005, 330, 950–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association (Ed.). Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; p. 947. [Google Scholar]
- Mitchell, J.E.; Peterson, C.B. Anorexia Nervosa. N. Engl. J. Med. 2020, 382, 1343–1351. [Google Scholar] [CrossRef]
- Campbell, K.; Peebles, R. Eating Disorders in Children and Adolescents: State of the Art Review. Pediatrics 2014, 134, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Van den Eynde, F.; Suda, M.; Broadbent, H.; Guillaume, S.; Van den Eynde, M.; Steiger, H.; Schmidt, U. Structural magnetic resonance imaging in eating disorders: A systematic review of voxel-based morphometry studies. Eur. Eat. Disord. Rev. 2012, 20, 94–105. [Google Scholar] [CrossRef]
- Seitz, J.; Herpertz-Dahlmann, B.; Konrad, K. Brain morphological changes in adolescent and adult patients with anorexia nervosa. J. Neural Transm. 2016, 123, 949–959. [Google Scholar] [CrossRef]
- Seitz, J.; Bühren, K.; Von Polier, G.G.; Heussen, N.; Herpertz-Dahlmann, B.; Konrad, K. Morphological Changes in the Brain of Acutely Ill and Weight-Recovered Patients with Anorexia Nervosa. Zeitschrift für Kinder und Jugendpsychiatrie Psychotherapie 2014, 42, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Titova, O.E.; Hjorth, O.C.; Schiöth, H.B.; Brooks, S.J. Anorexia nervosa is linked to reduced brain structure in reward and so-matosensory regions: A meta-analysis of VBM studies. BMC Psychiatry 2013, 13, 110. [Google Scholar] [CrossRef] [Green Version]
- Seitz, J.; Konrad, K.; Herpertz-Dahlmann, B. Extend, Pathomechanism and Clinical Consequences of Brain Volume Changes in Anorexia Nervosa. Curr. Neuropharmacol. 2018, 16, 1164–1173. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Su, X.; Kemp, G.J.; Yang, X.; Su, J.; Tan, Q.; Zhao, Y.; Sun, H.; Yue, Q. Psychoradiological investigations of gray matter alterations in patients with anorexia nervosa. Transl. Psychiatry 2018, 8, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, S.J.; Barker, G.J.; O’Daly, O.; Brammer, M.; Williams, S.C.; Benedict, C.; Schiöth, H.B.; Treasure, J.; Campbell, I.C. Restraint of appetite and reduced regional brain volumes in anorexia nervosa: A voxel-based morphometric study. BMC Psychiatry 2011, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.K.W.; Shott, M.E.; Hagman, J.; Yang, T.T. Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa. J. Am. Acad. Child. Adolesc. Psychiatry 2013, 52, 1066–1075.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavagnino, L.; Mwangi, B.; Cao, B.; Shott, M.E.; Soares, J.C.; Frank, G.K.W. Cortical thickness patterns as state biomarker of anorexia nervosa. Int. J. Eat. Disord. 2018, 51, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Blasel, S.; Pilatus, U.; Magerkurth, J.; von Stauffenberg, M.; Vronski, D.; Mueller, M.; Hattingen, E. Metabolic gray matter changes of ad-olescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy. Neuroradiology 2012, 54, 753–764. [Google Scholar] [CrossRef]
- Roser, W.; Bubl, R.; Buergin, D.; Seelig, J.; Radue, E.W.; Rost, B. Metabolic changes in the brain of patients with anorexia and bu-limia nervosa as detected by proton magnetic resonance spectroscopy. Int. J. Eat. Disord. 1999, 26, 119–136. [Google Scholar] [CrossRef]
- Simon, J.J.; Stopyra, M.A.; Friederich, H. Neural Processing of Disorder-Related Stimuli in Patients with Anorexia Nervosa: A Narrative Review of Brain Imaging Studies. J. Clin. Med. 2019, 8, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteleone, A.M.; Monteleone, P.; Esposito, F.; Prinster, A.; Volpe, U.; Cantone, E.; Pellegrino, F.; Canna, A.; Milano, W.; Aiello, M.; et al. Altered processing of rewarding and aversive basic taste stimuli in symptomatic women with anorexia nervosa and bulimia nervosa: An fMRI study. J. Psychiatr. Res. 2017, 90, 94–101. [Google Scholar] [CrossRef]
- Vocks, S.; Herpertz, S.; Rosenberger, C.; Senf, W.; Gizewski, E. Effects of gustatory stimulation on brain activity during hunger and satiety in females with restricting-type anorexia nervosa: An fMRI study. J. Psychiatr. Res. 2011, 45, 395–403. [Google Scholar] [CrossRef]
- Gaudio, S.; Quattrocchi, C.C. Neural basis of a multidimensional model of body image distortion in anorexia nervosa. Neurosci. Biobehav. Rev. 2012, 36, 1839–1847. [Google Scholar] [CrossRef]
- Olivo, G.; Gaudio, S.; Schiöth, H.B. Brain and Cognitive Development in Adolescents with Anorexia Nervosa: A Systematic Review of fMRI Studies. Nutrients 2019, 11, 1907. [Google Scholar] [CrossRef] [Green Version]
- Kühn, S.; Vanderhasselt, M.-A.; De Raedt, R.; Gallinat, J. The neural basis of unwanted thoughts during resting state. Soc. Cogn. Affect. Neurosci. 2013, 9, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Cowdrey, F.A.; Filippini, N.; Park, R.J.; Smith, S.M.; McCabe, C. Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa. Hum. Brain Mapp. 2014, 35, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Gaudio, S.; Wiemerslage, L.; Brooks, S.J.; Schiöth, H.B. A systematic review of resting-state functional-MRI studies in anorexia nervosa: Evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration. Neurosci. Biobehav. Rev. 2016, 71, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Alfano, V.; Mele, G.; Cotugno, A.; Longarzo, M. Multimodal neuroimaging in anorexia nervosa. J. Neurosci. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Phillipou, A.; Rossell, S.L.; Castle, D.J. The neurobiology of anorexia nervosa: A systematic review. Aust. New Zealand J. Psychiatry 2014, 48, 128–152. [Google Scholar] [CrossRef]
- Brewerton, T.D. Antipsychotic Agents in the Treatment of Anorexia Nervosa: Neuropsychopharmacologic Rationale and Evidence from Controlled Trials. Curr. Psychiatry Rep. 2012, 14, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Fredrikson, M.; Faria, V. Neuroimaging in Anxiety Disorders. In Modern Trends in Pharmacopsychiatry; Baldwin, D.S., Leonard, B.E., Eds.; KARGER AG: Basel, Switzerland, 2013; pp. 47–66. [Google Scholar]
- Martin Monzon, B.; Hay, P.; Foroughi, N.; Touyz, S. White matter alterations in anorexia nervosa: A systematic review of diffusion tensor imaging studies. World J. Psychiatry 2016, 6, 177–186. [Google Scholar] [CrossRef]
- Gaudio, S.; Quattrocchi, C.C.; Piervincenzi, C.; Zobel, B.B.; Montecchi, F.R.; Dakanalis, A.; Riva, G.; Carducci, F. White matter abnormalities in treatment-naive adolescents at the earliest stages of Anorexia Nervosa: A diffusion tensor imaging study. Psychiatry Res. Neuroimaging 2017, 266, 138–145. [Google Scholar] [CrossRef]
- Barona, M.; Brown, M.; Clark, C.; Frangou, S.; White, T.; Micali, N. White matter alterations in anorexia nervosa: Evidence from a voxel-based meta-analysis. Neurosci. Biobehav. Rev. 2019, 100, 285–295. [Google Scholar] [CrossRef]
- Meneguzzo, P.; Collantoni, E.; Solmi, M.; Tenconi, E.; Favaro, A. Anorexia nervosa and diffusion weighted imaging: An open methodological question raised by a systematic review and a fractional anisotropy anatomical likelihood estimation me-ta-analysis. Int. J. Eat. Disord. 2019, 52, 1237–1250. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Su, X.; Li, L.; Yang, X.; Su, J.; Tan, Q.; Zhao, Y.; Sun, H.; Kemp, G.J.; et al. White Matter Abnormalities in Anorexia Nervosa: Psychoradiologic Evidence From Meta-Analysis of Diffusion Tensor Imaging Studies Using Tract Based Spatial Statistics. Front. Neurosci. 2020, 14, 159. [Google Scholar] [CrossRef]
- Spear, L.P. Adolescent neurodevelopment. J. Adolesc. Health 2013, 52 (Suppl. 2), S7–S13. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.H.; Dapretto, M.; O’Hare, E.D.; Kan, E.; McCourt, S.T.; Thompson, P.M.; Toga, A.W.; Bookheimer, S.Y.; Sowell, E.R. Relationships between Brain Activation and Brain Structure in Normally Developing Children. Cereb. Cortex 2009, 19, 2595–2604. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Arain, M.; Mathur, P.; Rais, A.; Nel, W.; Sandhu, R.; Haque, M.; Johal, L. Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Peper, J.S.; Heuvel, M.P.V.D.; Mandl, R.C.; Pol, H.E.H.; Van Honk, J. Sex steroids and connectivity in the human brain: A review of neuroimaging studies. Psychoneuroendocrinology 2011, 36, 1101–1113. [Google Scholar] [CrossRef]
- Supekar, K.; Musen, M.; Menon, V. Development of large-scale functional brain networks in children. PLoS Biol. 2009, 7, e1000157. [Google Scholar] [CrossRef] [PubMed]
- Fair, D.A.; Cohen, A.L.; Power, J.D.; Dosenbach, N.U.F.; Church, J.A.; Miezin, F.M.; Schlaggar, B.L.; Petersen, S.E. Functional brain networks develop from a “local to distributed” organization. PLoS Comput. Biol. 2009, 5, e1000381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, M.C.; Pearlson, G.D.; Calhoun, V.D. Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum. Brain Mapp. 2009, 30, 2356–2366. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Castro-Fornieles, J.; Bargalló, N.; Lázaro, L.; Andrés, S.; Falcon, C.; Plana, M.T.; Junqué, C. A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J. Psychiatr. Res. 2009, 43, 331–340. [Google Scholar] [CrossRef]
- Fujisawa, T.X.; Yatsuga, C.; Mabe, H.; Yamada, E.; Masuda, M.; Tomoda, A. Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus. PLoS ONE 2015, 10, e0128548. [Google Scholar] [CrossRef]
- King, J.A.; Geisler, D.; Ritschel, F.; Boehm, I.; Seidel, M.; Roschinski, B.; Soltwedel, L.; Zwipp, J.; Pfuhl, G.; Marxen, M.; et al. Global Cortical Thinning in Acute Anorexia Nervosa Normalizes Following Long-Term Weight Restoration. Biol. Psychiatry 2015, 77, 624–632. [Google Scholar] [CrossRef] [Green Version]
- Neumärker, K.J.; Bzufka, W.M.; Dudeck, U.; Hein, J.; Neumärker, U. Are there specific disabilities of number processing in ado-lescent patients with Anorexia nervosa? Evidence from clinical and neuropsychological data when compared to mor-phometric measures from magnetic resonance imaging. Eur. Child. Adolesc. Psychiatry. 2000, 9, S111–S121. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Wang, Y.; Kaye, W.H.; Kang, Q.; Huang, J.-B.; Cheung, E.F.; Xiao, S.-F.; Wang, Z.; Chen, J.; Chan, R.C.K. Structural alterations in the caudate nucleus and precuneus in un-medicated anorexia nervosa patients. Psychiatry Res. Neuroimaging 2018, 281, 12–18. [Google Scholar] [CrossRef]
- Myrvang, A.D.; Vangberg, T.R.; Stedal, K.; Rø, Ø.; Endestad, T.; Rosenvinge, J.H.; Aslaksen, P.M. Hippocampal subfields in adolescent ano-rexia nervosa. Psychiatry Res. Neuroimaging 2018, 282, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin Monzon, B.; Henderson, L.A.; Madden, S.; Macefield, V.G.; Touyz, S.; Kohn, M.R.; Clarke, S.; Foroughi, N.; Hay, P. Grey matter volume in adolescents with anorexia nervosa and associated eating disorder symptoms. Eur. J. Neurosci. 2017, 46, 2297–2307. [Google Scholar] [CrossRef]
- Katzman, D.K.; Lambe, E.K.; Mikulis, D.J.; Ridgley, J.N.; Goldbloom, D.S.; Zipursky, R.B. Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J. Pediatr. 1996, 129, 794–803. [Google Scholar] [CrossRef]
- Golden, N.H.; Ashtari, M.; Kohn, M.R.; Patel, M.; Jacobson, M.S.; Fletcher, A.; Shenker, I. Reversibility of cerebral ventricular enlargement in anorexia nervosa, demonstrated by quantitative magnetic resonance imaging. J. Pediatr. 1996, 128, 296–301. [Google Scholar] [CrossRef]
- Akgül, S.; Öz, A.; Karlı-Oğuz, K.; Kanbur, N.; Derman, O. Is white matter affected in adolescents with anorexia nervosa? a study using magnetization transfer imaging. Turk. J. Pediatr. 2016, 58, 282. [Google Scholar] [CrossRef] [Green Version]
- Bernardoni, F.; King, J.A.; Geisler, D.; Stein, E.; Jaite, C.; Nätsch, D.; Tam, F.I.; Boehm, I.; Seidel, M.; Roessner, V.; et al. Weight restoration therapy rapidly reverses cortical thinning in anorexia nervosa: A longitudinal study. NeuroImage 2016, 130, 214–222. [Google Scholar] [CrossRef]
- Katzman, D.K.; Zipursky, R.B.; Lambe, E.K.; Mikulis, D.J. A longitudinal magnetic resonance imaging study of brain changes in adolescents with anorexia nervosa. Arch. Pediatr. Adolesc. Med. 1997, 151, 793–797. [Google Scholar] [CrossRef]
- Castro-Fornieles, J.; Bargalló, N.; Lázaro, L.; Andrés, S.; Falcon, C.; Plana, M.T.; Junqué, C. Adolescent anorexia nervosa: Cross-sectional and follow-up frontal gray matter disturbances detected with proton magnetic resonance spectroscopy. J. Psychiatric Res. 2007, 41, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Schlemmer, H.-P.; Möckel, R.; Marcus, A.; Hentschel, F.; Göpel, C.; Becker, G.; Köpke, J.; Gückel, F.; Schmidt, M.H.; Georgi, M. Proton magnetic resonance spectroscopy in acute, juvenile anorexia nervosa. Psychiatry Res. Neuroimaging 1998, 82, 171–179. [Google Scholar] [CrossRef]
- Pfuhl, G.; King, J.A.; Geisler, D.; Roschinski, B.; Ritschel, F.; Seidel, M.; Bernardoni, F.; Müller, D.K.; White, T.; Roessner, V.; et al. Preserved white matter microstructure in young patients with anorexia nervosa? Hum. Brain Mapp. 2016, 37, 4069–4083. [Google Scholar] [CrossRef] [Green Version]
- von Schwanenflug, N.; Müller, D.K.; King, J.A.; Ritschel, F.; Bernardoni, F.; Mohammadi, S.; Geisler, D.; Roessner, V.; Biemann, R.; Marxen, M.; et al. Dynamic changes in white matter microstructure in anorexia nervosa: Findings from a longitudinal study. Psychol. Med. 2019, 49, 1555–1564. [Google Scholar] [CrossRef]
- Olivo, G.; Swenne, I.; Zhukovsky, C.; Tuunainen, A.-K.; Saaid, A.; Salonen-Ros, H.; Larsson, E.-M.; Brooks, S.J.; Schiöth, H.B. Preserved white matter microstructure in adolescent patients with atypical anorexia nervosa. Int. J. Eat. Disord. 2019, 52, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Travis, K.E.; Golden, N.H.; Feldman, H.M.; Solomon, M.; Nguyen, J.; Mezer, A.; Yeatman, J.D.; Dougherty, R.F. Abnormal white matter properties in ado-lescent girls with anorexia nervosa. Neuroimage Clin. 2015, 9, 648–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, K.; Timmers, I.; Kumar, V.; Nickl-Jockschat, T.; Bastiani, M.; Roebroek, A.; Herpertz-Dahlmann, B.; Konrad, K.; Goebel, R.; Seitz, J. White matter microstructural changes in adolescent anorexia nervosa including an exploratory longitudinal study. NeuroImage: Clin. 2016, 11, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.-H.; Feng, H.; Xu, T.-T.; Zhang, H.-R.; Zhao, Z.-Y.; Lai, J.-B.; Xu, D.; Xu, Y. Altered microstructure of brain white matter in females with anorexia nervosa: A diffusion tensor imaging study. Neuropsychiatr. Dis. Treat. 2017, 13, 2829–2836. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Fox, P.M.; Miller, K.L.; Glahn, D.C.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; Beckmann, C.F. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef] [Green Version]
- Gaudio, S.; Piervincenzi, C.; Zobel, B.B.; Montecchi, F.R.; Riva, G.; Carducci, F.; Quattrocchi, C.C. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa. Sci. Rep. 2015, 5, 10818. [Google Scholar] [CrossRef] [Green Version]
- Gaudio, S.; Olivo, G.; Zobel, B.B.; Schiöth, H.B. Altered cerebellar–insular–parietal–cingular subnetwork in adolescents in the earliest stages of anorexia nervosa: A network–based statistic analysis. Transl. Psychiatry 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boehm, I.; Geisler, D.; King, J.A.; Ritschel, F.; Seidel, M.; Araujo, Y.D.; Petermann, J.; Lohmeier, H.; Weiss, J.; Walter, M.; et al. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa. Front. Behav. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Amianto, F.; D’Agata, F.; Lavagnino, L.; Caroppo, P.; Abbate-Daga, G.; Righi, D.; Scarone, S.; Bergui, M.; Mortara, P.; Fassino, S. Intrinsic Connectivity Networks Within Cerebellum and Beyond in Eating Disorders. Cerebellum 2013, 12, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Geisler, D.; Borchardt-Lohölter, V.; Lord, A.; Boehm, I.; Ritschel, F.; Zwipp, J.; Clas, S.; King, J.A.; Wolff-Stephan, S.; Roessner, V.; et al. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa. J. Psychiatry Neurosci. 2016, 41, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, S.; Lord, A.R.; Geisler, D.; Borchardt, V.; Boehm, I.; Seidel, M.; Ritschel, F.; Schulze, A.; King, J.A.; Weidner, K.; et al. Reduced functional connectivity in the thalamo-insular subnetwork in patients with acute anorexia nervosa. Hum. Brain Mapp. 2015, 36, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Nagai, N.; Nakabeppu, Y.; Muranaga, T.; Deguchi, D.; Nakajo, M.; Masuda, A.; Nozoe, S.-I.; Naruo, T. Comparison of regional cerebral blood flow in patients with anorexia nervosa before and after weight gain. Psychiatry Res. Neuroimaging 2005, 140, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Takano, A.; Shiga, T.; Kitagawa, N.; Koyama, T.; Katoh, C.; Tsukamoto, E.; Tamaki, N. Abnormal neuronal network in anorexia nervosa studied with I-123-IMP SPECT. Psychiatry Res. Neuroimaging 2001, 107, 45–50. [Google Scholar] [CrossRef]
- Matsumoto, R.; Kitabayashi, Y.; Narumoto, J.; Wada, Y.; Okamoto, A.; Ushijima, Y.; Yokoyama, C.; Yamashita, T.; Takahashi, H.; Yasuno, F.; et al. Regional cerebral blood flow changes associated with interoceptive awareness in the recovery process of anorexia nervosa. Prog. Neuro Psychopharmacology Biol. Psychiatry 2006, 30, 1265–1270. [Google Scholar] [CrossRef]
- Komatsu, H.; Nagamitsu, S.; Ozono, S.; Yamashita, Y.; Ishibashi, M.; Matsuishi, T. Regional cerebral blood flow changes in early-onset anorexia nervosa before and after weight gain. Brain Dev. 2010, 32, 625–630. [Google Scholar] [CrossRef]
- Schwartz, D.H.; Dickie, E.W.; Pangelinan, M.M.; Leonard, G.; Perron, M.; Pike, G.B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. Adiposity is associated with structural properties of the adolescent brain. NeuroImage 2014, 103, 192–201. [Google Scholar] [CrossRef]
- Hoffman, G.W.; Ellinwood, E.; Rockwell, W.; Herfkens, R.J.; Nishita, J.; Guthrie, L.F. Cerebral atrophy in anorexia nervosa: A pilot study. Biol. Psychiatry 1989, 26, 321–324. [Google Scholar] [CrossRef]
- Andela, C.D.; Van Haalen, F.M.; Ragnarsson, O.; Papakokkinou, E.; Johannsson, G.; Santos, A.; Webb, S.M.; Biermasz, N.R.; Van Der Wee, N.J.; Pereira, A.M. Mechanisms in endocrinology: Cushing’s syndrome causes irreversible effects on the human brain: A systematic review of structural and functional magnetic resonance imaging studies. Eur. J. Endocrinol. 2015, 173, R1–R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schorr, M.; Miller, K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017, 13, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Collantoni, E.; Meneguzzo, P.; Tenconi, E.; Manara, R.; Favaro, A. Small-world properties of brain morphological characteristics in Anorexia Nervosa. PLoS ONE 2019, 14, e0216154. [Google Scholar] [CrossRef]
- Olivo, G.; Dahlberg, L.S.; Wiemerslage, L.; Swenne, I.; Zhukovsky, C.; Salonen-Ros, H.; Larsson, E.-M.; Gaudio, S.; Brooks, S.J.; Schiöth, H.B. Atypical anorexia nervosa is not related to brain structural changes in newly diagnosed adolescent patients. Int. J. Eat. Disord. 2017, 51, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Bomba, M.; Riva, A.; Veggo, F.; Grimaldi, M.; Villa, R.; Neri, F.; Nacinovich, R. Impact of speed and magnitude of weight loss on the development of brain trophic changes in adolescents with anorexia nervosa: A case control study. Ital. J. Pediatr. 2013, 39, 14. [Google Scholar] [CrossRef] [Green Version]
- Lavagnino, L.; Amianto, F.; Mwangi, B.; D’Agata, F.; Spalatro, A.; Soares, G.B.Z.; Daga, G.A.; Mortara, P.; Fassino, S.; Soares, J.C. The relationship between cortical thickness and body mass index differs between women with anorexia nervosa and healthy controls. Psychiatry Res. Neuroimaging 2016, 248, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Nico, D.; Daprati, E.; Nighoghossian, N.; Carrier, E.; Duhamel, J.-R.; Sirigu, A. The role of the right parietal lobe in anorexia nervosa. Psychol. Med. 2009, 40, 1531–1539. [Google Scholar] [CrossRef]
- Lipsman, N.; Woodside, D.B.; Lozano, A.M. Neurocircuitry of limbic dysfunction in anorexia nervosa. Cortex 2015, 62, 109–118. [Google Scholar] [CrossRef]
- Treadway, M.T.; Waskom, M.L.; Dillon, D.G.; Holmes, A.J.; Park, M.T.M.; Chakravarty, M.M.; Dutra, S.J.; Polli, F.E.; Iosifescu, D.V.; Fava, M.; et al. Illness Progression, Recent Stress, and Morphometry of Hippocampal Subfields and Medial Prefrontal Cortex in Major Depression. Biol. Psychiatry 2015, 77, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Schmaal, L.; Veltman, D.J.; Van Erp, T.; Sämann, P.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 2016, 21, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Mainz, V.; Schulte-Rüther, M.; Fink, G.R.; Herpertz-Dahlmann, B.; Konrad, K. Structural Brain Abnormalities in Adolescent Anorexia Nervosa Before and After Weight Recovery and Associated Hormonal Changes. Psychosom. Med. 2012, 74, 574–582. [Google Scholar] [CrossRef]
- Gibson, D.; Workman, C.; Mehler, P.S. Medical Complications of Anorexia Nervosa and Bulimia Nervosa. Psychiatr. Clin. North. Am. 2019, 42, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Kaye, W.H.; Wierenga, C.E.; Bailer, U.F.; Simmons, A.N.; Bischoff-Grethe, A. Nothing tastes as good as skinny feels: The neurobiology of anorexia nervosa. Trends Neurosci. 2013, 36, 110–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.; Hussaini, S.M.Q.; Rigby, M.J.; Jang, M.-H. Functional Role of Adult Hippocampal Neurogenesis as a Therapeutic Strategy for Mental Disorders. Neural Plast. 2012, 2012, 854285. [Google Scholar] [CrossRef] [PubMed]
- Burkert, N.T.; Koschutnig, K.; Ebner, F.; Freidl, W. Structural hippocampal alterations, perceived stress, and coping deficiencies in patients with anorexia nervosa: Hippocampus, stress, and coping in Anorexia nervosa. Int J. Eat. Disord. 2015, 48, 670–676. [Google Scholar] [CrossRef]
- Tottenham, N.; Galván, A. Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neurosci. Biobehav. Rev. 2016, 70, 217–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossati, P. Neural correlates of emotion processing: From emotional to social brain. Eur. Neuropsychopharmacol. 2012, 22, S487–S491. [Google Scholar] [CrossRef]
- Hare, T.A.; Tottenham, N.; Galvan, A.; Voss, H.U.; Glover, G.H.; Casey, B. Biological Substrates of Emotional Reactivity and Regulation in Adolescence During an Emotional Go-Nogo Task. Biol. Psychiatry 2008, 63, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Joos, A.; Saum, B.; Van Elst, L.T.; Perlov, E.; Glauche, V.; Hartmann, A.; Freyer, T.; Tüscher, O.; Zeeck, A. Amygdala hyperreactivity in restrictive anorexia nervosa. Psychiatry Res. Neuroimaging 2011, 191, 189–195. [Google Scholar] [CrossRef]
- Oldershaw, A.; Startup, H.; Lavender, T. Anorexia Nervosa and a Lost Emotional Self: A Psychological Formulation of the Development, Maintenance, and Treatment of Anorexia Nervosa. Front. Psychol. 2019, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Vocks, S.; Busch, M.; Grönemeyer, D.; Schulte, D.; Herpertz, S.; Suchan, B. Neural correlates of viewing photographs of one’s own body and another woman’s body in anorexia and bulimia nervosa: An fMRI study. J Psychiatry Neurosci. 2010, 35, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Miyake, Y.; Okamoto, Y.; Onoda, K.; Kurosaki, M.; Shirao, N.; Okamoto, Y.; Yamawaki, S. Brain activation during the perception of distorted body images in eating disorders. Psychiatry Res. Neuroimaging 2010, 181, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Okamoto, Y.; Onoda, K.; Shirao, N.; Okamoto, Y.; Otagaki, Y.; Yamawaki, S. Neural processing of negative word stimuli concerning body image in patients with eating disorders: An fMRI study. NeuroImage 2010, 50, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Seidel, M.; King, J.A.; Ritschel, F.; Boehm, I.; Geisler, D.; Bernardoni, F.; Beck, M.; Pauligk, S.; Biemann, R.; Strobel, A.; et al. Processing and regulation of negative emotions in anorexia nervosa: An fMRI study. NeuroImage: Clin. 2018, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oldershaw, A.; Hambrook, D.; Stahl, D.; Tchanturia, K.; Treasure, J.; Schmidt, U. The socio-emotional processing stream in Anorexia Nervosa. Neurosci. Biobehav. Rev. 2011, 35, 970–988. [Google Scholar] [CrossRef]
- Horndasch, S.; O’Keefe, S.; Lamond, A.; Brown, K.; McCabe, C. Increased anticipatory but decreased consummatory brain responses to food in sisters of anorexia nervosa patients. BJPsych Open 2016, 2, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Burkert, N.T.; Koschutnig, K.; Ebner, F.; Freidl, W. Body image disturbances, fear and associations with the amygdala in anorexia nervosa. Wien. Klin. Wochenschr. 2019, 131, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol. Psychiatry 2003, 54, 504–514. [Google Scholar] [CrossRef]
- Gaudio, S.; Carducci, F.; Piervincenzi, C.; Olivo, G.; Schiöth, H.B. Altered thalamo–cortical and occipital–parietal– temporal–frontal white matter connections in patients with anorexia and bulimia nervosa: A systematic review of diffusion tensor imaging studies. J. Psychiatry Neurosci. 2019, 44, 324–339. [Google Scholar] [CrossRef] [Green Version]
- Stave, E.A.; De Bellis, M.D.; Hooper, S.R.; Woolley, D.P.; Chang, S.K.; Chen, S.D. Dimensions of Attention Associated with the Microstructure of Corona Radiata White Matter. J. Child Neurol. 2017, 32, 458–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillipou, A.; Castle, D.J.; Rossell, S.L. Response: Commentary on Phillipou et al. (2018) anorexia nervosa: Eating disorder or body image disorder? Aust. New Zealand J. Psychiatry 2018, 52, 288–289. [Google Scholar] [CrossRef]
- Karababa, I.F.; Bayazıt, H.; Kılıçaslan, N.; Çelik, M.; Cece, H.; Karakas, E.; Selek, S. Microstructural Changes of Anterior Corona Radiata in Bipolar Depression. Psychiatry Investig. 2015, 12, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Papathanasiou, A.; Messinis, L.; Zampakis, P.; Papathanasopoulos, P. Corpus callosum atrophy as a marker of clinically meaningful cognitive decline in secondary progressive multiple sclerosis. Impact on employment status. J. Clin. Neurosci. 2017, 43, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Kennedy, D.N.; McInerney, S.; Sorensen, A.G.; Wang, R.; Caviness, V.S.; Pandya, D.N. Segmentation of Subcomponents within the Superior Longitudinal Fascicle in Humans: A Quantitative, In Vivo, DT-MRI Study. Cereb. Cortex 2005, 15, 854–869. [Google Scholar] [CrossRef]
- Catani, M.; de Schotten, M.T. Atlas of Human Brain Connections; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Emori, S.; Oishi, K.; Jiang, H.; Jiang, L.; Li, X.; Akhter, K.; Hua, K.; Faria, A.V.; Mahmood, A.; Woods, R.P.; et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 2008, 40, 570–582. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.K. Advances from neuroimaging studies in eating disorders. CNS Spectrums 2015, 20, 391–400. [Google Scholar] [CrossRef]
- Kaufmann, L.-K.; Baur, V.; Hänggi, J.; Jäncke, L.; Piccirelli, M.; Kollias, S.; Schnyder, U.; Pasternak, O.; Martin-Soelch, C.; Milos, G. Fornix Under Water? Ventricular Enlargement Biases Forniceal Diffusion Magnetic Resonance Imaging Indices in Anorexia Nervosa. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Kazlouski, D.; Rollin, M.D.; Tregellas, J.; Shott, M.E.; Jappe, L.M.; Hagman, J.O.; Pryor, T.; Yang, T.T.; Frank, G.K.W. Altered fimbria-fornix white matter integrity in anorexia nervosa predicts harm avoidance. Psychiatry Res. Neuroimaging 2011, 192, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Via, E.; Zalesky, A.; Sánchez, I.; Forcano, L.; Harrison, B.J.; Pujol, J.; Fernández-Aranda, F.; Menchón, J.M.; Soriano-Mas, C.; Cardoner, N.C.; et al. Disruption of brain white matter microstructure in women with anorexia nervosa. J. Psychiatry Neurosci. 2014, 39, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frieling, H.; Fischer, J.; Wilhelm, J.; Engelhorn, T.; Bleich, S.; Hillemacher, T.; Dörfler, A.; Kornhuber, J.; De Zwaan, M.; Peschel, T. Microstructural abnormalities of the posterior thalamic radiation and the mediodorsal thalamic nuclei in females with anorexia nervosa—A voxel based diffusion tensor imaging (DTI) study. J. Psychiatr. Res. 2012, 46, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.K.W. Altered brain reward circuits in eating disorders: Chicken or egg? Curr. Psychiatry. Rep. 2013, 15, 396. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion tensor imaging of the brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Basser, P.J.; Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 2011, 213, 560–570. [Google Scholar] [CrossRef]
- Kubicki, M.; McCarley, R.; Westin, C.-F.; Park, H.-J.; Maier, S.; Kikinis, R.; Jolesz, F.A.; Shenton, M.E. A review of diffusion tensor imaging studies in schizophrenia. J. Psychiatr. Res. 2007, 41, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.K.; Knösche, T.R.; Turner, R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage 2013, 73, 239–254. [Google Scholar] [CrossRef]
- Frintrop, L.; Liesbrock, J.; Paulukat, L.; Johann, S.; Kas, M.J.; Tolba, R.H.; Heussen, N.; Neulen, J.; Konrad, K.; Herpertz-Dahlmann, B.; et al. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats. World J. Biol. Psychiatry 2017, 19, 225–235. [Google Scholar] [CrossRef]
- Paus, T. Growth of white matter in the adolescent brain: Myelin or axon? Brain Cogn. 2010, 72, 26–35. [Google Scholar] [CrossRef]
- Song, S.-K.; Sun, S.-W.; Ramsbottom, M.J.; Chang, C.; Russell, J.; Cross, A.H. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002, 17, 1429–1436. [Google Scholar] [CrossRef]
- Qiu, D.; Tan, L.-H.; Zhou, K.; Khong, P.-L. Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: Voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. NeuroImage 2008, 41, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Stevens, F.L.; Hurley, R.A.; Taber, K.H. Anterior cingulate cortex: Unique role in cognition and emotion. J. Neuropsychiatry Clin. Neurosci. 2011, 23, 121–125. [Google Scholar] [CrossRef]
- Kelly, A.C.; Di Martino, A.; Uddin, L.Q.; Shehzad, Z.; Gee, D.G.; Reiss, P.T.; Margulies, D.S.; Castellanos, F.X.; Milham, M.P. Development of Anterior Cingulate Functional Connectivity from Late Childhood to Early Adulthood. Cereb. Cortex 2008, 19, 640–657. [Google Scholar] [CrossRef] [PubMed]
- Margulies, D.S.; Kelly, A.M.C.; Uddin, L.Q.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 2007, 37, 579–588. [Google Scholar] [CrossRef]
- Blair, K.S.; Smith, B.W.; Mitchell, D.G.; Morton, J.; Vythilingam, M.; Pessoa, L.; Fridberg, D.; Zametkin, A.; Sturman, D.; Nelson, E.E.; et al. Modulation of emotion by cognition and cognition by emotion. NeuroImage 2007, 35, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, P.B.; Laird, A.R.; Maller, J.; Daskalakis, Z.J. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008, 29, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Minzenberg, M.J.; Laird, A.R.; Thelen, S.; Carter, C.S.; Glahn, D.C. Meta-analysis of 41 Functional Neuroimaging Studies of Executive Function in Schizophrenia. Arch. Gen. Psychiatry 2009, 66, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Etkin, A.; Wager, T.D. Functional Neuroimaging of Anxiety: A Meta-Analysis of Emotional Processing in PTSD, Social Anxiety Disorder, and Specific Phobia. Am. J. Psychiatry 2007, 164, 1476–1488. [Google Scholar] [CrossRef] [Green Version]
- Rowsell, M.; Macdonald, D.E.; Carter, J.C. Emotion regulation difficulties in anorexia nervosa: Associations with improvements in eating psychopathology. J. Eat. Disord. 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, L.Q.; Nomi, J.S.; Hébert-Seropian, B.; Ghaziri, J.; Boucher, O. Structure and Function of the Human Insula. J. Clin. Neurophysiol. 2017, 34, 300–306. [Google Scholar] [CrossRef]
- Gogolla, N. The insular cortex. Curr. Biol. 2017, 27, R580–R586. [Google Scholar] [CrossRef] [Green Version]
- Devue, C.; Collette, F.; Balteau, E.; Degueldre, C.; Luxen, A.; Maquet, P.; Brédart, S. Here I am: The cortical correlates of visual self-recognition. Brain Res. 2007, 1143, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Konstantakopoulos, G.; Varsou, E.; Dikeos, D.; Ioannidi, N.; Gonidakis, F.; Papadimitriou, G.; Oulis, P. Delusionality of body image beliefs in eating disorders. Psychiatry Res. 2012, 200, 482–488. [Google Scholar] [CrossRef]
- Wagner, A.; Aizenstein, H.J.; Mazurkewicz, L.; Fudge, J.L.; Frank, G.K.W.; Putnam, K.; Bailer, U.F.; Fischer, L.; Kaye, W.H. Altered Insula Response to Taste Stimuli in Individuals Recovered from Restricting-Type Anorexia Nervosa. Neuropsychopharmacology 2008, 33, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Oberndorfer, T.A.; Frank, G.K.; Simmons, A.N.; Wagner, A.; McCurdy, D.; Fudge, J.L.; Yang, T.T.; Paulus, M.P.; Kaye, W.H. Altered Insula Response to Sweet Taste Processing After Recovery From Anorexia and Bulimia Nervosa. Am. J. Psychiatry 2013, 170, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Haase, L.; Green, E.; Murphy, C. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite 2011, 57, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Nunn, K.; Frampton, I.; Fuglset, T.S.; Törzsök-Sonnevend, M.; Lask, B. Anorexia nervosa and the insula. Med. Hypotheses 2011, 76, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Lichenstein, S.D.; Verstynen, T.; Forbes, E.E. Adolescent brain development and depression: A case for the importance of connectivity of the anterior cingulate cortex. Neurosci. Biobehav. Rev. 2016, 70, 271–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fair, D.A.; Dosenbach, N.U.F.; Church, J.A.; Cohen, A.L.; Brahmbhatt, S.; Miezin, F.M.; Barch, D.M.; Raichle, M.E.; Petersen, S.E.; Schlaggar, B.L. Development of distinct control networks through segregation and integration. Proc. Natl. Acad. Sci. USA 2007, 104, 13507–13512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, B.J.; Jones, R.M.; Somerville, L.H. Braking and Accelerating of the Adolescent Brain. J. Res. Adolesc. 2011, 21, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.D.B. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 2009, 10, 59–70. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Supekar, K.S.; Ryali, S.; Menon, V. Dynamic Reconfiguration of Structural and Functional Connectivity Across Core Neurocognitive Brain Networks with Development. J. Neurosci. 2011, 31, 18578–18589. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.; Torrisi, S.; Balderston, N.L.; Grillon, C.; Hale, E.A. fMRI Functional Connectivity Applied to Adolescent Neurodevelopment. Annu. Rev. Clin. Psychol. 2015, 11, 361–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damoiseaux, J.S.; Rombouts, S.A.R.B.; Barkhof, F.; Scheltens, P.; Stam, C.J.; Smith, S.M.; Beckmann, C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 2006, 103, 13848–13853. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Broyd, S.J.; Demanuele, C.; Debener, S.; Helps, S.K.; James, C.J.; Sonuga-Barke, E.J. Default-mode brain dysfunction in mental disorders: A systematic review. Neurosci. Biobehav. Rev. 2009, 33, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Farmer, M.; Fogelman, P.; Gotlib, I.H. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience. Biol. Psychiatry 2015, 78, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Uniacke, B.; Wang, Y.; Biezonski, D.; Sussman, T.; Lee, S.; Posner, J.; Steinglass, J. Resting-state connectivity within and across neural circuits in anorexia nervosa. Brain Behav. 2019, 9, e01205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shott, M.E.; Cornier, M.-A.; Mittal, V.A.; Pryor, T.L.; Orr, J.M.; Brown, M.S.; Frank, G.K. Orbitofrontal cortex volume and brain reward response in obesity. Int. J. Obes. 2015, 39, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, L.L.; Brunstrom, J.M. Sensory specific satiety: More than “just” habituation? Appetite 2016, 103, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.D.; Greicius, M. Clinical applications of resting state functional connectivity. Front Syst. Neurosci. 2010, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boghi, A.; Sterpone, S.; Sales, S.; D’Agata, F.; Bradac, G.B.; Zullo, G.; Munno, D. In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res. Neuroimaging 2011, 192, 154–159. [Google Scholar] [CrossRef]
- Amianto, F.; Caroppo, P.; D’Agata, F.; Spalatro, A.; Lavagnino, L.; Caglio, M.; Righi, D.; Bergui, M.; Abbate-Daga, G.; Rigardetto, R.; et al. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: A Voxel-based morphometry study. Psychiatry Res. Neuroimaging 2013, 213, 210–216. [Google Scholar] [CrossRef]
- Frank, G.K.; DeGuzman, M.C.; Shott, M.E. Motivation to eat and not to eat—The psycho-biological conflict in anorexia nervosa. Physiol. Behav. 2019, 206, 185–190. [Google Scholar] [CrossRef]
- Wagner, A.; Bs, N.C.B.; Frank, G.K.W.; Bailer, U.F.; Wonderlich, S.A.; Crosby, R.D.; Bs, S.E.H.; Bs, V.V.; Plotnicov, K.; McConaha, C.; et al. Personality traits after recovery from eating disorders: Do subtypes differ? Int. J. Eat. Disord. 2006, 39, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.S.; Portnoff, L.C.; McCurdy-McKinnon, D.; Feusner, J.D. What happens after treatment? A systematic review of relapse, remission, and recovery in anorexia nervosa. J. Eat. Disord. 2017, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boedhoe, P.S.; Schmaal, L.; Abe, Y.; Alonso, P.; Ameis, S.H.; Anticevic, A.; Arnold, P.; Batistuzzo, M.C.; Benedetti, F.; Beucke, J.C.; et al. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. Am. J. Psychiatry 2018, 175, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Madonna, D.; DelVecchio, G.; Soares, J.C.; Brambilla, P. Structural and functional neuroimaging studies in generalized anxiety disorder: A systematic review. Rev. Bras. Psiquiatr. 2019, 41, 336–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirion, B.; Pinel, P.; Mériaux, S.; Roche, A.; Dehaene, S.; Poline, J.-B. Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. NeuroImage 2007, 35, 105–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goddings, A.-L.; Mills, K.L.; Clasen, L.S.; Giedd, J.N.; Viner, R.M.; Blakemore, S.-J. The influence of puberty on subcortical brain development. NeuroImage 2014, 88, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Neufang, S.; Specht, K.; Hausmann, M.; Güntürkün, O.; Herpertz-Dahlmann, B.; Fink, G.R.; Konrad, K. Sex Differences and the Impact of Steroid Hormones on the Developing Human Brain. Cereb. Cortex 2008, 19, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Yendiki, A.; Koldewyn, K.; Kakunoori, S.; Kanwisher, N.; Fischl, B. Spurious group differences due to head motion in a diffusion MRI study. NeuroImage 2014, 88, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.K.W.; Favaro, A.; Marsh, R.; Ehrlich, S.; Lawson, E.A. Toward valid and reliable brain imaging results in eating disorders. Int. J. Eat. Disord. 2018, 51, 250–261. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Maughan, R.J.; Senay, L.C.; Shirreffs, S.M. Limitations to the use of plasma osmolality as a hydration biomarker. Am. J. Clin. Nutr. 2013, 98, 503–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Study Design | Subtypes | Males(%) | Mean Age (Years) | Age Range (Years) | Mean BMI (Kg/m2) | Duration of Follow-up (Months) | 2nd Imaging Partici-Pation | 2nd Mean BMI (Kg/m2) | Measure Adapted for 2nd Imaging | Criteria for Diagnosis | Duration of Illness (Months) | Patients under Medication (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MRI | |||||||||||||
Katzman (1996) | Cross-sectional | AN-R: 13 HC: 8 | 0 | 15.2 | 13.3–17.0 | 15.6 | - | - | - | - | DSM-III-R | 11.3 | 0 |
Olivo (2018) | Cross-sectional | Atypical AN: 22 HC: 38 | 0 | 14.7 | 13–18 | 19.3 | - | - | - | - | DSM-V | 7.9 | 0 |
Myrvang (2018) | Cross-sectional | AN-R: 33 HC: 28 | 0 | 15.8 | 12.4–19.2 | 16.3 | - | - | - | - | DSM-V | 19.2 | 23.3 |
King (2015) | Cross-sectional | AN-R: 36 AN-BP: 4 HC: 40 | 0 | 15.9 | 12–23 | 14.8 | - | - | - | - | DSM-IV | 18 | Not mentioned |
Yue (2018) | Cross-sectional | AN-R: 17 AN-BP: 18 HC: 20 | 0 | 19.3 | 15–23 | 15.3 | - | - | - | - | DSM-IV TR | 33.3 | 0 |
Fujisawa (2015) | Cross-sectional | AN-R: 20 HC: 14 | 0 | 14.2 | 12–17 | 14.4 | - | - | - | - | DSM-IV TR | 23.55 | 0 |
Neumärker (2000) | Cross-sectional (longitudinal) | AN-R: 14 AN-BP: 4 HC: 25 | 0 | 14.5 | 13–16 | 14.9 | Not mentioned | 100% | 17.8 | Weight normalization | ICD-10 | 267.8 | Not mentioned |
Castro-Fornieles (2009) | Cross-sectional (longitudinal) | AN-R: 9 AN-BP: 3 HC: 9 | 8.3 | 14.5 | 11–17 | 14.8 | 6 | 100% | 18.8 | Weight normalization. | DSM-IV TR | 8.3 | 8.3 |
Monzon (2017) | Cross-sectional (longitudinal) | AN: 26 HC: 10 | 0 | 16.5 | 14 -19 | 16.7 | 2 | 38% | 18.9 | Weight gain | DSM-V | Less than 36 | Not mentioned |
Golden (1996) | Cross-sectional (longitudinal) | AN: 12 HC: 12 | 0 | 16.1 | 11–22 | 14.3 | 11 | 100% | 17.9 | Weight normalization | DSM-III | Not mentioned | Not mentioned |
Akgül (2016) | Cross-sectional (longitudinal) | AN: 9 HC: 9 | 11 | 15.8 | 13–21 | 16.3 | 14 | 100% | 19.2 | Weight normalization | DSM-IV | 8.7 | 0 |
Bernardoni (2016) | Cross-sectional (longitudinal) | AN-R: 43 AN-BP: 4 HC: 35 | 0 | 15.5 | 12–23 | 14.8 | 3 | 35 | 18.7 | Weight gain | DSM-IV | Not mentioned | 0 |
Katzman (1997) | Cross-sectional (longitudinal) | AN: 6 HC: 6 | 0 | 17.0 | 15–19 | 15.9 | 24 | 100% | 23.0 | Weight normalization | DSM-III-R | 22.5 | 0 |
MRS | |||||||||||||
Schlemmer (1997) | Cross-sectional | AN-R: 8 AN-BP: 2 HC: 17 | 0 | 16.0 | 14.9–19 | 14.7 | - | - | - | - | DSM-IV | Not mentioned | 0 |
Blasel (2012) | Cross-sectional | AN-R: 19 AN-BP: 2 HC: 29 | 0 | 14.4 | 11–17 | 14.4 | - | - | - | - | DSM-IV | 11 | 0 |
Castro-Fornieles (2007) | Cross-sectional (longitudinal) | AN-R: 9 AN-BP: 3 HC: 12 | 8.3 | 14.5 | 11–17 | 14.8 | 7 | 100% | - | Weight normalization | DSM-IV-TR | Not mentioned | 8.3 |
MRI-DTI | |||||||||||||
Pfuhl (2016) | Cross-sectional | AN: 35 HC:62 | 0 | 16.1 | 12–24 | 14.7 | - | - | - | - | DSM-IV | Not mentioned | 0 |
Hu (2017) | Cross-sectional | AN-R: 8 HC:14 | 0 | 17.6 | 15–22 | 14.3 | - | - | - | - | DSM-IV | 10.5 | Not mentioned |
Gaudio (2017) | Cross-sectional | AN-R: 14 HC:15 | 0 | 15.7 | 13–18 | 16.2 | - | - | - | - | DSM-IV-TR | 4.9 | 0 |
K. E.Travis (2015) | Cross-sectional | AN-R: 15 HC:15 | 0 | 16.6 | 14–18 | 16 | - | - | - | - | DSM-IV | 16.3 | 2 |
K. Vogel (2016) | Cross-sectional (longitudinal) | AN-R: 19 AN-BP: 3 HC: 21 | 0 | 15.03 | 10–18 | 15.36 | 4.76 | 41% | 17.4 | Weight gain | DSM-IV | 13.49 | 1 |
G. Olivo (2018) | Cross-sectional | AAN: 25 HC:25 | 0 | 14.08 | 13–18 | 18.6 | - | - | - | - | DSM-V | 8.4 | 0 |
Von Schwanenflug (2018) | Cross-sectional (longitudinal) | AN-R: 53 AN-BP: 3 HC:60 | 0 | 15.8 | 12–27 | 14.7 | 3 | 83% | 18.7 | Weight gain | DSM-IV | 14.5 | Not mentioned |
Study | Method and Procedure | Data Analysis | Hydration before Imaging for DTI Studies | Presentation of the Main Findings | Clinical Interpretations |
---|---|---|---|---|---|
MRI | |||||
Katzman (1996) | MRI 1.5T Tested at one time point. | Not mentioned | Significantly larger total CSF volume and reduced total GM and WM volumes. Alterations correlated with BMI and cortisol levels. No correlation with disease duration. | No clinical interpretations. Deficits in GM volume were associated with severity but not disease duration and were related to hypercortisolemia. | |
Olivo (2018) | MRI 3T Tested at one time point. | Voxel based morphometry (VBM) | Total GM, WM, and CSF volumes were not significantly different between groups. | Τhe preservation of GM volume might indeed differentiate atypical AN from AN. Alternatively, there may be a weight cut-off under which GM alterations become obvious. | |
Myrvang (2018) | MRI 3T Tested at one time point. | Magnetization Prepared—RApid Gradient Echo (MPRAGE)-sequence | Statistically significant volume reduction in GM, total hippocampal volume and in all hippocampal subfields apart from fissure. | Hippocampal atrophy may be attributed to hypercortisolemia due to high levels of stress. | |
King (2015) | MRI 3T Tested at one time point. | Source based morphometry (SBM) | Significant GM thickness reduction in a total of 86% of the cortical surface, apart from bilateral temporal pole and entorhinal cortex. Reduced volume of nucleus accumbens, amygdala, cerebellum, hippocampus, putamen and thalamus. | A correlation was found between cortical thickness and “drive for thinness” in a broad region of the right lateral occipitotemporal cortex. The normal neurodevelopmental trajectory of cortical thickness (CT) across adolescence and young adulthood may be interrupted in AN. | |
Yue (2018) | MRI 3T Tested at one time point. | Not mentioned | Significantly reduced total GM volume and ventricular enlargement. Reduced thalamus volume CT in the left precuneus and a larger ratio of caudate volume. | The relative preservation of caudate volume and reduced CT of the left precuneus may be involved in body image distortion. | |
Fujisawa (2015) | MRI 3T Tested at one time point. | VBM | Significant volume decreases in total GM as well as in bilateral inferior frontal gyrus (IFG) (19,1% left and 17,6% right). Significant correlations were found between regional reduction of GM in the bilateral IFG and age, BMI and age at disease onset. | Volumetric decreases in the IFG might explain the impulsive behaviors observed in patients with AN. | |
Neumärker (2000) | MRI 1.5T Testedat three time points: at admission (T1), with 50% weight restoration (T2), with normal weight (T3). | Not mentioned | T1: Significant larger lateral ventricles and wider fissures of Sylvius bilaterally. Mesencephalon was also markedly reduced. T2&T3: Reduced mesencephalon size persisted. | Volumetric alterations were related to the degree of impairment in arithmetic performance. Intact number processing abilities may be a good predictor for weight restoration. | |
Castro-Fornieles (2009) | MRI 1.5T Tested at two time points: before treatment (T1) and after weight recovery (T2). | VBM | T1: Lower global GM and higher CSF volumes and not statistically significant differences in WM. In regional VBM study, significantly decreased GM was observed in bilateral parietal, right temporal cortex and cingulum. T2: Decreased GM volume remained in cingulum, not to the same extent as in the first assessment. | Overall, GM reduction at first assessment correlated with Rey Complex Figure Test copy time, indicating a relationship to slowness in complex mental processing. | |
Monzon (2017) | MRI 3T 26 AN(T1) patients evaluated at the beginning, 10 AN(T2) patients re-examined after reaching at least 85% of expected body weight. | VBM | T1: Significantly reduced GM volume in OFC, dlPFC, mPFC, insular cortex and hippocampus, anterior cingulate cortex (ACC), medial cingulate cortex (MCC), posterior cingulate cortex (PCC) and the precuneus bilaterally. Additionally, in bilateral amygdala and thalamus. No significant difference in total brain volume between groups. T2: Significantly reduced GM volume remained in ACC, caudate nucleus and right hippocampus. GM volume increase after weight gain in thalamus was negatively correlated to the presence of eating concern symptoms, while in left OFC was negatively correlated to shape-concern symptoms evaluated by the EDE-Q. | Alterations found in PFC, insular and cingulate cortices, hippocampal region, amygdala and parietal cortex could explain distorted body image, emotional disturbances and cognitive deficits. | |
Golden (1996) | MRI 1T Tested at two time points: before treatment (T1) and after weight gain (T2). | Not mentioned | T1: Ventricular enlargement, especially of the third ventricle. T2: Significantly decreased total ventricular volume. An inverse relationship was found between ventricular volume and BMI. | Atrophy of the cerebral cortex may occur as a result of decreased protein synthesis caused by malnutrition. Structural changes and cognitive functioning seem to improve with weight gain. | |
Akgül (2016) | MRI 1.5T-MTI Tested at two time points: T1 at admission, T2 after weight recovery. | Regions of interest (ROIs) | T1: Magnetization Transfer Ratio (MTR) did not differ. MRI identified widening of the cerebral sulci in 7 patients with no other gross abnormalities. (ROIs: Left dlPFC, left cerebellar hemisphere, thalamus, amygdala, pons, corona radiata). T2: MTR did not differ. | No clinical interpretations. Adiposity-related variations in phospholipid composition of brain lipids during adolescence could be related to the reversibility of functional impairment. | |
Bernardoni (2016) | MRI 3T Tested at two time points: T1 at admission, T2 after weight recovery. | SBM-ROIs | T1: Global cortical thinning. AN(T1) vs. AN(T2): 84% of CT restored. AN(T2) vs. HC: CT normalised apart from left temporal pole and enthorhinal cortex. Subcortical GM volume was increased in all ROIs apart from pallidum where a decrease was observed. | Normalization of CT following partial weight restoration is independent of improvements in psychopathology. | |
Katzman (1997) | MRI 1.5T Tested at two time points: at low weight (T1) and at normal weight (T2) 2–3 years later. | Not mentioned | T1: GM and WM volume decrease and ventricular enlargement. T2: Findings persisted apart from WM volume decrease. Increase of GM volume correlated with BMI increase. | Hypercortisolemia may lead to neuronal damage and persistent brain abnormalities. | |
MRS | |||||
Blasel (2012) | MRI 3T and MRS Tested at one time point. | Separate analysis of region1: anterior region rostral of the anterior commissure & region 2: posterior region dorsal of the anterior commissure. | No difference between GM fraction. WM fraction was significantly lower to region 2. Significant differences in metabolite concentrations were determined in GM with higher concentrations of tCho, tCr, tNAA, Glx. No difference was found in WM metabolites. MI concentrations did not differ between patients and controls. | The Glx increase may indicate a psychiatric or neurodegenerative origin of AN rather than the result of nutrition depletion. | |
Castro-Fornieles (2007) | MRI 1.5T and MRS Tested at two time points: T1 before treatment and T2 after weight recovery. | Not mentioned | T1: Significantly lower NAA, Glx and mI. No difference was found in the concentration of Cr and Chol. A positive correlation was reported between NAA & T3 and NAA & Wechsler Intelligence Scale for children (WISC). No difference in metabolites concentration between males and females. T2: A statistically significant increase in NAA and a non-significant increase in Glx in frontal GM. | No clinical interpretations. | |
Schlemmer (1997) | MRI 1.5T and MRS Tested at one time point. | Two ROIs: the parieto-occipital WM and the thalamus. | A 25% elevation of Cho/Cr and a 25% depression of NAA/Cho were observed in the parieto-occipital WM. No statistically significant differences were found in thalamus. No correlations were found between the metabolic ratios and age, weight or BMI. | No clinical interpretations. The abnormal phospholipid metabolism of membranes might be responsible for brain atrophy. | |
MRI-DTI | |||||
Pfuhl (2016) | DTI, MRI Tested at one time point. | Global tractography | Urine specific gravity | No significant volumetric differences or microstructural abnormalities in 18 WM tracts. All four diffusivity indices were evaluated (FA, MD, AD, RD). | The preserved WM microstructure may explain why adolescents often do not show marked impairment in executive functioning. |
Hu (2017) | DTI Tested at one time point. | VBM | At least 1 week of supervised meals and hydration. | Decreased FA in the left superior frontal gyrus, medial frontal gyrus, ACC, middle frontal gyrus, IFG, thalamus and bilateral insula. Positive correlations between the FA of the left IFG, insula, thalamus and BMI. | WM alterations in prefrontal cortex, parietal lobe and subcortical regions may be associated with impaired cognitive functions. |
Gaudio (2017) | DTI Tested at one time point. | VBM | Not assessed | Decreased FA in the left anterior and superior corona radiata and in the SLF. Decreased AD in the left superior and anterior corona radiata and in the SLF bilaterally, external capsule, posterior limb of the internal capsule and posterior thalamic radiation. No differences in MD, RD. No significant correlations. | WM alterations may be involved in impaired cognitive flexibility and body image distortion. |
Travis (2015) | DTI Tested at one time point. | Tractography, relaxometry | Not assessed | Twenty-six WM tracts were identified, 9 bilateral cerebral and 8 subdivisions of the corpus callosum. FA was found decreased in 4 of 26 tracts (including bilateral fimbria—fornix and right SLF and motor subdivisions of corpus callosum) and increased in 2 (including right anterior thalamic radiation and left SLF). R1 was decreased in 11 of 26 tracts mainly in corticospinal tracts and subdivisions of the corpus callosum—body and splenium. No significant associations between BMI and clinical measures. | WM alterations seem to be related to myelin quality, affecting cognitive, emotional and social functions. |
Vogel (2016) | DTI Tested at one time point. | TBSS | Urine specific gravity | T1: Increased FA in bilateral frontal, parietal and temporal areas, including bilateral superior corona radiata, corpus callosum, anterior and posterior thalamic radiation, anterior and posterior limb of internal capsule and left inferior longitudinal fasciculus. FA increase due to reduced RD, not altered AD. Most areas with FA increase exhibited reduced MD. T2: No differences in FA after weight rehabilitation. Higher FA was associated with faster weight loss. | The different pattern of WM microstructural changes in adolescents compared to adults may reflect a different susceptibility and reaction to semi starvation in the still developing brain or a time-dependent pathomechanism differing with extent of chronicity. |
Olivo (2018) | DTI Tested at one time point. | TBSS | Patients were instructed to eat before the scanning. | No differences detected in diffusivity indices (FA, MD, RD, AD). | Preserved WM microstructure in patients with atypical AN suggests that alterations observed in full syndrome may constitute state-related consequences of severe weight loss. |
Von Schwanenflug (2019) | DTI Tested at two time points: At baseline (T1) and after partial weight restoration (T2). | TBSS | Urine specific gravity | T1: In acAN significantly decreased FA and increased MD, AD, RD in corpus callosum, mainly in the body and increased FA in the right corticospinal tract. Additionally, increased FA in the right SLF. T2: After partial weight restoration significantly increased FA and dicreased MD, AD, RD in the fornix extending into bilateral optic radiation. No clinical correlations. | The decreased FA in corpus callosum may contribute to the distorted body image. |
Study | Study Design | Sybtype | Males(%) | Mean Age (Years) | Age Range (Years) | Mean BMI (Kg/m2) | Duration of Follow-up (Months) | 2nd Imaging Participation | 2nd Mean BMI (Kg/m2) | Measure Adapted for 2nd Imaging | Criteria for Diagnosis | Duration of Illness (Months) | Patients under Medication (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPECT | |||||||||||||
Kojima (2005) | Cross-sectional (longitudinal) | AN-R: 12 HC: 11 | 0 | 18.6 | 15.1–22.1 | 12.5 | 3.46 | 100% | 15.6 | Weight gain | DSM-IV | Not mentioned | Not mentioned |
Takano (2001) | Cross-sectional | AN-R: 8 AN-BP: 6 HC: 8 | 0 | 21.2 | - | 14.0 | - | - | - | - | DSM-IV | 16.8 | 0 |
Matsumoto (2006) | Longitudinal | AN-R: 5 AN-BP: 3 HC: 8 | 0 | 18.5 | 12.3–24 | 12.9 | 6 | 100% | 18.8 | Weight normalization. | DSM-IV | 28 | 0 |
Komatsu (2010) | Longitudinal | AN: 10 HC: 10 | 0 | 13.2 | 11.0–14.3 | 13.1 | 3 | 100% | 16.6 | Weight gain | DSM-IV | Early onset | 0 |
fMRI | - | ||||||||||||
S. Gaudio (2015) | Cross-sectional | AN-R: 16 HC:16 | 0 | 15.8 | 13–18 | 16.2 | - | - | - | - | DSM-IV TR | 4 | 0 |
I. Boehm (2014) | Cross-sectional | AN-R: 33 AN-BP: 2 HC: 35 | 0 | 16.1 | 12–23 | 14.8 | - | - | - | DSM-IV | 18.9 | 0 | |
F. Amianto (2013) | Cross-sectional | AN-R: 12 HC:10 | 0 | 20.0 | 16–24 | 16.3 | - | - | - | - | DSM-IV | 11.5 | 0 |
S. Gaudio (2018) | Cross-sectional | AN-R: 15 HC:15 | 0 | 15.7 | 13–18 | 16.1 | - | - | - | DSM-IV TR | 4 | 0 | |
D. Geisler (2015) | Cross-sectional | AN: 35 HC:35 | 0 | 16.1 | 12–23 | 14.8 | - | - | - | - | DSM-IV | 18.9 | 0 |
S. Ehrlich (2015) | Cross-sectional | AN-R: 33 AN-BP: 2 HC: 35 | 0 | 16.1 | 12–23 | 14.8 | - | - | - | - | DSM-IV | 18.9 | 0 |
Study | Method and Procedure | Data Analysis | Presentation of the Main Findings | Clinical Interpretations |
---|---|---|---|---|
SPECT | ||||
Kojima (2005) | SPECT Tested at two time points: at baseline (T1) and after weight recovery (T2). | (HMPAO) | AN (T1) vs. HC: Decreased rCBF in AN in the bilateral frontal lobes, including the ACC, PCC, bilateral precentral gyri, right insula, and right lingual gyrus. A positive correlation between the rCBF and BMI in the occipital lobe was found. AN (T2) vs. HC: Significant increases in the right parietal lobe and the left superior frontal gyrus. Decreases in the left superior temporal gyrus, left putamen, right IFG, right amygdala, and right cerebellum. | Hypoperfusion in the ACC and the parietal lobe may be associated not only with low body weight but also with abnormal brain functions relative to clinical features of AN. |
Takano (2001) | SPECT Tested at one time point. | I-123-MIBG SPM approach | AN vs. HC: Hypoperfusion in the mPFC and ACC. Hyperperfusion in the thalamus and amygdala-hippocampus complex. | Hypoperfusion of the ACC may reflect depressive symptoms, while hyperactivity of the thalamus may be associated with chronic and refractory AN. |
Matsumoto(2006) | SPECT Tested at two time points: at baseline (T1) and before discharge (T2). | 123I-IMP | AN-T1 vs. AN-T2: Significant increase in rCBF in right dlPFC and medial parietal cortex including the precuneus and in the PCC. At the same lower threshold (p < 0.002) rCBF in the ACC and mPFC increased to an almost significant level. Significant decrease of rCBF in the right putamen. | Changes in rCBF may be associated with the improvement of interoceptive awareness following treatment. |
Komatsu (2010) | SPECT Tested at two time points: at baseline (T1) and after 3 months (T2). | 123I-IMP SPM approach | AN-T1 vs. AN-T2: Significant increased rCBF in bilateral parietal lobes and right PCC. No regions of decreased rCBF. A positive correlation between BMI and rCBF in right thalamus, right parietal lobe and right cerebellum. | PCC activation after weight gain might reflect affective changes for eating motivation during the recovery process of early-onset AN. |
fMRI | ||||
Gaudio (2015) | fMRI + MRI Tested at one time point. | whole brain ICA analysis | AN vs. HC: Eight networks were identified. Statistically significant reduced connectivity between the Executive control network (ECN) and the ACC. The decrease in functional connectivity in the ACC was positively correlated with BMI and negatively correlated with drive for thinness, perfectionism and harm avoidance scores. No significant differences in GM volumes. | The decreased functional connectivity between the ECN and the ACC could explain the cognitive inflexibility in relation to body image. |
Boehm (2014) | fMRI Tested at one time point. | ICA network based analysis | AN vs. HC: The networks of interest were the Fronto parietal network (FPN), DMN, Salience network (SN), visual and sensory-motor network. Increased functional connectivity between the angular gyrus and the FPN and between the anterior insula and the DMN. Positive correlations for both networks (DMN, FPN) with self-report measures in healthy controls. Functional connectivity in the anterior insula was positively associated with interoceptive difficulties in HC. | Increased functional connectivity within the FPN might be related to excessive cognitive control. The increased functional connectivity of insula with the DMN may mirror difficulties to disengage from thoughts about food and body appearance when not engaged in a task. |
Amianto (2013) | fMRI, MRI Tested at one time point. | ICA network based analysis | AN vs. HC: Within the cerebellar intrinsic connectivity network, a greater connectivity was found with insulae, temporal poles, vermis and paravermis and a lesser connectivity with parietal lobe. Additionally, GM volume reduction in cerebellar hemispheres, cingulate cortex, precuneus and OFC. | The vermian hyper-connection could be linked to some psychopathological core features, such as “drive for thinness” which express the dissatisfaction with body weight. The cerebellar-parietal network dysfunction could be related to the disturbances in the body image perception. A stronger connection between cerebellum and temporal lobes may be related to greater emotional activation elicited by social behaviors in subjects with AN. |
Gaudio (2018) | fMRI, MRI Tested at one time point. | Graph analysis whole brain and network based | AN vs. HC: Decreased connectivity in the sub-network including the left and right rostral ACC, left paracentral lobule, left cerebellum, left posterior insula, left medial orbito-frontal gyrus and right superior occipital gyrus. No significant differences in GM, WM, and CSF volumes. | The altered sub-network functional connectivity may sustain an altered self-body imge through an impaired integration of somatosensory, visual and interoceptive signals. |
Geisler (2015) | fMRI Tested at one time point. | Graph analysis whole brain | AN vs. HC: Decreased functional connectivity in the thalamo-insular subnetwork. Longer average routes between nodes and more nodes with a similar connectedness link together. Additionally, altered global network architecture. | The altered network global topology indicates wide-scale disturbance in information flow across brain networks. The local thalamo-insular network disruption may explain the impaired integration of visuospatial and homeostatic signals. |
Ehrlich (2015) | fMRI Tested at one time point. | Network based statistics | AN vs. HC: Reduced functional connectivity in the thalamo-insular network (in particular in a subnetwork consisting of the thalamus, amygdala, basal ganglia, fusiform gyrus and posterior insula). | The decreased functional connectivity in the thalamo-insular network may explain the striking discrepancy between patient’s actual and perceived internal body state. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappou, K.; Ntougia, M.; Kourtesi, A.; Panagouli, E.; Vlachopapadopoulou, E.; Michalacos, S.; Gonidakis, F.; Mastorakos, G.; Psaltopoulou, T.; Tsolia, M.; et al. Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review. Children 2021, 8, 137. https://doi.org/10.3390/children8020137
Kappou K, Ntougia M, Kourtesi A, Panagouli E, Vlachopapadopoulou E, Michalacos S, Gonidakis F, Mastorakos G, Psaltopoulou T, Tsolia M, et al. Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review. Children. 2021; 8(2):137. https://doi.org/10.3390/children8020137
Chicago/Turabian StyleKappou, Kalliopi, Myrto Ntougia, Aikaterini Kourtesi, Eleni Panagouli, Elpis Vlachopapadopoulou, Stefanos Michalacos, Fragiskos Gonidakis, Georgios Mastorakos, Theodora Psaltopoulou, Maria Tsolia, and et al. 2021. "Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review" Children 8, no. 2: 137. https://doi.org/10.3390/children8020137
APA StyleKappou, K., Ntougia, M., Kourtesi, A., Panagouli, E., Vlachopapadopoulou, E., Michalacos, S., Gonidakis, F., Mastorakos, G., Psaltopoulou, T., Tsolia, M., Bacopoulou, F., Sergentanis, T. N., & Tsitsika, A. (2021). Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review. Children, 8(2), 137. https://doi.org/10.3390/children8020137