Asymmetric and Symmetric Dimethylarginines as Renal Function Parameters in Paediatric Kidney Diseases: A Literature Review from 2003 to 2022
Abstract
:1. Introduction
2. Dimethylarginines Synthesis, Metabolism, and Pathophysiology
3. Dimethylarginines Measurements
4. Dimethylarginines as Renal Function Parameters
4.1. Healthy Children
4.2. Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD)
4.3. Other Kidney Diseases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kakimoto, Y.; Akazawa, S. Isolation and identification of N-G,N-G- and N-G,N’-G-dimethyl-arginine, N-epsilon-mono-, di-, and trimethyllysine, and glucosylgalactosyl- and galactosyl-delta-hydroxylysine from human urine. J. Biol. Chem. 1970, 245, 5751–5758. [Google Scholar] [CrossRef]
- Rosner, M.H.; Reis, T.; Husain-Syed, F.; Vanholder, R.; Hutchison, C.; Stenvinkel, P.; Blankestijn, P.J.; Cozzolino, M.; Juillard, L.; Kashani, K.; et al. Classification of Uremic Toxins and Their Role in Kidney Failure. Clin. J. Am. Soc. Nephrol. 2021, 16, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.L.; Hsu, C.N. Toxic dimethylarginines: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Toxins 2017, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.N.; Tain, L.Y. Asymmetric dimethylarginine (ADMA) in pediatric renal diseases: From pathophysiological phenomenon to clinical biomarker and beyond. Children 2021, 8, 837. [Google Scholar] [CrossRef] [PubMed]
- Kielstein, J.T.; Fliser, D.; Veldink, H. Asymmetric dimethylarginine and symmetric dimethylarginine: Axis of evil or useful alliance? Semin. Dial. 2009, 22, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Aldámiz-Echevarría, L.; Andrade, F. Asymmetric dimethylarginine, endothelial dysfunction and renal disease. Int. J. Mol. Sci. 2012, 13, 11288–11311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, Y.; Cáceres, T.; May, K.; Hevel, J.M. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch. Biochem. Biophys. 2016, 590, 138–152. [Google Scholar] [CrossRef]
- Teerlink, T.; Luo, Z.; Palm, F.; Wilcox, C.S. Cellular ADMA: Regulation and action. Pharmacol. Res. 2009, 60, 448–460. [Google Scholar] [CrossRef] [Green Version]
- Palm, F.; Onozato, M.L.; Luo, Z.; Wilcox, C.S. Dimethylarginine dimethylaminohydrolase (DDAH): Expression, regulation, and function in the cardiovascular and renal systems. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H3227–H3245. [Google Scholar] [CrossRef] [Green Version]
- Rodionov, R.N.; Martens-Lobenhoffer, J.; Brilloff, S.; Hohenstein, B.; Jarzebska, N.; Jabs, N.; Kittel, A.; Maas, R.; Weiss, N.; Bode-Böger, S.M. Role of alanine: Glyoxylate aminotransferase 2 in metabolism of asymmetric dimethylarginine in the settings of asymmetric dimethylarginine overload and bilateral nephrectomy. Nephrol. Dial. Transplant. 2014, 29, 2035–2042. [Google Scholar] [CrossRef]
- Bode-Böger, S.M.; Scalera, F.; Ignarro, L.J. The l-arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther. 2007, 114, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, H.; Kai, H.; Aoki, H.; Yasuoka, S.; Anegawa, T.; Aoki, Y.; Ueda, S.; Okuda, S.; Imaizumi, T. Inhibition of eNOS phosphorylation mediates endothelial dysfunction in renal failure: New effect of asymmetric dimethylarginine. Kidney Int. 2012, 81, 762–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode-Böger, S.M.; Scalera, F.; Kielstein, J.T.; Martens-Lobenhoffer, J.; Breithardt, G.; Fobker, M.; Reinecke, H. Symmetrical dimethylarginine: A new combined parameter for renal function and extent of coronary artery disease. J. Am. Soc. Nephrol. 2006, 17, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Tojo, A.; Welch, W.J.; Bremer, V.; Kimoto, M.; Kimura, K.; Omata, M.; Ogawa, T.; Vallance, P.; Wilcox, C.S. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int. 1997, 52, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saigusa, D.; Takahashi, M.; Kanemitsu, Y.; Ishida, A.; Abe, T.; Yamakuni, T.; Suzuki, N.; Tomioka, Y. Determination of Asymmetric Dimethylarginine and Symmetric Dimethylarginine in Biological Samples of Mice Using LC/MS/MS. Am. J. Anal. Chem. 2011, 2, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Teerlink, T.; Nijveldt, R.J.; de Jong, S.; van Leeuwen, P.A.M. Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal. Biochem. 2002, 303, 131–137. [Google Scholar] [CrossRef]
- Wang, S.; Vicente, F.B.; Miller, A.; Brooks, E.R.; Price, H.E.; Smith, F.A. Measurement of arginine derivatives in pediatric patients with chronic kidney disease using high-performance liquid chromatography-tandem mass spectrometry. Clin. Chem. Lab. Med. 2007, 45, 1305–1312. [Google Scholar] [CrossRef]
- Boelaert, J.; Schepers, E.; Glorieux, G.; Eloot, S.; Vanholder, R.; Lynen, F. Determination of asymmetric and symmetric dimethylarginine in serum from patients with chronic kidney disease: UPLC-MS/MS versus ELISA. Toxins 2016, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Martens-Lobenhoffer, J.; Krug, O.; Bode-Böger, S.M. Determination of arginine and asymmetric dimethylarginine (ADMA) in human plasma by liquid chromatography/mass spectrometry with the isotope dilution technique. J. Mass Spectrom. 2004, 39, 1287–1294. [Google Scholar] [CrossRef]
- Hui, Y.; Wong, M.; Kim, J.; Love, J.; Ansley, D.M.; Chen, D.D.Y. A new derivatization method coupled with LC-MS/MS to enable baseline separation and quantification of dimethylarginines in human plasma from patients to receive on-pump CABG surgery. Electrophoresis 2012, 33, 1911–1920. [Google Scholar] [CrossRef]
- Tsikas, D.; Beckmann, B.; Gutzki, F.M.; Jordan, J. Simultaneous gas chromatography-tandem mass spectrometry quantification of symmetric and asymmetric dimethylarginine in human urine. Anal. Biochem. 2011, 413, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Schulze, F.; Wesemann, R.; Schwedhelm, E.; Sydow, K.; Albsmeier, J.; Cooke, J.P.; Böger, R.H. Determination of asymmetric dimethylarginine (ADMA) using a novel ELISA assay. Clin. Chem. Lab. Med. 2004, 42, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.D.; Heresztyn, T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: Methodological considerations. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 851, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Martens-Lobenhoffer, J.; Westphal, S.; Awiszus, F.; Bode-Böger, S.M.; Luley, C. Determination of asymmetric dimethylarginine: Liquid chromatography-mass spectrometry or ELISA? Clin. Chem. 2005, 51, 2188–2189. [Google Scholar] [CrossRef]
- Pecchini, P.; Malberti, F.; Mieth, M.; Quinn, R.; Tripepi, G.; Mallamaci, F.; Maas, R.; Zoccali, C.; Ravani, P. Measuring asymmetric dimethylarginine (ADMA) in CKD: A comparison between enzyme-linked immunosorbent assay and liquid chromatographyelectrospray tandem mass spectrometry. J. Nephrol. 2012, 25, 1016–1022. [Google Scholar] [CrossRef]
- Jaźwińska-Kozuba, A.; Martens-Lobenhoffer, J.; Surdacki, A.; Kruszelnicka, O.; Rycaj, J.; Godula-Stuglik, U.; Bode-Böger, S. Associations between endogenous dimethylarginines and renal function in healthy children and adolescents. Int. J. Mol. Sci. 2012, 13, 15464–15474. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; de Francisco, A.L.M.; de Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Gluba-Brzózka, A.; Franczyk, B.; Jablonowski, Z.; Cialkowska-Rysz, A. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int. J. Mol. Sci. 2017, 18, 1702. [Google Scholar] [CrossRef]
- Oliva-Damaso, E.; Oliva-Damaso, N.; Rodriguez-Esparragon, F.; Payan, J.; Baamonde-Laborda, E.; Gonzalez-Cabrera, F.; Santana-Estupiñan, R.; Rodriguez-Perez, J.C. Asymmetric (ADMA) and symmetric (SDMA) dimethylarginines in chronic kidney disease: A clinical approach. Int. J. Mol. Sci. 2019, 20, 3668. [Google Scholar] [CrossRef] [Green Version]
- Wasilewska, A.; Taranta-Janusz, K.; Zoch-Zwierz, W.; Michaluk-Skutnik, J. Is plasma symmetric dimethylarginine a suitable marker of renal function in children and adolescents? Scand. J. Urol. Nephrol. 2012, 46, 58–64. [Google Scholar] [CrossRef]
- Brooks, E.R.; Haymond, S.; Rademaker, A.; Pierce, C.; Helenowski, I.; Passman, R.; Vicente, F.; Warady, B.A.; Furth, S.L.; Langman, C.B. Contribution of symmetric dimethylarginine to GFR decline in pediatric chronic kidney disease. Pediatr. Nephrol. 2018, 33, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, E.; Van Biesen, W.; Raes, A.; Holvoet, E.; Glorieux, G.; Van Hoeck, K.; Roels, S.; Walle, J.V.; Eloot, S. Accumulation of uraemic toxins is reflected only partially by estimated GFR in paediatric patients with chronic kidney disease. Pediatr. Nephrol. 2018, 33, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, E.; van Biesen, W.; Raes, A.; Glorieux, G.; van Bogaert, V.; van Hoeck, K.; Coppens, M.; Roels, S.; Walle, J.V.; Eloot, S. Concentrations of representative uraemic toxins in a healthy versus non-dialysis chronic kidney disease paediatric population. Nephrol. Dial. Transplant. 2018, 33, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Benito, S.; Sánchez-Ortega, A.; Unceta, N.; Jansen, J.J.; Postma, G.; Andrade, F.; Aldámiz-Echevarria, L.; Buydens, L.M.C.; Goicolea, M.A.; Barrio, R.J. Plasma biomarker discovery for early chronic kidney disease diagnosis based on chemometric approaches using LC-QTOF targeted metabolomics data. J. Pharm. Biomed. Anal. 2018, 149, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Benito, S.; Sánchez-Ortega, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. LC-QQQ-MS routine analysis method for new biomarker quantification in plasma aimed at early chronic kidney disease diagnosis. J. Pharm. Biomed. Anal. 2019, 169, 82–89. [Google Scholar] [CrossRef]
- Brooks, E.R.; Langman, C.B.; Wang, S.; Price, H.E.; Hodges, A.L.; Darling, L.; Yang, A.Z.; Smith, F.A. Methylated arginine derivatives in children and adolescents with chronic kidney disease. Pediatr. Nephrol. 2009, 24, 129–134. [Google Scholar] [CrossRef]
- Lin, I.C.; Hsu, C.N.; Lo, M.H.; Chien, S.J.; Tain, Y.L. Low urinary citrulline/arginine ratio associated with blood pressure abnormalities and arterial stiffness in childhood chronic kidney disease. J. Am. Soc. Hypertens. 2016, 10, 115–123. [Google Scholar] [CrossRef]
- SChien, J.; Lin, I.C.; Hsu, C.N.; Lo, M.H.; Tain, Y.L. Homocysteine and arginine-to-asymmetric dimethylarginine ratio associated with blood pressure abnormalities in children with early chronic kidney disease. Circ. J. 2015, 79, 2031–2037. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.N.; Hou, C.Y.; Lu, P.C.; Chang-Chien, G.P.; Lin, S.; Tain, Y.L. Association between acrylamide metabolites and cardiovascular risk in children with early stages of chronic kidney disease. Int. J. Mol. Sci. 2020, 21, 5855. [Google Scholar] [CrossRef]
- Kuo, H.C.; Hsu, C.N.; Huang, C.F.; Lo, M.H.; Chien, S.J.; Tain, L.Y. Urinary arginine methylation index associated with ambulatory blood pressure abnormalities in children with chronic kidney disease. J. Am. Soc. Hypertens. 2012, 6, 385–392. [Google Scholar] [CrossRef]
- Lin, Y.J.; Hsu, C.N.; Lo, M.H.; Huang, C.F.; Chien, S.J.; Tain, Y.L. High citrulline-to-arginine ratio associated with blood pressure abnormalities in children with early chronic kidney disease. Circ. J. 2013, 77, 181–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Kränkel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y.; et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of toll-like receptor-2. Immunity 2013, 38, 754–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, R.; Speer, T.; Colin, S.; Charakida, M.; Zewinger, S.; Staels, B.; Chinetti-Gbaguidi, G.; Hettrich, I.; Rohrer, L.; O’Neill, F.; et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J. Am. Soc. Nephrol. 2014, 25, 2658–2668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.N.; Lu, P.C.; Lo, M.H.; Lin, I.C.; Tain, Y.L. The association between nitric oxide pathway, blood pressure abnormalities, and cardiovascular risk profile in pediatric chronic kidney disease. Int. J. Mol. Sci. 2019, 20, 5301. [Google Scholar] [CrossRef] [Green Version]
- Drod, D.; Łatka, M.; Drozdz, T.; Sztefko, K.; Kwinta, P. Thrombomodulin as a new marker of endothelial dysfunction in chronic kidney disease in children. Oxidative Med. Cell. Longev. 2018, 2018, 1619293. [Google Scholar] [CrossRef] [Green Version]
- Makulska, I.; Szczepańska, M.; Drożdż, D.; Polak-Jonkisz, D.; Zwolińska, D. Skin autofluorescence as a novel marker of vascular damage in children and adolescents with chronic kidney disease. Pediatr. Nephrol. 2015, 30, 811–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade, F.; Rodríguez-Soriano, J.; Prieto, J.A.; Aguirre, M.; Ariceta, G.; Lage, S.; Azcona, I.; Prado, C.; Sanjurjo, P.; Aldámiz-Echevarría, L. Methylation cycle, arginine-creatine pathway and asymmetric dimethylarginine in paediatric renal transplant. Nephrol. Dial. Transplant. 2011, 26, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Westland, R.; Schreuder, M.F.; Bökenkamp, A.; Spreeuwenberg, M.D.; van Wijk, J.A.E. Renal injury in children with a solitary functioning kidney-the KIMONO study. Nephrol. Dial. Transplant. 2011, 26, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Taranta-Janusz, K.; Wasilewska, A.; Stypułkowska, J.; Sutuła, M. Osteopontin and symmetric dimethylarginine plasma levels in solitary functioning kidney in children. Acta Paediatr. Int. J. Paediatr. 2012, 101, e369–e372. [Google Scholar] [CrossRef]
- Hyla-Klekot, L.; Bryniarski, P.; Pulcer, B.; Ziora, K.; Paradysz, A. Dimethylarginines as risk markers of atherosclerosis and chronic kidney disease in children with nephrotic syndrome. Adv. Clin. Exp. Med. 2015, 24, 307–314. [Google Scholar] [CrossRef]
- Lücke, T.; Kanzelmeyer, N.; Chobanyan, K.; Tsikas, D.; Franke, D.; Kemper, M.J.; Ehrich, J.H.H.; Das, A.M. Elevated asymmetric dimethylarginine (ADMA) and inverse correlation between circulating ADMA and glomerular filtration rate in children with sporadic focal segmental glomerulosclerosis (FSGS). Nephrol. Dial. Transplant. 2008, 23, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanzelmeyer, N.K.; Pape, L.; Chobanyan-Jürgens, K.; Tsikas, D.; Hartmann, H.; Fuchs, A.J.; Vaske, B.; Das, A.M.; Haubitz, M.; Jordan, J.; et al. L-Arginine/NO pathway is altered in children with haemolytic-uraemic syndrome (HUS). Oxidative Med. Cell. Longev. 2014, 2014, 203512. [Google Scholar] [CrossRef] [PubMed]
Type of Disease | Study | Study Population | Analytic Methods | Results |
---|---|---|---|---|
CKD | Wasilewska A. et al., 2012 [30] | 35 CKD stage 1–5 cases 42 controls | Cr—Jaffe reaction Cys C, SDMA—ELISA eGFR—Schwartz equation | elevated SDMA in patients with CKD difference in SDMA concentrations between CKD stages 1 + 2 and CKD stage 3 correlation of SDMA with creatinine in both groups and with eGFR in CKD patients SDMA was better than Crs in diagnosing CKD and in detecting CKD stages 1 and 2 |
Brooks E. R. et al., 2018 [31] | 352 CKD cases | ADMA, SDMA—LC–MS/MS eGFR—function of iohexol plasma clearance | inverse relation between baseline dimethylarginines levels and initial eGFR but not with rate of decline in eGFR | |
Snauwaert E. et al., 2018 [32] | 65 CKD stage 1–5 cases | Cr—enzymatic analysis ADMA, SDMA—ELISA eGFR—Schwartz, FAS, and β-2 microglobulin-based equation | good correlation of SDMA with eGFR poor correlation of ADMA with eGFR | |
Snauwaert E. et al., 2018 [33] | 57 CKD stage 1–5 cases 50 controls | Cr—enzymatic analysis ADMA, SDMA—ELISA eGFR—Schwartz equation | elevated SDMA in patients with CKD | |
Benito S. et al., 2018 [34] | 32 CKD stage 2–5 cases 24 controls | Cr, Cys C, ADMA, SDMA—LC/QTOF method | elevated ADMA and SDMA in patients with CKD ADMA and SDMA have similar efficacy to Crs in the early diagnosis of CKD increase in CKD classification accuracy of 18% when using 4 metabolites together (Crs, SDMA, citrulline, and S-adenosylmethionine) compared to Crs alone | |
CKD, CVD | Brooks E. R. et al., 2009 [36] | 28 CKD stage 2–3 cases 10 siblings | Cr—Jaffe reaction ADMA, SDMA—HPLC–MS/MS eGFR—Schwartz equation BP—ABPM | elevated ADMA, SDMA, and SDMA/ADMA ratio in patients with CKD correlation of SDMA, SDMA/ADMA, and L-arg/SDMA with eGFR in both groups correlation of SDMA and SDMA/ADMA with AW and AS, S, and D BP loads in both groups SDMA accounts for 27% of the variability in DBP load in AW in CKD patients with constant eGFR |
Lin I. C. et al., 2016 [37] | 55 CKD stage 1–3 cases | ADMA, SDMA—HPLC BP—ABPM | correlation of ADMA with S and D BP loads | |
Chien S. J. et al., 2015 [38] | 57 CKD stage 1–3 cases | ADMA, SDMA—HPLC BP—ABPM | correlation of ADMA, SDMA, and L-arg/ADMA ratio with arterial stiffness correlation of L-arg/ADMA ratio with SBP and left ventricular mass | |
Hsu C.N. et al., 2019 [39] | 125 CKD stage 1–4 cases | ADMA, SDMA—HPLC BP—ABPM | L-arg/ADMA ratio was lower and ADMA/SDMA ratio was higher in children with abnormal office BP values | |
Kuo H.C. et al., 2012 [40] | 45 CKD stage 1–4 cases | ADMAu, SDMAu—HPLC BP—ABPM | Argu/ADMAu ratio was higher, and the ADMAu/SDMAu ratio was lower in children with CKD stages 2–4 compared to CKD stage 1 correlation of higher (ADMAu + SDMAu)/Argu ratio with abnormalities in ABPM | |
Lin Y.J. et al., 2013 [41] | 44 CKD stage 1–3 cases | Cr—Jaffe reaction eGFR—Schwartz equation ADMA, SDMA—HPLC BP—ABPM | no correlation of ADMA, SDMA, and their combined ratios with eGFR and BP loads | |
Speer T. et al., 2013 [42] | 22 child CKD cases 45 adult CKD cases 25 controls (15 adults, 10 children) | SDMA—HPLC–ESI–MS/MS | SDMA causes transformation from physiological HDL into “toxic” HDL that induces endothelial dysfunction | |
Shroff R. et al., 2014 [43] | 82 CKD stage 2–5 cases 12 controls | SDMA—HPLC–ESI–MS/MS | SDMA and SDMA in HDL elevated in patients with CKD | |
Hsu C.N. et al., 2020 [44] | 112 CKD stage 1–4 cases | ADMA, SDMA—HPLC eGFR—Schwartz equation | ADMA and SDMA were reference points for acrylamide metabolites in urine assay higher SDMA level in patients with CKD stages 2–4 than with CKD stage 1 | |
Drożdż D. et al., 2018 [45] | 59 CKD stage 1–5 cases | ADMA—ELISA | ADMA was a reference point for thrombomodulin assay | |
Makulska I. et al., 2015 [46] | 76 CKD cases 26 controls | ADMA, SDMA—ELISA | ADMA and SDMA were reference points for sAF assay | |
RT | Andrade et al., 2011 [47] | 26 RT cases 30 controls | ADMA, ADMAu—ELISA | elevated ADMA in patients after RT L-arg/ADMA decreased in patients after RT |
SFK | Taranta-Janusz K. et al., 2012 [49] | 51 SFK cases 21 controls | Cr—Jaffe reaction SDMA—ELISA eGFR—endogenous creatinine clearance and Schwartz equation | elevated SDMA in children with SFK no difference in SDMA concentration between URA and UN groups correlation of SDMA with creatinine and eGFR in patients with SFK |
NS | Hyla-Klekot L. et al., 2015 [50] | 32 remission and relapse NS cases | Cr, eGFR—lack of information ADMA, SDMA—HPLC | correlation of SDMA with eGFR in all patients correlation of ADMA with cholesterol, triglycerides, and traditional CVD risk factors but only in relapse |
FSGS | Lücke T. et al., 2008 [51] | 9 FSGS cases 11 other kidney disease cases 9 controls | Cru—HPLC eGFR—Schwartz equation ADMA, ADMAu—GC–MS/MS | elevated ADMA in children with FSGS elevated ADMAu excretion in children with FSGS correlation of ADMA with eGFR in children with FSGS |
HUS | Kanzelmyere N. K. et al., 2014 [52] | 12 typical HUS cases 12 controls | ADMA, ADMAu—GC–MS/MS | ADMAs insignificantly lower in children with HUS and ADMAu significantly lower in children with HUS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jezierska, M.; Stefanowicz, J. Asymmetric and Symmetric Dimethylarginines as Renal Function Parameters in Paediatric Kidney Diseases: A Literature Review from 2003 to 2022. Children 2022, 9, 1668. https://doi.org/10.3390/children9111668
Jezierska M, Stefanowicz J. Asymmetric and Symmetric Dimethylarginines as Renal Function Parameters in Paediatric Kidney Diseases: A Literature Review from 2003 to 2022. Children. 2022; 9(11):1668. https://doi.org/10.3390/children9111668
Chicago/Turabian StyleJezierska, Michalina, and Joanna Stefanowicz. 2022. "Asymmetric and Symmetric Dimethylarginines as Renal Function Parameters in Paediatric Kidney Diseases: A Literature Review from 2003 to 2022" Children 9, no. 11: 1668. https://doi.org/10.3390/children9111668
APA StyleJezierska, M., & Stefanowicz, J. (2022). Asymmetric and Symmetric Dimethylarginines as Renal Function Parameters in Paediatric Kidney Diseases: A Literature Review from 2003 to 2022. Children, 9(11), 1668. https://doi.org/10.3390/children9111668