Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model
Abstract
:1. Introduction
2. Multi-Losses: A Heavy-Tailed Paretian Model
2.1. Motivation
2.2. The Pareto-II Model
2.3. Mathematical Properties
3. Distortion Risk Measure
4. Weighted Premium
4.1. Preliminaries
4.2. Results
5. Weighted Capital Allocation
5.1. Preliminaries
5.2. Results
6. Conditional-Layer-Expectation Premium and Allocation
6.1. Preliminaries
6.2. CLE Premium
6.3. CLE Allocation
7. Conclusions
Acknowledgements
A. Technicalities
References
- M. Denuit, J. Dhaene, M.J. Goovaerts, and R. Kaas. Actuarial Theory for Dependent Risk: Measures, Orders and Models. New York, NY, USA: Wiley, 2005. [Google Scholar]
- G.Ch. Pflug, and W. Römisch. Modeling, Measuring and Managing Risk. Singapore: World Scientific, 2007. [Google Scholar]
- A. Tsanakas, and E. Desli. “Risk measures and theories of choice.” Br. Actuar. J. 9 (2003): 959–991. [Google Scholar] [CrossRef]
- S.S. Wang, V.R. Young, and H.H. Panjer. “Axiomatic characterization of insurance prices.” Insur. Math. Econ. 21 (1997): 173–183. [Google Scholar] [CrossRef]
- V.R. Young. “Premium Principles.” In Encyclopedia of Actuarial Science. Edited by J.L. Teugels and B. Sundt. New York, NY, USA: Wiley, 2004, pp. 1322–1331. [Google Scholar]
- C. Puppe. Distorted Probabilities and Choice under Risk. Berlin, Germany: Springer, 1991. [Google Scholar]
- J. Quiggin. Generalized Expected Utility Theory. Dordrecht, The Netherlands: Kluwer, 1993. [Google Scholar]
- P.P. Wakker. Prospect Theory: For Risk and Ambiguity. Cambridge, UK: Cambridge University Press, 2010. [Google Scholar]
- M. Machina. “Nonexpected Utility Theory.” In Encyclopedia of Actuarial Science. Edited by J.L. Teugels and B. Sundt. New York, NY, USA: Wiley, 2004, pp. 1173–1179. [Google Scholar]
- M. Machina. “Non-Expected Utility Theory.” In The New Palgrave Dictionary of Economics, 2nd ed. Edited by S.N. Durlauf and L.E. Blume. New York, NY, USA: Palgrave Macmillan, 2008, pp. 74–84. [Google Scholar]
- E.W. Frees, and E.A. Valdez. “Understanding relationships using copulas.” N. Am. Actuar. J. 2 (1998): 1–25. [Google Scholar] [CrossRef]
- Z.M. Landsman, and E.A. Valdez. “Tail conditional expectations for elliptical distributions.” N. Am. Actuar. J. 7 (2003): 55–71. [Google Scholar] [CrossRef]
- Z. Landsman, and E.A. Valdez. “Tail conditional expectation for exponential dispersion models.” Astin Bull. 35 (2005): 189–209. [Google Scholar] [CrossRef]
- S.C.K. Lee, and X.S. Lin. “Modeling dependent risks with multivariate Erlang mixtures.” Astin Bull. 42 (2012): 153–180. [Google Scholar]
- E. Furman, and Z. Landsman. “Multivariate Tweedie distributions and some related capital-at-risk analyses.” Insur. Math. Econ. 46 (2010): 351–361. [Google Scholar] [CrossRef]
- J. Cai, and H. Li. “Multivariate risk model of phase type.” Insur. Math. Econ. 36 (2005): 137–152. [Google Scholar] [CrossRef]
- E. Furman. “On a multivariate gamma distribution.” Stat. Probab. Lett. 78 (2008): 2353–2360. [Google Scholar] [CrossRef]
- E. Furman, and Z. Landsman. “Risk capital decomposition for a multivariate dependent gamma portfolio.” Insur. Math. Econ. 37 (2005): 635–649. [Google Scholar] [CrossRef]
- V.A. Asimit, E. Furman, and R. Vernic. “On a multivariate Pareto distribution.” Insur. Math. Econ. 46 (2010): 308–316. [Google Scholar] [CrossRef]
- A. Chiragiev, and Z. Landsman. “Multivariate Pareto portfolios: TCE-based capital allocation and divided differences.” Scan. Actuar. J. 4 (2007): 261–280. [Google Scholar] [CrossRef]
- R. Vernic. “Tail conditional expectation for the multivariate Pareto distribution of the second kind: Another approach.” Methodol. Comput. Appl. Probab. 13 (2011): 121–137. [Google Scholar] [CrossRef]
- I. Finkelshtain, O. Kella, and M. Scarsini. “On risk aversion with two risks.” J. Math. Econ. 31 (1999): 239–250. [Google Scholar] [CrossRef]
- G. Franke, H. Schlesinger, and R.C. Stapleton. “Multiplicative background risk.” Manag. Sci. 52 (2006): 146–153. [Google Scholar] [CrossRef]
- G. Franke, H. Schlesinger, and R.C. Stapleton. “Risk taking with additive and multiplicative background risks.” J. Econ. Theory 146 (2011): 1547–1568. [Google Scholar] [CrossRef]
- D.C. Nachman. “Preservation of “more risk averse” under expectations.” J. Econ. Theory 28 (1982): 361–368. [Google Scholar] [CrossRef]
- J.W. Pratt. “Aversion to one risk in the presence of others.” J. Risk Uncertain. 1 (1988): 395–413. [Google Scholar] [CrossRef]
- A. Tsanakas. “Risk measurement in the presence of background risk.” Insur. Math. Econ. 42 (2008): 520–528. [Google Scholar] [CrossRef]
- B.C. Arnold. Pareto Distributions. Fairland, MD, USA: International Co-operative Publishing House, 1983. [Google Scholar]
- R.B. Nelsen. An Introduction to Copulas, 2nd ed. New York, NY, USA: Springer, 2006. [Google Scholar]
- J. Dhaene, M. Denuit, M.J. Goovaerts, and D. Vyncke. “The concept of comonotonicity in actuarial science and finance: Theory.” Insur. Math. Econ. 31 (2002): 3–33. [Google Scholar] [CrossRef]
- J. Dhaene, M. Denuit, M.J. Goovaerts, and D. Vyncke. “The concept of comonotonicity in actuarial science and finance: Applications.” Insur. Math. Econ. 31 (2002): 133–161. [Google Scholar] [CrossRef]
- A. Juri, and M.V. Wüthrich. “Copula convergence theorems for tail events.” Insur. Math. Econ. 30 (2002): 405–420. [Google Scholar] [CrossRef]
- H.C. Yeh. “Two multivariate Pareto distributions and their related inferences.” Bull. Inst. Math. Acad. Sinica 28 (2000): 71–86. [Google Scholar]
- H.C. Yeh. “Some properties and characterizations for generalized multivariate Pareto distributions.” J. Multivar. Anal. 88 (2004): 47–60. [Google Scholar] [CrossRef]
- S. Wang. “Insurance pricing and increased limits ratemaking by proportional hazards transforms.” Insur. Math. Econ. 17 (1995): 43–54. [Google Scholar] [CrossRef]
- S. Wang. “An actuarial index of the right-tail risk.” N. Am. Actuar. J. 2 (1998): 88–101. [Google Scholar] [CrossRef]
- A. Tsanakas. “Dynamic capital allocation with distortion risk measures.” Insur. Math. Econ. 35 (2004): 223–243. [Google Scholar] [CrossRef]
- A. Tsanakas, and C. Barnett. “Risk capital allocation and cooperative pricing of insurance liabilities.” Insur. Math. Econ. 33 (2003): 239–254. [Google Scholar] [CrossRef]
- B.L. Jones, and R. Zitikis. “Empirical estimation of risk measures and related quantities.” N. Am. Actuar. J. 7 (2003): 44–54. [Google Scholar] [CrossRef]
- D. Denneberg. Non-additive Measure and Integral. Dordrecht, The Netherlands: Kluwer, 1994. [Google Scholar]
- J. Dhaene, A. Kukush, D. Linders, and Q. Tang. “Remarks on quantiles and distortion risk measures.” Eur. Actuar. J. 2 (2012): 319–328. [Google Scholar] [CrossRef]
- J. Quiggin. “A theory of anticipated utility.” J. Econ. Behav. Organization 3 (1982): 323–343. [Google Scholar] [CrossRef]
- D. Schmeidler. “Integral representation without additivity.” Proc. Am. Math. Soc. 97 (1986): 255–61. [Google Scholar] [CrossRef]
- M.E. Yaari. “The dual theory of choice under risk.” Econometrica 55 (1987): 95–115. [Google Scholar] [CrossRef]
- G. Castellacci. “A Formula for the Quantiles of Mixtures of Distributions with Disjoint Supports.” Available online: http://ssrn.com/abstract=2055022 (accessed on 9 May 2012).
- C.R. Rao. Statistics and Truth: Putting Chance to Work, 2nd ed. Singapore: World Scientific, 1997. [Google Scholar]
- G.P. Patil. “Weighted Distributions.” In Encyclopedia of Environmetrics. Edited by A.H. El-Shaarawi and W.W. Piegorsch. Chichester, UK: Wiley, 2002, pp. 2369–2377. [Google Scholar]
- E. Furman, and R. Zitikis. “Weighted premium calculation principles.” Insur. Math. Econ. 42 (2008): 459–465. [Google Scholar] [CrossRef]
- E. Furman, and R. Zitikis. “Weighted pricing functionals with applications to insurance: An overview.” N. Am. Actuar. J. 13 (2009): 1–14. [Google Scholar] [CrossRef]
- W.-R. Heilmann. “Decision theoretic foundations of credibility theory.” Insur. Math. Econ. 8 (1989): 77–95. [Google Scholar] [CrossRef]
- U. Kamps. “On a class of premium principles including the Esscher principle.” Scan. Actuar. J. 1 (1998): 75–80. [Google Scholar] [CrossRef]
- E. Furman, and R. Zitikis. “Weighted risk capital allocations.” Insur. Math. Econ. 43 (2008): 263–269. [Google Scholar] [CrossRef]
- S.H. Chew. “A generalization of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the Allais paradox.” Econometrica 51 (1983): 1065–1092. [Google Scholar]
- L.J. Halliwell. “The mathematics of excess losses.” Variance 6 (2012): 32–47. [Google Scholar]
- A. Buch, and G. Dorfleitner. “Coherent risk measures, coherent capital allocations and the gradient allocation principle.” Insur. Math. Econ. 42 (2008): 235–242. [Google Scholar] [CrossRef]
- A. Buch, G. Dorfleitner, and M. Wimmer. “Risk capital allocation for RORAC optimization.” J. Bank. Financ. 35 (2011): 3001–3009. [Google Scholar] [CrossRef] [Green Version]
- M. Kalkbrener. “An axiomatic approach to capital allocation.” Math. Financ. 15 (2005): 425–437. [Google Scholar] [CrossRef]
- Y. Malevergne, and D. Sornette. Extreme Financial Risks: From Dependence to Risk Management. New York, NY, USA: Springer, 2006. [Google Scholar]
- A. Meucci. Risk and Asset Allocation, 3rd ed. Berlin, Germany: Springer, 2007. [Google Scholar]
- G.G. Venter. “Capital allocation survey with commentary.” N. Am. Actuar. J. 8 (2004): 96–107. [Google Scholar] [CrossRef]
- J. Dhaene, M.J. Goovaerts, and R. Kaas. “Economic capital allocation derived from risk measures.” N. Am. Actuar. J. 7 (2003): 44–59. [Google Scholar] [CrossRef]
- J. Dhaene, L. Henrard, Z. Landsman, A. Vandendorpe, and S. Vanduffel. “Some results on the CTE-based capital allocation rule.” Insur. Math. Econ. 42 (2008): 855–863. [Google Scholar] [CrossRef]
- Z. Landsman, and M. Sherris. “An actuarial premium pricing model for nonnormal insurance and financial risks in incomplete markets.” N. Am. Actuar. J. 11 (2007): 119–135. [Google Scholar] [CrossRef]
- E.A. Valdez, and A. Chernih. “Wang’s capital allocation formula for elliptically contoured distributions.” Insur. Math. Econ. 33 (2003): 517–532. [Google Scholar] [CrossRef]
- A.V. Asimit, E. Furman, Q. Tang, and R. Vernic. “Asymptotics for risk capital allocations based on conditional tail expectation.” Insur. Math. Econ. 49 (2011): 310–324. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Asimit, A.V.; Vernic, R.; Zitikis, R. Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model. Risks 2013, 1, 14-33. https://doi.org/10.3390/risks1010014
Asimit AV, Vernic R, Zitikis R. Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model. Risks. 2013; 1(1):14-33. https://doi.org/10.3390/risks1010014
Chicago/Turabian StyleAsimit, Alexandru V., Raluca Vernic, and Riċardas Zitikis. 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model" Risks 1, no. 1: 14-33. https://doi.org/10.3390/risks1010014
APA StyleAsimit, A. V., Vernic, R., & Zitikis, R. (2013). Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model. Risks, 1(1), 14-33. https://doi.org/10.3390/risks1010014