Effect of Vitamin D Supplementation on the Fetal Growth Rate in Pregnancy Complicated by Fetal Growth Restriction
Abstract
:1. Introduction
2. Materials and Methods
- Presence of type 1 fetal growth restriction (early FGR);
- Single pregnancy;
- Before the end of the 32nd gestational week;
- Age 18–45 years old; and
- Expected to give birth between October and March, inclusive, as during this period no skin synthesis of vitamin D occurs, which could affect the measurement results.
- Lack of patient consent to participate in the study;
- Diabetes, hypertension, or hypothyroidism diagnosed at any time (because these diseases are risk factors for FGR);
- Vegetarian/vegan diet;
- Smoking; and
- The presence of a clear cause known to inhibit the fetal growth potential, e.g., fetal genetic disorders diagnosed earlier.
2.1. Study Methods, Procedures, Measurements, and Tools
2.2. Statistical Analysis
3. Results
Fetal Weight Depending on a Dose of Supplemented Vitamin D
4. Discussion
Possible Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jasińska, E.A.; Wasiluk, A. Wewnątrzmaciczne ograniczenie wzrastania płodu (IUGR) jako problem kliniczny. Perinatol. Neonatol. Ginekol. 2010, 3, 255–261. [Google Scholar]
- Gardosi, J.; Madurasinghe, V.; Williams, M.; Malik, A.; Francis, A. Maternal and fetal risk factors for stillbirth: Population based study. BMJ 2013, 346, f108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, T.; Pomorski, M.; Wiatrowski, A.; Zimmer, M. Ocena stanu płodu w przypadkach wewnątrzmacicznego ograniczenia wzrastania płodu (IUGR) oraz nadciśnienia indukowanego ciążą (PIH), w II i III trymestrze ciąży—Możliwości diagnostyczno-terapeutyczne. Perinatol. Neonatol. Ginekol. 2011, 4, 22–26. [Google Scholar]
- Kurjak, A.; Chervenak, F.A. (Eds.) Textbook of Perinatal Medicine, 2nd ed.; CRC Press: London, UK, 2006. [Google Scholar] [CrossRef]
- William, W.; Patti, J.; Marianne, S. Wewnątrzmaciczne zahamowanie wzrostu. Med. Dyplomie 2002, 6, 84–92. [Google Scholar]
- Thornton, J.G.; Hornbuckle, J.; Vail, A.; Spiegelhalter, D.J.; Levene, M.; GRIT study group. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): Multicentred randomised controlled trial. Lancet 2004, 364, 513–520. [Google Scholar] [CrossRef]
- Walker, D.M.; Marlow, N.; Upstone, L.; Gross, H.; Hornbuckle, J.; Vail, A.; Wolke, D.; Thornton, J.G. The Growth Restriction Intervention Trial: Long-term outcomes in a randomized trial of timing of delivery in fetal growth restriction. Am. J. Obstet. Gynecol 2011, 204, 34.e1–34.e349. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, I.; Henriksen, T.B.; Uldbjerg, N. Early fetal growth, PAPP-A and free β-hCG in relation to risk of delivering a small-for-gestational age infant. Ultrasound Obstet. Gynecol. 2011, 37, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Płudowski, P.; Konstantynowicz, J.; Jaworski, M.; Abramowicz, P.; Duckl, C. Ocena stanu zaopatrzenia w witaminę D w populacji osób dorosłych w Polsce. Stand. Med. 2014, 4, 10–17. [Google Scholar]
- Bodnar, L.M.; Simhan, H.N.; Powers, R.W.; Frank, M.P.; Cooperstein, E.; Roberts, J.M. High Prevalence of Vitamin D Insufficiency in Black and White Pregnant Women Residing in the Northern United States and Their Neonates. J. Nutr. 2007, 137, 447–452. [Google Scholar] [CrossRef]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Płudowski, P.; Karczmarewicz, E.; Bayer, M.; Carter, G.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dębski, R.; Decsi, T.; Dobrzańska, A.; Franek, E.; et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—Recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Pol. 2013, 64, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Henry, H.L.; Norman, A.W. Vitamin D: Metabolism and biological actions. Annu. Rev. Nutr. 1984, 4, 493–520. [Google Scholar] [CrossRef] [PubMed]
- Barrera, D.; Avila, E.; Hernández, G.; Méndez, I.; González, L.; Halhali, A.; Larrea, F.; Morales, A.; Díaz, L. Calcitriol affects hCG gene transcription in cultured human syncytiotrophoblasts. Reprod. Biol. Endocrinol. 2008, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrera, D.; Avila, E.; Hernández, G.; Halhali, A.; Biruete, B.; Larrea, F.; Díaz, L. Estradiol and progesterone synthesis in human placenta is stimulated by calcitriol. J. Steroid. Biochem. Mol. Biol. 2007, 103, 529–532. [Google Scholar] [CrossRef]
- Billaudel, B.; Labriji-Mestaghanmi, H.; Sutter, B.C.; Malaisse, W.J. Vitamin D and pancreatic islet function. II. Dynamics of insulin release and cationic fluxes. J. Endocrinol. Investig. 1988, 11, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Deluca, H.F. The vitamin D story: A collaborative effort of basic science and clinical medicine 1. FASEB J. 1988, 2, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Lausman, A.; Kingdom, J.; Maternal Fetal Medicine Committee. Intrauterine growth restriction: Screening, diagnosis, and management. J. Obstet. Gynaecol. Can. 2013, 35, 741–748. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Catov, J.M.; Zmuda, J.M.; Cooper, M.E.; Parrott, M.S.; Roberts, J.M.; Marazita, M.L.; Simhan, H.N. Maternal Serum 25-Hydroxyvitamin D Concentrations Are Associated with Small-for-Gestational Age Births in White Women. J. Nutr. 2010, 140, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Chatelain, P. Children born with intra-uterine growth retardation (IUGR) or small for gestational age (SGA): Long term growth and metabolic consequences. Endocr. Regul. 2000, 34, 33–36. [Google Scholar] [PubMed]
- Kramer, M.S.; Olivier, M.; McLean, F.H.; Willis, D.M.; Usher, R.H. Impact of intrauterine growth retardation and body proportionality on fetal and neonatal outcome. Pediatrics 1990, 86, 707–713. [Google Scholar] [CrossRef]
- Bernstein, I.M.; Horbar, J.D.; Badger, G.J.; Ohlsson, A.; Golan, A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am. J. Obstet. Gynecol. 2000, 182, 198–206. [Google Scholar] [CrossRef]
- Gortner, L. Intrauterine growth restriction and risk for arterial hypertension: A causal relationship? J. Périnat. Med. 2007, 35, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Mervis, C.A.; Decouflé, P.; Murphy, C.C.; Yeargin-Allsopp, M. Low birthweight and the risk for mental retardation later in childhood. Paediatr. Perinat. Epidemiol. 1995, 9, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, R.; Burgett, A.D.; Gei, A.; Saade, G.R.; Hankins, G.D. Impairment of fetal growth potential and neonatal encephalopathy. Am. J. Obstet. Gynecol. 2003, 188, 1011–1015. [Google Scholar] [CrossRef]
- Strauss, R.S.; Dietz, W.H. Growth, and development of term children born with low birth weight: Effects of genetic and environmental factors. J. Pediatr. 1998, 133, 67–72. [Google Scholar] [CrossRef]
- Weisglas-Kuperus, N.; Hille, E.T.M.; Duivenvoorden, H.J.; Finken, M.J.J.; Wit, J.M.; van Buuren, S.; van Goudoever, J.B.; Verloove-Vanhorick, S.P. Intelligence of very preterm or very low birthweight infants in young adulthood. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 94, F196–F200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyhala, R.; Lahti, J.; Heinonen, K.; Pesonen, A.K.; Strang-Karlsson, S.; Hovi, P.; Jarvenpaa, A.L.; Eriksson, J.G.; Andersson, S.; Kajantie, E.; et al. Neurocognitive abilities in young adults with very low birth weight. Neurology 2011, 77, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Claas, M.J.; Bruinse, H.W.; Koopman, C.; van Haastert, I.C.; Peelen, L.M.; de Vries, L.S. Two-year neurodevelopmental outcome of preterm born children ≤750 g at birth. Arch. Dis. Child. Fetal Neonatal Ed. 2010, 96, F169–F177. [Google Scholar] [CrossRef] [PubMed]
- Galthen-Sørensen, M.; Andersen, L.B.; Sperling, L.; Christesen, H.T. Maternal 25-hydroxyvitamin D level and fetal bone growth assessed by ultrasound: A systematic review. Ultrasound Obstet. Gynecol. 2014, 44, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, P.; Jastrzebska, A.; Lipka, D.; Huras, H. Pregnancy related and postpartum admissions to intensive care unit in the obstetric tertiary care center—An 8-year retrospective study. Ginekol Pol. 2021, 92, 575–578. [Google Scholar] [CrossRef]
- Leffelaar, E.R.; Vrijkotte, T.G.M.; van Eijsden, M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: Results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br. J. Nutr. 2010, 104, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooke, O.G.; Brown, I.R.; Bone, C.D.; Carter, N.D.; Cleeve, H.J.; Maxwell, J.D.; Robinson, V.P.; Winder, S.M. Vitamin D supplements in pregnant Asian women: Effects on calcium status and fetal growth. Br. Med. J. 1980, 280, 751–754. [Google Scholar] [CrossRef] [Green Version]
- Mannion, C.; Gray-Donald, K.; Koski, K. Milk restriction and low maternal vitamin D intake during pregnancy are associated with decreased birth weight. CMAJ 2006, 174, 1273–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne-Lyman, A.; Fawzi, W.W. Vitamin D during pregnancy and maternal, neonatal and infant health outcomes: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Huras, H.; Radoń-Pokracka, M. Wewnątrzmaciczne zahamowanie wzrastania płodu—Schemat diagnostyczny i postępowanie. Gin. Perinat. Prakt. 2016, 1, 107–114. [Google Scholar]
- ACOG Practice bulletin no. 134: Fetal growth restriction. Obstet. Gynecol. 2013, 121, 1122–1133. [CrossRef]
- Wagner, C.L.; Hollis, B.W.; Baatz, J.E.; Johnson, D.D.; Robinson, C.J. Association of Maternal Vitamin D and Placenta Growth Factor with the Diagnosis of Early Onset Severe Preeclampsia. Am. J. Perinatol. 2012, 30, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Alagöl, F.; Shihadeh, Y.; Boztepe, H.; Tanakol, R.; Yarman, S.; Azizlerli, H.; Sandalci, O. Sunlight exposure and vitamin D deficiency in Turkish women. J. Endocrinol. Investig. 2000, 23, 173–177. [Google Scholar] [CrossRef]
- Møller, U.K.; Streym, S.; Heickendorff, L.; Mosekilde, L.; Rejnmark, L. Effects of 25OHD concentrations on chances of pregnancy and pregnancy outcomes: A cohort study in healthy Danish women. Eur. J. Clin. Nutr. 2012, 66, 862–868. [Google Scholar] [CrossRef]
- Fernández-Alonso, A.M.; Dionis-Sánchez, E.C.; Chedraui, P.; González-Salmerón, M.D.; Pérez-López, F.R. Spanish Vitamin D and Women’s Health Research Group. First-trimester maternal serum 25-hydroxyvitamin D₃ status and pregnancy outcome. Int. J. Gynaecol. Obstet. 2012, 116, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Lafeber, H.N.; Jones, C.T.; Rolph, T.P. Some of the Consequences of Intra-Uterine Growth Retardation. In Nutrition and Metabolism of the Fetus and Infant; Fifth Nutricia Symposium; Visser, H.K.A., Ed.; Springer: Dordrecht, The Netherlands, 1979; Volume 5. [Google Scholar] [CrossRef]
- Hollis, B.W.; Johnson, D.; Hulsey, T.C.; Ebeling, M.; Wagner, C.L. Vitamin D supplementation during pregnancy: Double-blind, randomized clinical trial of safety and effectiveness. J. Bone Miner. Res. 2011, 26, 2341–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerofsky, M.; Jacoby, B.; Stephensen, C. A randomized controlled trial of vitamin D supplementation in pregnancy: Effects on vitamin D status and clinical outcomes (1041.5). FASEB J. 2014, 28, 1041.5. [Google Scholar] [CrossRef]
- Bomba-Opon, D.A.; Samaha, R.B.B.; Kozlowski, S.; Kosinski, P.; Bartoszewicz, Z.; Bednarczuk, T.; Wielgos, M. First trimester maternal serum vitamin D and markers of preeclampsia. J. Matern. Neonatal Med. 2013, 27, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
Variable | Measure/Category | <500 (n = 50) | 2000 (n = 50) | Total (n = 100) | p |
---|---|---|---|---|---|
Mother age (years) | Me(Q1;Q3) | 28.00 (25.50;32.00) | 29.00 (27.75;35.25) | 29.00 (27.00;34.00) | 0.0580 |
Gestational week | Me(Q1;Q3) | 29.57 (25.43;31.46) | 31.57 (29.82;32.86) | 31.07 (27.57;32.14) | 0.0002 |
Pregnancy | 1 | 32 (64.00%) | 34 (68.00%) | 66 (66.00%) | 0.3055 |
2 | 12 (24.00%) | 12 (24.00%) | 24 (24.00%) | ||
3 | 2 (4.00%) | 4 (8.00%) | 6 (6.00%) | ||
4 | 4 (8.00%) | 0 (0.00%) | 4 (4.00%) | ||
Vit. D (ng/mL) | Me(Q1;Q3) | 23.04 (16.03;29.25) | 36.18 (26.48;45.26) | 27.59 (22.10;38.22) | <0.0001 |
vit. D level | Deficiency (<20 ng/mL) | 20 (40.00%) | 4 (8.00%) | 24 (24.00%) | <0.0001 |
Low (20–30 ng/mL) | 18 (36.00%) | 10 (20.00%) | 28 (28.00%) | ||
Normal (30–100 ng/mL) | 12 (24.00%) | 36 (72.00%) | 48 (48.00%) | ||
vit.D < 30 ng/mL | <30 | 38 (76.00%) | 14 (28.00%) | 52 (52.00%) | <0.0001 |
≥30 | 12 (24.00%) | 36 (72.00%) | 48 (48.00%) | ||
vit.D < 20 ng/mL | <20 | 20 (40.00%) | 4 (8.00%) | 24 (24.00%) | 0.0002 |
≥20 | 30 (60.00%) | 46 (92.00%) | 76 (76.00%) | ||
vit. D regularly | Yes | 44 (88.00%) | 48 (96.00%) | 92 (92.00%) | 0.2687 |
No | 6 (12.00%) | 2 (4.00%) | 8 (8.00%) | ||
vit. D per week | Me(Q1;Q3) | 7.00 (7.00;7.00) | 7.00 (7.00;7.00) | 7.00 (7.00;7.00) | 0.1683 |
Model/Dependent Variable | Parameter | (95% CI) | p-Value | Statistics | Value |
---|---|---|---|---|---|
Model: Baseline weight (g) | <0.0001 | R2 | 87.67% | ||
Intercept | −2752.1427 | (−3120.7713; −2383.5140) | <0.0001 | Adjusted R2 | 87.15% |
Mother age (years) | 1.0712 | (−7.1529; 9.2952) | 0.7965 | n | 100 |
Gestational week | 131.8602 | (120.4860; 143.2345) | <0.0001 | ||
Pregnancy | −45.6076 | (−96.3064; 5.0913) | 0.0773 | ||
Vit. D dose (<500) | −16.2069 | (−53.9107; 21.4969) | 0.3956 | ||
Model: Weight 7d (g) | <0.0001 | R2 | 87.46% | ||
Intercept | −2796.3670 | (−3194.9684; −2397.7655) | <0.0001 | Adjusted R2 | 86.93% |
Mother age (years) | 1.8306 | (−7.0622; 10.7233) | 0.6837 | n | 100 |
Gestational week | 136.9261 | (124.6271; 149.2252) | <0.0001 | ||
Pregnancy | −55.2567 | (−110.0778; −0.4356) | 0.0482 | ||
Vit. D dose (<500) | −45.9195 | (−86.6890; −5.1500) | 0.0277 | ||
Model: Weight 14d (g) | <0.0001 | R2 | 86.71% | ||
Intercept | −2753.1960 | (−3196.6914; −2309.7007) | <0.0001 | Adjusted R2 | 86.10% |
Mother age (years) | 0.5938 | (−9.9168; 11.1045) | 0.9108 | n | 92 |
Gestational week | 141.0247 | (127.1005; 154.9489) | <0.0001 | ||
Pregnancy | −49.4031 | (−110.9624; 12.1562) | 0.1143 | ||
Vit. D dose (<500) | −78.0255 | (−123.8682; −32.1828) | 0.0011 | ||
Model: Weight difference 7d – baseline | <0.0001 | R2 | 38.98% | ||
Intercept | −44.2243 | (−159.7515; 71.3029) | 0.4492 | Adjusted R2 | 36.41% |
Mother age (years) | 0.7594 | (−1.8180; 3.3368) | 0.5600 | n | 100 |
Gestational week | 5.0659 | (1.5012; 8.6305) | 0.0058 | ||
Pregnancy | −9.6491 | (−25.5380; 6.2397) | 0.2310 | ||
Vit. D dose (<500) | −29.7126 | (−41.5288; −17.8963) | <0.0001 | ||
Model: Weight difference 14d – baseline | <0.0001 | R2 | 47.71% | ||
Intercept | 17.0129 | (−189.0350; 223.0609) | 0.8700 | Adjusted R2 | 45.31% |
Mother age (years) | 0.2289 | (−4.6543; 5.1122) | 0.9260 | n | 92 |
Gestational week | 8.0611 | (1.5919; 14.5303) | 0.0152 | ||
Pregnancy | −13.8578 | (−42.4582; 14.7427) | 0.3382 | ||
Vit. D dose (<500) | −70.5059 | (−91.8044; −49.2074) | <0.0001 |
Model#/Variable | Estimate | (95% CI) | p-Value | Statistics | Value |
---|---|---|---|---|---|
Model 1: | <0.0001 | R2 | 26.07% | ||
Intercept | −287.5834 | (−515.0841; −60.0827) | 0.0138 | Adjusted R2 | 22.68% |
Mother age (years) | 4.1860 | (−1.4094; 9.7814) | 0.1406 | Observations | 92 |
Gestational week | 12.9580 | (5.5110; 20.4051) | 0.0008 | ||
Pregnancy | −31.1099 | (−64.6149; 2.3952) | 0.0684 | ||
Vit. D (ng/mL) | 2.1520 | (0.2685; 4.0354) | 0.0256 | ||
Model 4: | <0.0001 | R2 | 47.71% | ||
Intercept | 17.0129 | (−189.0350; 223.0609) | 0.8700 | Adjusted R2 | 45.31% |
Mother age (years) | 0.2289 | (−4.6543; 5.1122) | 0.9260 | Observations | 92 |
Gestational week | 8.0611 | (1.5919; 14.5303) | 0.0152 | ||
Pregnancy | −13.8578 | (−42.4582; 14.7427) | 0.3382 | ||
Vit. D dose (<500) | −70.5059 | (−91.8044; −49.2074) | <0.0001 |
By Variable | Spearman’s Correlation | Spearman’s Correlation p-Value |
---|---|---|
Weight difference, percentile (7 d− baseline) | 0.3764 | 0.0001 |
Weight difference, percentile (14 d − baseline) | 0.3662 | 0.0003 |
Weight percentile 7d | 0.3462 | 0.0004 |
Weight difference (7 d − baseline) | 0.3431 | 0.0005 |
Weight difference (14 d − baseline) | 0.3114 | 0.0025 |
Weight percentile 14 d | 0.2999 | 0.0037 |
Weight (g) 7 d | 0.2341 | 0.0191 |
Weight (g) baseline | 0.2012 | 0.0448 |
Weight percentile baseline | 0.1917 | 0.0560 |
Weight (g) 14 d | 0.1848 | 0.0778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubiec-Wisniewska, K.; Huras, H.; Kolak, M. Effect of Vitamin D Supplementation on the Fetal Growth Rate in Pregnancy Complicated by Fetal Growth Restriction. Children 2022, 9, 549. https://doi.org/10.3390/children9040549
Jakubiec-Wisniewska K, Huras H, Kolak M. Effect of Vitamin D Supplementation on the Fetal Growth Rate in Pregnancy Complicated by Fetal Growth Restriction. Children. 2022; 9(4):549. https://doi.org/10.3390/children9040549
Chicago/Turabian StyleJakubiec-Wisniewska, Karolina, Hubert Huras, and Magdalena Kolak. 2022. "Effect of Vitamin D Supplementation on the Fetal Growth Rate in Pregnancy Complicated by Fetal Growth Restriction" Children 9, no. 4: 549. https://doi.org/10.3390/children9040549
APA StyleJakubiec-Wisniewska, K., Huras, H., & Kolak, M. (2022). Effect of Vitamin D Supplementation on the Fetal Growth Rate in Pregnancy Complicated by Fetal Growth Restriction. Children, 9(4), 549. https://doi.org/10.3390/children9040549