Test of Motor Proficiency Second Edition (BOT-2) Short Form: A Systematic Review of Studies Conducted in Healthy Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Testing Tools
2.2. Literature Review
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Risk of Bias Assessment
2.6. Data Extraction
3. Results
3.1. Quality of the Studies
3.2. Selection and Characteristics of Studies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, J.E. From the beginning: A developmental perspective on movement and mobility. Quest 2005, 57, 37–45. [Google Scholar] [CrossRef]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents. Sport Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [Green Version]
- Bart, O.; Hajami, D.; Bar-Haim, Y. Predicting school adjustment from motor abilities in kindergarten. Infant Child Dev. Int. J. Res. Pract. 2007, 16, 597–615. [Google Scholar] [CrossRef]
- Lopes, L.; Santos, R.; Pereira, B.; Lopes, V.P. Associations between gross motor coordination and academic achievement in elementary school children. Hum. Mov. Sci. 2013, 32, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Hardy, L.L.; Reinten-Reynolds, T.; Espinel, P.; Zask, A.; Okely, A.D. Prevalence and correlates of low fundamental movement skill competency in children. Pediatrics 2012, 130, e390–e398. [Google Scholar] [CrossRef] [PubMed]
- Cattuzzo, M.T.; dos Santos Henrique, R.; Ré, A.H.N.; de Oliveira, I.S.; Melo, B.M.; de Sousa Moura, M.; de Araújoc, R.C.; Stodden, D. Motor competence and health related physical fitness in youth: A systematic review. J. Sci. Med. Sport 2016, 19, 123–129. [Google Scholar] [CrossRef]
- WHO. Population-Based Approaches to Childhood Obesity Prevention; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Johnstone, J.A.; Ramon, M. Perceptual-Motor Activities for Children: An Evidence-Based Guide to Building Physical and Cognitive Skills; Human Kinetics: Champaign, IL, USA, 2011. [Google Scholar]
- Bardid, F.; Rudd, J.R.; Lenoir, M.; Polman, R.; Barnett, L.M. Cross-cultural comparison of motor competence in children from Australia and Belgium. Front. Psychol. 2015, 6, 964. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.R.; Barnett, L.M.; Butson, M.L.; Farrow, D.; Berry, J.; Polman, R.C.J. Fundamental movement skills are more than run, throw and catch: The role of stability skills. PLoS ONE 2015, 10, e0140224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Ramachandran, V.S. Encyclopedia of Human Behavior; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- De Decker, E.; De Craemer, M.; De Bourdeaudhuij, I.; Wijndaele, K.; Duvinage, K.; Koletzko, B.; Grammatikaki, E.; Iotova, V.; Usheva, N.; Fernández-Alvira, J.M.; et al. Influencing factors of screen time in preschool children: An exploration of parents’ perceptions through focus groups in six European countries. Obes. Rev. 2012, 13, 75–84. [Google Scholar] [CrossRef]
- Vanderloo, L.M. Screen-viewing among preschoolers in childcare: A systematic review. BMC Pediatr. 2014, 14, 205. [Google Scholar] [CrossRef] [Green Version]
- Howe, N.; Recchia, H. Sibling relationships as a context for learning and development. Early Educ. Dev. 2014, 25, 155–159. [Google Scholar] [CrossRef]
- McHale, S.M.; Updegraff, K.A.; Whiteman, S.D. Sibling relationships and influences in childhood and adolescence. J. Marriage Fam. 2012, 74, 913–930. [Google Scholar] [CrossRef]
- Perner, J.; Ruffman, T.; Leekam, S.R. Theory of mind is contagious: You catch it from your sibs. Child Dev. 1994, 65, 1228–1238. [Google Scholar] [CrossRef]
- Abuhatoum, S.; Howe, N.; Della Porta, S.; Recchia, H.; Ross, H. Siblings’ understanding of teaching in early and middle childhood:‘Watch me and you’ll know how to do it’. J. Cogn. Dev. 2016, 17, 180–196. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A. Environmental factors affecting preschoolers’ motor development. Early Child Educ. J. 2010, 37, 319–327. [Google Scholar] [CrossRef]
- Cleland, F.E.; Gallahue, D.L. Young children’s divergent movement ability. Percept. Mot. Ski. 1993, 77, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Sutopo, P. Of birth types on the motor skills of children at an early age. In Proceedings of the 1st Yogyakarta International Seminar on Health, Physical Education, and Sports Science, Yogyakarta, Indonesia, 14 October 2017. [Google Scholar]
- Levin, A.R.; Zeanah, C.H., Jr.; Fox, N.A.; Nelson, C.A. Motor outcomes in children exposed to early psychosocial deprivation. J. Pediatr. 2014, 164, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, S.T.; Dowda, M.; Saunders, R.; Pate, R. Double dose: The cumulative effect of TV viewing at home and in preschool on children’s activity patterns and weight status. Pediatr. Exerc. Sci. 2013, 25, 262–272. [Google Scholar] [CrossRef]
- Bart, O.; Jarus, T.; Erez, Y.; Rosenberg, L. How do young children with DCD participate and enjoy daily activities? Res. Dev. Disabil. 2011, 32, 1317–1322. [Google Scholar] [CrossRef]
- Rodger, S.; Ziviani, J.; Watter, P.; Ozanne, A.; Woodyatt, G.; Springfield, E. Motor and functional skills of children with developmental coordination disorder: A pilot investigation of measurement issues. Hum. Mov. Sci. 2003, 22, 461–478. [Google Scholar] [CrossRef]
- Summers, J.; Larkin, D.; Dewey, D. Activities of daily living in children with developmental coordination disorder: Dressing, personal hygiene, and eating skills. Hum. Mov. Sci. 2008, 27, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.N.; Tseng, M.H.; Wilson, B.N.; Hu, F.C. Functional performance of children with developmental coordination disorder at home and at school. Dev. Med. Child Neurol. 2009, 51, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde, B.W.; Van Netten, J.J.; Otten, E.; Postema, K.; Geuze, R.H.; Schoemaker, M.M. A systematic review of instruments for assessment of capacity in activities of daily living in children with developmental co-ordination disorder. Child Care Health Dev. 2015, 41, 23–34. [Google Scholar] [CrossRef]
- Exner, C.E. Clinical interpretation of “In-hand manipulation in young children: Translation movements”. Am. J. Occup. Ther. 1997, 51, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Exner, C.E. The zone of proximal development in in-hand manipulation skills of nondysfunctional 3-and 4-year-old children. Am. J. Occup. Ther. 1990, 4, 884–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case-Smith, J.; Heaphy, T.; Marr, D.; Galvin, B.; Koch, V.; Ellis, M.G.; Perez, I. Fine motor and functional performance outcomes in preschool children. Am. J. Occup Ther. 1998, 52, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Bruininks, R.H.; Bruininks, B.D. Bruininks-Oseretsky Test of Motor Proficiency, 2nd ed.; AGS Publishing: Easel, TX, USA, 2005. [Google Scholar]
- Deitz, J.C.; Kartin, D.; Kopp, K. Review of the Bruininks-Oseretsky test of motor proficiency, (BOT-2). Phys. Occup. Ther. Pediatr. 2007, 27, 87–102. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A.; Aggeloussis, N.; Fatouros, I.; Taxildaris, K. Motor assessment of preschool aged children: A preliminary investigation of the validity of the Bruininks–Oseretsky test of motor proficiency–Short form. Hum. Mov. Sci. 2009, 28, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Brown, T. Structural Validity of the Bruininks-Oseretsky Test of Motor Proficiency–Second Edition (BOT-2) Subscales and Composite Scales. J. Occup. Ther. Sch. Early Interv. 2019, 12, 323–353. [Google Scholar] [CrossRef]
- Fransen, J.; D’Hondt, E.; Bourgois, J.; Vaeyens, R.; Philippaerts, R.M.; Lenoir, M. Motor competence assessment in children: Convergent and discriminant validity between the BOT-2 Short Form and KTK testing batteries. Res. Dev. Disabil. 2014, 35, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Gaul, D. Fine Motor Skill Performance in Irish Children. Ph.D. Thesis, Dublin City University, Dublin, Ireland, 2014. [Google Scholar]
- Hernandez, A.M.; Caçola, P. Motor proficiency predicts cognitive ability in four-year-olds. Eur. Early Child. Educ. Res. J. 2015, 23, 573–584. [Google Scholar] [CrossRef]
- Morley, D.; Till, K.; Ogilvie, P.; Turner, G. Influences of gender and socioeconomic status on the motor proficiency of children in the UK. Hum. Mov. Sci. 2015, 44, 150–156. [Google Scholar] [CrossRef]
- Gaul, D.; Issartel, J. Fine motor skill proficiency in typically developing children: On or off the maturation track? Hum. Mov. Sci. 2016, 46, 78–85. [Google Scholar] [CrossRef]
- Mülazimoglu-Balli, Ö. Motor Proficiency and Body Mass Index of Preschool Children: In Relation to Socioeconomic Status. J. Educ. Train. Stud. 2016, 4, 237–243. [Google Scholar] [CrossRef]
- Cadoret, G.; Bigras, N.; Duval, S.; Lemay, L.; Tremblay, T.; Lemire, J. The mediating role of cognitive ability on the relationship between motor proficiency and early academic achievement in children. Hum. Mov. Sci. 2018, 57, 149–157. [Google Scholar] [CrossRef]
- Seo, S.-M. The effect of fine motor skills on handwriting legibility in preschool age children. J. Phys. Ther. Sci. 2018, 30, 324–327. [Google Scholar] [CrossRef] [Green Version]
- D’Hondt, E.; Venetsanou, F.; Kambas, A.; Lenoir, M. Motor competence levels in young children: A cross-cultural comparison between Belgium and Greece. J. Mot. Learn. Dev. 2019, 7, 289–306. [Google Scholar] [CrossRef]
- Ferreira, L.; Vieira, J.L.L.; da Silva, P.N.; de Chaves, R.N.; Fernandes, R.A.; Cheuczuk, F.; da Rocha, F.F.; Caçola, P. The role of sport participation and body mass index in predicting motor competence of school-age children. J. Phys. Educ. 2019, 30, e-3024. [Google Scholar] [CrossRef]
- Lin, L.-Y. Differences between preschool children using tablets and non-tablets in visual perception and fine motor skills. Hong Kong J. Occup. Ther. 2019, 32, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Matarma, T.; Lagström, H.; Löyttyniemi, E.; Koski, P. Motor Skills of 5-Year-Old Children: Gender Differences and Activity and Family Correlates. Percept. Mot. Ski. 2020, 127, 367–385. [Google Scholar] [CrossRef]
- Božanić, A.; Delaš Kalinski, S.; Žuvela, F. Changes in fundamental movement skills caused by a gymnastics treatment in preschoolers. In Proceedings of the Book 6th FIEP European Congress, Poreč, Croatia, 18–21 June 2011; pp. 89–94. [Google Scholar]
- Vidoni, C.; Lorenz, D.J.; de Paleville, D.T. Incorporating a movement skill programme into a preschool daily schedule. Early Child Dev. Care 2014, 184, 1211–1222. [Google Scholar] [CrossRef]
- Anna, M.; Glykeria-Erato, P.; Aspasia, D.; Fotini, V. Effect of a psychomotor program on the motor proficiency and self-perceptions of preschool children. J. Phys. Educ. Sport 2016, 16, 1365. [Google Scholar]
- Bellows, L.L.; Davies, P.L.; Courtney, J.B.; Gavin, W.J.; Johnson, S.L.; Boles, R.E. Motor skill development in low-income, at-risk preschoolers: A community-based longitudinal intervention study. J. Sci. Med. Sport 2017, 20, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karachle, N.; Dania, A.; Venetsanou, F. Effects of a recreational gymnastics program on the motor proficiency of young children. Sci. Gymnast. J. 2017, 9, 17–25. [Google Scholar]
- Lin, L.-Y.; Cherng, R.-J.; Chen, Y.-J. Effect of touch screen tablet use on fine motor development of young children. Phys. Occup. Ther. Pediatr. 2017, 37, 457–467. [Google Scholar] [CrossRef]
- Cadoret, G.; Bigras, N.; Lemay, L.; Lehrer, J.; Lemire, J. Relationship between screen-time and motor proficiency in children: A longitudinal study. Early Child. Dev. Care. 2018, 188, 231–239. [Google Scholar] [CrossRef]
- Gallotta, M.C.; Baldari, C.; Guidetti, L. Motor proficiency and physical activity in preschool girls: A preliminary study. Early Child. Dev. Care. 2018, 188, 1381–1391. [Google Scholar] [CrossRef]
- Hudson, K.N.; Ballou, H.M.; Willoughby, M.T. Improving motor competence skills in early childhood has corollary benefits for executive function and numeracy skills. Dev. Sci. 2021, 24, e13071. [Google Scholar] [CrossRef] [PubMed]
- Botha, S.; Africa, E.K. The effect of a perceptual-motor intervention on the relationship between motor proficiency and letter knowledge. Early Child Educ. J. 2020, 48, 727–737. [Google Scholar] [CrossRef]
- Prictor, M.; Hill, S. Cochrane Consumers and Communication Review Group: Leading the field on health communication evidence. J. Evid. Based Med. 2013, 6, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Kouli, O.; Avloniti, A.; Venetsanou, F.; Giannakidou, D.; Gazi, S.; Kambas, A. The effect of a psychomotor training program on the motor proficiency of preschool children in a multicultural environment. Eur. Psychomot. J. 2010, 3, 31–36. [Google Scholar]
- Wilson, B.N.; Polatajko, H.J.; Kaplan, B.J.; Faris, P. Use of the Bruininks-Oseretsky test of motor proficiency in occupational therapy. Am. J. Occup. Ther. 1995, 49, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbard, C.; Caçola, P. Evaluating the Home for Promoting Motor Skill Development. In Physical Activity and Health Promotion in the Early Years; Springer: Berlin/Heidelberg, Germany, 2018; pp. 197–210. [Google Scholar]
- Laukkanen, A.; Pesola, A.; Havu, M.; Sääkslahti, A.; Finni, T. Relationship between habitual physical activity and gross motor skills is multifaceted in 5-to 8-year-old children. Scand. J. Med. Sci. Sports 2014, 24, e102–e110. [Google Scholar] [CrossRef]
- Lam, H.M.Y. Can norms developed in one country be applicable to children of another country? Australas. J. Early Child. 2008, 33, 17–24. [Google Scholar] [CrossRef]
- Nakai, A.; Miyachi, T.; Okada, R.; Tani, I.; Nakajima, S.; Onishi, M.; Fujita, C.; Tsujii, M. Evaluation of the Japanese version of the Developmental Coordination Disorder Questionnaire as a screening tool for clumsiness of Japanese children. Res. Dev. Disabil. 2011, 32, 1615–1622. [Google Scholar] [CrossRef]
- Berk, L.E. Infants and Children: Prenatal through Middle Childhood; Pearson Education: Auckland, New Zealand, 2005. [Google Scholar]
- Jürgen, W.; Trainingslehre, L.; Weineck, J. Leistungsphysiologische Trainingslehre unter Berücksichtigung des Kinder-und Jugendtrainings. In Optimales Training, 15th ed.; Spitta GmbH: Balingen, Germany, 2007. [Google Scholar]
- Teixeira Costa, H.J.; Abelairas-Gomez, C.; Arufe-Giráldez, V.; Pazos-Couto, J.M.; Barcala-Furelos, R. Influence of a physical education plan on psychomotor development profiles of preschool children. J. Hum. Sport Exerc. 2015, 10, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Corbin, C.B.; Pangrazi, R.P.; Franks, B.D. Definitions: Health, Fitness, and Physical Activity; President’s Council on Physical Fitness and Sports: Washington, DC, USA, 2000. [Google Scholar]
- Coelho, J. Gymnastics and movement instruction: Fighting the decline in motor fitness. J. Phys. Educ. Recreat. Danc. 2010, 81, 14–18. [Google Scholar] [CrossRef]
- Garcia, C.; Barela, J.A.; Viana, A.R.; Barela, A.M.F. Influence of gymnastics training on the development of postural control. Neurosci. Lett. 2011, 492, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Culjak, Z.; Miletic, D.; Kalinski, S.D.; Kezic, A.; Zuvela, F. Fundamental movement skills development under the influence of a gymnastics program and everyday physical activity in seven-year-old children. Iran. J. Pediatr. 2014, 24, 124. [Google Scholar]
- Fallah, E.; Nourbakhsh, P.; Bagherly, J. The effect of eight weeks of gymnastics exercises on the development of gross motor skills of five to six years old girls. Eur. Online J. Nat. Soc. Sci. Proc. 2015, 4, 845–852. [Google Scholar]
- Burt, L.A.; Ducher, G.; Naughton, G.A.; Courteix, D.; Greene, D.A. Gymnastics participation is associated with skeletal benefits in the distal forearm: A 6-month study using peripheral Quantitative Computed Tomography. J. Musculoskelet. Neuronal Interact. 2013, 13, 395–404. [Google Scholar]
- Al-Awamleh, A. The Effectiveness of Using Educational Gymnasticsskills on Motor Capabilities and Social Behaviour among Kindergarten Children. Ph.D. Thesis, University of Konstanz, Konstanz, Germany, 2010. [Google Scholar]
- Akın, M. Effect of gymnastics training on dynamic balance abilities in 4–6 years of age children. Int. J. Acad. Res. 2013, 5, 142–146. [Google Scholar] [CrossRef]
- Trajković, N.; Madić, D.; Sporiš, G.; Aleksić-Veljković, A.; Živčić-Marković, K. Impact of gymnastics program on health-related fitness in adolescent pupils. Sci. Gymnast. J. 2016, 8, 157–166. [Google Scholar]
- Đorđić, V.; Sad, N. Roditelji i fizička aktivnost dece predškolskog i mlađeg školskog uzrasta. In Zbornik Radova Interdisciplinarne naučne Konferencije sa Međunarodnim Učešćem: Antropološki Status i Fizička Aktivnost Dece i Omladine; Fakultet Sporta i Fizičkog Vaspitanja: Novi Sad, Serbia, 2006; pp. 127–134. [Google Scholar]
- Price, S.; Jewitt, C.; Crescenzi, L. The role of iPads in pre-school children’s mark making development. Comput. Educ. 2015, 87, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Ahearne, C.; Dilworth, S.; Rollings, R.; Livingstone, V.; Murray, D. Touch-screen technology usage in toddlers. Arch. Dis. Child. 2016, 101, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Flewitt, R.; Messer, D.; Kucirkova, N. New directions for early literacy in a digital age: The iPad. J. Early Child. Lit. 2015, 15, 289–310. [Google Scholar] [CrossRef]
- Lauricella, A.R.; Wartella, E.; Rideout, V.J. Young children’s screen time: The complex role of parent and child factors. J. Appl. Dev. Psychol. 2015, 36, 11–17. [Google Scholar] [CrossRef]
- Dankert, H.L.; Davies, P.L.; Gavin, W.J. Occupational therapy effects on visual-motor skills in preschool children. Am. J. Occup. Ther. 2003, 57, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Chaddock-Heyman, L.; Erickson, K.I.; Voss, M.; Knecht, A.; Pontifex, M.B.; Castelli, D.M.; Hillman, C.H.; Kramer, A.F. The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Front. Hum. Neurosci. 2013, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Kiphard, E.J. Mototherapie, 4th ed.; Teil 2; Verlag Mod Lernen: Dortmund, Germany, 1994. [Google Scholar]
- Miquelote, A.F.; Santos, D.C.; Caçola, P.M.; Montebelo, M.I.D.L.; Gabbard, C. Effect of the home environment on motor and cognitive behavior of infants. Infant Behav. Dev. 2012, 35, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R.H.; Corwyn, R.F. Socioeconomic status and child development. Annu. Rev. Psychol. 2002, 53, 371–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shonkoff, J.P.; Phillips, D.A.; Council, N.R. Rethinking nature and nurture. In From Neurons to Neighborhoods: The Science of Early Childhood Development; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Chowdhury, S.D.; Wrotniak, B.H.; Ghosh, T. Nutritional and socioeconomic factors in motor development of Santal children of the Purulia district, India. Early Hum. Dev. 2010, 86, 779–784. [Google Scholar] [CrossRef]
- Cameron, C.E.; Cottone, E.A.; Murrah, W.M.; Grissmer, D.W. How are motor skills linked to children’s school performance and academic achievement? Child Dev. Perspect. 2016, 10, 93–98. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Hahn, C.-S.; Suwalsky, J.T.D. Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychol. Sci. 2013, 24, 1906–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziviani, J.; Watson-Will, A. Writing speed and legibility of 7–14-year-old school students using modern cursive script. Aust. Occup. Ther. J. 1998, 45, 59–64. [Google Scholar] [CrossRef]
- Rosenblum, S. Do motor ability and handwriting kinematic measures predict organizational ability among children with Developmental Coordination Disorders? Hum. Mov. Sci. 2015, 43, 201–215. [Google Scholar] [CrossRef]
- McClelland, M.M.; Cameron, C.E. Developing together: The role of executive function and motor skills in children’s early academic lives. Early Child. Res. Q. 2019, 46, 142–151. [Google Scholar] [CrossRef]
- Pagani, L.S.; Messier, S. Links between motor skills and indicators of school readiness at kindergarten entry in urban disadvantaged children. J. Educ Dev. Psychol. 2012, 2, 95. [Google Scholar] [CrossRef]
- Robinson, L.E.; Webster, E.K.; Logan, S.W.; Lucas, W.A.; Barber, L.T. Teaching practices that promote motor skills in early childhood settings. Early Child. Educ. J. 2012, 40, 79–86. [Google Scholar] [CrossRef]
- Wadsworth, D.D.; Robinson, L.E.; Beckham, K.; Webster, K. Break for physical activity: Incorporating classroom-based physical activity breaks into preschools. Early Child. Educ. J. 2012, 39, 391–395. [Google Scholar] [CrossRef]
- Wright, P.M.; Stork, S. Recommended practices for promoting physical activity in early childhood education settings. J. Phys. Educ. Recreat. Danc. 2013, 84, 40–43. [Google Scholar] [CrossRef]
- Vandorpe, B.; Vandendriessche, J.; Vaeyens, R.; Pion, J.; Matthys, S.; Lefevre, J.; Philippaertsa, R.; Lenoir, M. Relationship between sports participation and the level of motor coordination in childhood: A longitudinal approach. J. Sci. Med. Sport 2012, 15, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Venetsanou, F.; Kambas, A.; Aggeloussis, N.; Serbezis, V.; Taxildaris, K. Use of the Bruininks–Oseretsky test of motor proficiency for identifying children with motor impairment. Dev. Med. Child Neurol. 2007, 49, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Holický, J. Evaluace psychomotorického vývoje hráčů ve fotbalu kategorie U12 pomocí dvou forem Bruininks-Oseretsky test of motor proficiency second edition (BOT-2). In Pohybové Aktivity ve Vědě a Praxi; Karolinum Press: Prague, Czech Republic, 2014; pp. 81–89. [Google Scholar]
- Khodaverdi, Z.; Bahram, A.; Khalaji, H.; Kazemnejad, A.; Ghadiri, F.; Lopes, V.P. Performance assessments on three different motor competence testing batteries in girls aged 7–10. Sport Sci. Health 2020, 16, 747–753. [Google Scholar] [CrossRef]
Criterion | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Studies | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ∑ |
Gaul (2014) [40] | Y | N | N | N | N | N | N | Y | Y | Y | Y | 4 |
Hernandez et al. (2015) [41] | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 10 |
Morley et al. (2015) [42] | Y | Y | Y | N | N | N | Y | Y | Y | Y | Y | 7 |
Gaul et al. (2015) [43] | Y | Y | Y | N | N | N | N | Y | Y | Y | Y | 6 |
Mulazimoglu-Bali et al. (2016) [44] | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 6 |
Cadoret et al. (2018) [45] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Seo (2018) [46] | Y | N | N | N | N | N | N | Y | Y | Y | Y | 4 |
D’Hondt et al. (2019) [47] | Y | N | N | N | Y | Y | Y | Y | Y | Y | Y | 7 |
Ferreira et al. (2019) [48] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Lin (2019) [49] | Y | N | Y | N | N | Y | N | Y | Y | Y | Y | 6 |
Matarma et al. (2020) [50] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 7 |
Criterion | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Studies | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ∑ |
Božanić et al. (2011) [51] | Y | N | Y | N | Y | N | N | Y | Y | Y | Y | 6 |
Vidoni et al. (2014) [52] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
Anna et al. (2016) [53] | Y | Y | N | N | N | Y | Y | Y | Y | Y | Y | 7 |
Bellows et al. (2017) [54] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Karachle et al. (2017) [55] | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | 9 |
Lin et al. (2017) [56] | Y | N | N | N | N | Y | Y | Y | Y | Y | Y | 6 |
Cadoret et al. (2018) [57] | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Gallota et al. (2018) [58] | Y | N | N | N | Y | Y | Y | Y | Y | Y | Y | 7 |
Hudson et al. (2020) [59] | Y | Y | N | Y | N | Y | Y | Y | Y | Y | Y | 8 |
Botha et al. (2020) [60] | Y | Y | N | Y | N | N | N | Y | Y | Y | Y | 6 |
First Author and Year of Publication | Aim of Study | Participants | Results | |
---|---|---|---|---|
Number and Groups | Years | |||
Gaul (2014) [40] | Evaluation of FMS, SMA, CL and AS | N-139 | 6–12 | 1st grade participants—expected results, 3rd an 5th grade participants—results below normative values |
Hernandez et al. (2015) [41] | Correlation of MP and CA | N-32 M-15 F-17 | 4 | +** MP and CA |
Morley et al. (2015) [42] | Evaluation of MP depending on gender and SEs | N-369 M-193 F-176 | 4–7 | F > M at FMS M > F at GMS |
Gaul et al. (2016) [43] | Evaluation of FMS | N-253 M-139 F-114 | 6–12 | Only 2nd grade participants showed expected results |
Mulazimoglu-Bali et al. (2016) [44] | Correlation MP and BMI, as well as differences SEs in MP and BMI | N-60M-26F-34 | 6 ± 3.75 | Lower SEs shows weaker MP, without +** MP and BMI |
Cadoret et al. (2018) [45] | Correlation of MP and Aa, by means of CA | N-152 | 7 | MP, Aa and CA +** |
Seo (2018) [46] | Correlation FMS at handwriting legibility | N-52 M-23 F-29 | 5.76 | +** FMS and handwriting legibility |
D’Hondt et al. (2019) [47] | Evaluation and comparison of FMS i GMS | N-570 E1-325 E2-245 | 5.16 | Similar results between groups, difference between two variables in favor of E1 because of the different PA |
Ferreira et al. (2019) [48] | Correlation MP and participation in sports, as well as the role of BMI | N-707 M-332 F-375 | 6–10 | +** participation in sports and MP, BMI isn’t relevant factor |
Lin (2019) [49] | Difference between VP and FMS of children who use and who do not use applications on T | N-72 E1-36 E2-36 | 5.13 | *** difference between groups in favor of E2, in VP and FMs |
Matarma et al. (2020) [50] | Gender differences at MP, influence PA and family at MP | N-712 | 5 | *** difference (8 tests) F > M, without *** PA and family at MP |
First Author and Year of Publication | Aim of Study | Participants | Exercise Program | Results | |
---|---|---|---|---|---|
Number and Groups | Years | ||||
Božanić et al. (2011) [51] | Gender difference in acquiring basic Mp under the influence of GP | N-58 M-34 F-24 | 6 ± 0.5 | 10 weeks 3× a week 35 min | Differences in 2 variables in favor of F |
Vidoni et al. (2014) [52] | Evaluation of MP | N-33 E-18 K-15 | 3.9–5 | 11 weeks 7× a week 30 min | E and K improved MP E *** |
Anna et al. (2016) [53] | Effects of 8 week PM program on MP and SP | N-29 E-14 K-15 | 3.5–5 | 8 weeks 2× a week 40 min | E *** in MP |
Bellows et al. (2017) [54] | Status MP at participants with low SEs and evaluation of effect of MMp program at MP | N-250 E-143 K-107 | 3–5 | 18 weeks 4× a week 15–20 min | *** effects E in MP except in the case of 3 variables |
Karachle et al. (2017) [55] | Effects of 6 months RG program on MP | N-37 E-21 K-13 | 3–7 | 6 months 2× a week 90 min | E and K improved MP *** E |
Lin et al. (2017) [56] | Effects of using T on development FMS | N-80 E1-40 E2-40 | 5 | 24 weeks 7× a week 20 min | E2 *** in regards to E1 |
Cadoret et al. (2018) [57] | Correlation of TFS and MP | N-113 | 4–7 | 3 years | TFS increases with age −** and effects on MP at all ages |
Galotta et al. (2018) [58] | Influence of 3 different pre-sport program on MP | F-25 E1-10 E2-6 E3-9 | 4–6 | 4 months | E1(combined PA) is more effective than E2 (dance program) and E3 (swimming program) |
Hudson et al. (2020) [59] | Correlation of CA-MP-PA with MP and early numeracy skills | N-53 E-27 K-26 | 3–5 | 8 weeks 2× a week | E *** in all monitored variables |
Botha et al. (2020) [60] | Effects of SP-MP program and correlation GMS and LK | N-97 | 6–7 | 12 weeks 2× a week 60 min | SP-MP program *** FMS and GMS +** MP and LK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radanović, D.; Đorđević, D.; Stanković, M.; Pekas, D.; Bogataj, Š.; Trajkovic, N. Test of Motor Proficiency Second Edition (BOT-2) Short Form: A Systematic Review of Studies Conducted in Healthy Children. Children 2021, 8, 787. https://doi.org/10.3390/children8090787
Radanović D, Đorđević D, Stanković M, Pekas D, Bogataj Š, Trajkovic N. Test of Motor Proficiency Second Edition (BOT-2) Short Form: A Systematic Review of Studies Conducted in Healthy Children. Children. 2021; 8(9):787. https://doi.org/10.3390/children8090787
Chicago/Turabian StyleRadanović, Danilo, Dušan Đorđević, Mima Stanković, Damir Pekas, Špela Bogataj, and Nebojša Trajkovic. 2021. "Test of Motor Proficiency Second Edition (BOT-2) Short Form: A Systematic Review of Studies Conducted in Healthy Children" Children 8, no. 9: 787. https://doi.org/10.3390/children8090787
APA StyleRadanović, D., Đorđević, D., Stanković, M., Pekas, D., Bogataj, Š., & Trajkovic, N. (2021). Test of Motor Proficiency Second Edition (BOT-2) Short Form: A Systematic Review of Studies Conducted in Healthy Children. Children, 8(9), 787. https://doi.org/10.3390/children8090787