Estimation and Prediction of Commodity Returns Using Long Memory Volatility Models
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Long-Memory Process
3.2. Long-Memory Mean and Volatility Models
3.3. Heavy-Tailed Distributions
3.3.1. Student-t Distribution (StD)
3.3.2. Skewed-Student-t Distribution (SStD)
3.3.3. Generalized Error Distribution (GED)
3.4. Long-Memory Tests
GPH Long-Memory Test
4. Empirical Results and Discussion
4.1. Summary Statistics
4.2. Preliminary Analysis
4.3. Testing for LM
4.4. Summary of Empirical Properties of Commodity Returns
4.5. Empirical Analysis
4.6. Discussion
4.7. Sensitivity/Forecast Evaluation
4.8. Model Selection
Out-of-Sample Validation of Top-Performing Models
5. Conclusions and Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ARDA. 2004. Agricultural and Rural Development Authority Stratigic plans. Zimbabwe: The National Development Strategy 1: 2021–25. [Google Scholar]
- Arfken, George B., Hans J. Weber, and Frank E. Harris. 2013. Mathematical Methods for Physicists. Cambridge: Academic Press. [Google Scholar]
- Arouri, Mohamed El Hedi, Shawkat Hammoudeh, Amine Lahiani, and Duc Khuong Nguyen. 2012. Long memory and struc tural breaks in modelling the return and volatility dynamics of precious metals. The Quarterly Review of Economics and Finance 52: 207–18. [Google Scholar] [CrossRef]
- Avsar, Gulay S., and Barry A. Goss. 2001. Forecast Errors and Efficiency in the U.S. Electricity Futures Market. Australian Economic Papers 40: 479–99. [Google Scholar] [CrossRef]
- Baillie, Richard T., Tim Bollerslev, and Hans Ole Mikkelsen. 1996. Fractionally Integrated Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics 74: 3–30. [Google Scholar] [CrossRef]
- Barkoulas, John T., Christopher F. Baum, and Nickolaos Travlos. 2000. Long Memory in the Greek Stock Market. Applied Financial Economics 10: 177–84. [Google Scholar] [CrossRef]
- Bentes, Sonia R. 2015. Forecasting volatility in gold returns under the GARCH, IGARCH and FIGARCH frameworks: New evidence. Physica A 438: 355–64. [Google Scholar] [CrossRef]
- Brenner, Robin J., and Kenneth F. Kroner. 1995. Arbitrage, Cointegration, and Testing the Unbiasedness Hypothesis in Financial Markets. The Journal of Financial and Quantitative Analysis 30: 23–42. [Google Scholar] [CrossRef]
- Cashin, Paul, and C. John McDermott. 2002. The long-run behavior of commodity prices: Small trends and big variability. IMF Staff Papers 49: 175–99. [Google Scholar] [CrossRef]
- Cheong, Chin Wen, Zaidi Isa, and Nor Abu Hassan Shaari Mohd. 2008. Fractionally Integrated Time-varying Volatility under Structural Break: Evidence from Kuala Lumpur Composite Index. Sains Malaysiana 37: 405–11. [Google Scholar]
- Chinhamu, Knowledge, Retius Chifurira, and Edmore Ranganai. 2022. Value-at-Risk Estimation of Precious Metal Returns using Long Memory GARCH Models with Heavy-Tailed Distribution. Journal of Statistics Applications & Probability 11: 89–107. [Google Scholar] [CrossRef]
- Chkili, Walid, Shawkat Hammoudeh, and Duc Khuong Nguyen. 2014. Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory. Energy Economics 41: 1–18. [Google Scholar] [CrossRef]
- Cochran, Steven J., Iqbal Mansur, and Babatunde Odusami. 2012. Volatility persistence in metals returns: A FIGARCH approach. Journal of Economics and Business 64: 287–305. [Google Scholar] [CrossRef]
- Conrad, Christian, and Berthold R. Haag. 2006. Inequality Constraints in the Fractionally Integrated GARCH Model. Journal of Financial Econometrics 4: 413–49. [Google Scholar] [CrossRef]
- Conrad, Christian. 2010. Non-negativity for the hyperbolic GARCH model. Journal of Econometrics 157: 441–57. [Google Scholar] [CrossRef]
- Cuddington, John T. 1992. Long-run Trends in 26 Primary Commodity Prices: A Disaggregated Look at the Prebisch-Singer Hypothesis. Journal of Development Economics 9: 207–27. [Google Scholar] [CrossRef]
- Davidson, John. 2004. Moment and memory properties of linear conditional heteroscedastic models, and a new model. Journal of Business and Economic Statistics 22: 16–29. [Google Scholar] [CrossRef]
- Diaz, John Francis T. 2016. Do scarce precious metals equate to safe habour investments? The case of platinum and palladium. Economics Research International 12: 2361954. [Google Scholar] [CrossRef]
- Fama, Eugene F. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance 25: 383–417. [Google Scholar] [CrossRef]
- Geweke, John, and Susan Porter-Hudak. 1983. The estimation and application of long memory time series models. Journal Time Series Analysis 4: 221–38. [Google Scholar] [CrossRef]
- Giller, Graham L. 2005. A Generalized Error Distribution. Available online: https://ssrn.com/abstract=2265027 (accessed on 1 March 2024).
- Green, Christopher. 2005. Heavy-Tailed Distributions in Finance: An Empirical Study. Seattle: Department of Statistics, University of Washington. [Google Scholar]
- Hansen, Bruce E. 1994. Autoregressive Conditional Density Estimation. International Economic Review 35: 705–30. [Google Scholar] [CrossRef]
- Hosking, J. R. M. 1981. Fractional Differencing. Biometrika 68: 165–76. [Google Scholar] [CrossRef]
- Kang, Sang Hoon, and Seong-Min Yoon. 2007. Long Memory Properties in Return and Volatility: Evidence from the Korean Stock Market. Physica A 385: 591–600. [Google Scholar] [CrossRef]
- Karanasos, Menelaos G., and Aris Kartsaklas. 2009. Dual Long-Memory, Structural Breaks and the Link between Turnover and The Range-Based Volatility. Journal of Empirical Finance 16: 838–51. [Google Scholar] [CrossRef]
- Kasman, Adnan, Saadet Kasman, and Erdost Torun. 2009. Dual Long Memory Property in Returns and Volatility: Evidence from the CEE Countries’ Stock Markets. Emerging Markets Review 10: 122–39. [Google Scholar] [CrossRef]
- Krezłek, Dominik. 2012. Non-Classical measures of investment Risk on the Market of Precious Non-Ferrous Metals. Dynamic Economic Models 12: 89–103. [Google Scholar] [CrossRef]
- Kumar, Manmohan S. 1992. The Forecasting Accuracy of Crude Oil Futures Prices. IMF Economic Review (Staff Papers) 39: 432–61. [Google Scholar] [CrossRef]
- Moosa, Imad A., and Nabeel E. Al-Loughani. 1994. Unbiasedness and Time-varying Risk Premia in the Crude Oil Futures Market. Energy Economics 16: 99–105. [Google Scholar] [CrossRef]
- Purczyński, Jan, and Kamila Bednarz-Okrzyńska. 2014. Estimation of the shape parameter of GED distribution for a small sample size. Folia Oeconomica Stetinensia 14: 35–46. [Google Scholar] [CrossRef]
- Ranganai, Edmore, and Sihle B. Khubeka. 2016. Long memory mean and volatility models of platinum and palladium return series under heavy tailed distributions. Springer Plus 5: 2089. [Google Scholar] [CrossRef]
- Shi, Shuping, and Jun Yu. 2023. Volatility puzzle: Long memory or antipersistency. Management Science 69: 3861–83. [Google Scholar] [CrossRef]
- Tang, Ta-Lun, and Shwu-Jane Shieh. 2006. Long Memory in Stock Index Futures Markets: A Value-at-Risk Approach. Physica A 366: 437–48. [Google Scholar] [CrossRef]
- Tsay, Ruey S. 2005. Analysis of Financial Time Series. Hoboken: John Wiley & Sons, pp. 97–143. [Google Scholar]
- Tse, Yiu Kuen. 1998. The Conditional Heteroscedasticity of the Yen-Dollar Exchange Rate. Journal of Applied Econometrics 13: 49–55. [Google Scholar] [CrossRef]
- Ural, Mert, and C. Coşkun Küçüközmen. 2011. Analyzing the Dual Long Memory in Stock Market Returns. Ege Academic Review 11: 19–28. [Google Scholar]
- Youssef, Manel, Lofti Balkacem, and Khaled Mokni. 2015. Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach. Energy Economics 51: 99–110. [Google Scholar] [CrossRef]
Crude Oil | Gold | Lithium | Cotton | Tobacco | |
---|---|---|---|---|---|
Descriptive Statistics | |||||
Minimum | −0.5100 | −0.0982 | −0.0597 | −0.3184 | −0.5878 |
Maximum | 0.3110 | 0.0842 | 0.0759 | 0.1797 | 0.7865 |
Mean | 0.0002 | 0.0004 | 0.0002 | 0.0001 | 0.0003 |
Standard Deviation | 0.0274 | 0.0118 | 0.0116 | 0.0235 | 0.0836 |
Skewness | −1.4653 | −0.4758 | 0.6375 | −1.4271 | 0.0757 |
Kurtosis | 39.7954 | 21.6483 | 9.5946 | 26.7438 | 14.1570 |
Testing for correlation (Q-test), normality (JB test), and heteroscedasticity ( test) (p-values in brackets) | |||||
Q(5) | 40.5 (<0.0001) | 3.64 (<0.0001) | 208.7 (<0.0001) | 185.5 (<0.0001) | 260.0 (<0.0001) |
Q(10) | 45.3 (<0.0001) | 17.6 (<0.0001) | 3453.7 (<0.0001) | 210.4 (<0.0001) | 272.8 (<0.0001) |
JB test | 30,000 (<0.0001) | 6385 (<0.0001) | 31,123 (<0.0001) | 10,000 (<0.0001) | 28,634 (<0.0001) |
(5) | 118.5 (<0.0001) | 43.7 (<0.0001) | 5295.4 (<0.0001) | 666.94 (<0.0001) | 674.3 (<0.0001) |
(10) | 207.5 (<0.0001) | 164.5 (<0.0001) | 571.7 (<0.0001) | 1352 (<0.0001) | 1123 (<0.0001) |
Unit root and stationary tests | |||||
ADF | −17.4 (<0.0001) | −18.3 (<0.0001) | −18.3 (<0.0001) | −32.2 (<0.0001) | −37.9 |
(<0.0001) | |||||
PP test | −5764 (<0.0001) | −5467 (<0.0001) | −5466 (<0.0001) | −3983 (<0.0001) | −4725 (<0.0001) |
KPSS | 0.064 | 0.255 | 0.255 | 0.004 | 0.024 |
(>0.1000) | (>0.1000) | (>0.1000) | (>0.1000) | (<0.1000) |
Returns | Squared Returns | ||||||
---|---|---|---|---|---|---|---|
Commodity | Bandwidth | Std Dev | p-Value | Std Dev | p-Value | ||
Crude oil | 0.0012 | 0.0812 | 0.9960 | 0.1336 | 0.0417 | 0.0110 | |
0.0577 | 0.0543 | 0.2520 | 0.3859 | 0.0286 | <0.0001 | ||
0.0084 | 0.0339 | 0.8010 | 0.3538 | 0.0122 | <0.0001 | ||
Gold | −0.0233 | 0.8000 | 0.8030 | 0.4467 | 0.0986 | <0.0001 | |
−0.0776 | 0.0513 | 0.1430 | 0.5424 | 0.0674 | <0.0001 | ||
0.1782 | 0.0337 | 0.0230 | 0.4690 | 0.0559 | <0.0001 | ||
Cotton | 0.2078 | 0.3687 | 0.1506 | 0.8270 | 0.0932 | <0.0001 | |
0.1628 | 0.1637 | 0.2387 | 0.6633 | 0.0578 | <0.0001 | ||
0.5117 | 0.2645 | 0.1743 | 0.1547 | 0.0469 | <0.0001 | ||
Tobacco | 0.1094 | 0.1735 | 0.1800 | 0.6027 | 0.1236 | <0.0001 | |
−0.3526 | 0.0460 | 0.0440 | 0.6643 | 0.0796 | <0.0001 | ||
−0.4739 | 0.0385 | <0.0001 | 0.7232 | 0.0475 | <0.0001 | ||
Lithium | 0.5236 | 0.0967 | <0.0001 | 0.2743 | 0.0893 | <0.0001 | |
0.6564 | 0.0873 | <0.0001 | 0.3954 | 0.0567 | <0.0001 | ||
0.5428 | 0.0574 | <0.0001 | 0.3486 | 0.0558 | <0.0001 |
, 1) | , 1) | ||||||
---|---|---|---|---|---|---|---|
Innovations | Parameters | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value |
ND | 0.5296 | <0.0001 | 0.5340 | <0.0001 | 0.3456 | <0.0001 | |
0.2625 | <0.0001 | 0.2632 | <0.0001 | 0.3449 | <0.0001 | ||
0.7123 | <0.0001 | 0.7488 | <0.0001 | 0.6844 | <0.0001 | ||
- | - | - | - | 0.5174 | 0.0421 | ||
- | - | - | - | 2.1067 | <0.0001 | ||
(5) | 2.1276 | 0.8672 | 2.2578 | 0.8762 | 3.3585 | 0.6423 | |
(10) | 3.1461 | 0.9897 | 3.0134 | 0.9843 | 4.6374 | 0.9358 | |
(20) | 8.3594 | 1.000 | 8.2845 | 1.0000 | 9.5333 | 0.9743 | |
(5) | 6.2612 | 0.3476 | 5.4681 | 0.2857 | 5.2359 | 0.1674 | |
(10) | 11.8745 | 0.2352 | 11.0875 | 0.2342 | 11.7765 | 0.2254 | |
(20) | 20.2436 | 0.4463 | 18.8647 | 0.5312 | 19.542 | 0.4456 | |
ARCH(5) | 7.3856 | 0.2864 | 6.0051 | 0.3985 | 6.1265 | 0.4143 | |
ARCH(10) | 11.8677 | 0.3595 | 10.9328 | 0.3543 | 11.3287 | 0.3368 | |
AIC | −4.8463 | −4.8484 | −4.8434 | ||||
StD | 0.5323 | <0.0001 | 0.5394 | <0.0001 | 0.3163 | <0.0001 | |
0.2699 | <0.0001 | 0.2602 | <0.0001 | 0.8432 | <0.0001 | ||
0.7148 | <0.0001 | 0.7184 | <0.0001 | 0.7657 | <0.0001 | ||
- | - | - | - | 0.2518 | 0.04580 | ||
- | - | - | - | 1.7294 | <0.0001 | ||
(5) | 2.1277 | 0.8312 | 2.0876 | 0.8369 | 13.3444 | 0.2647 | |
(10) | 3.0332 | 0.9806 | 3.0007 | 0.9814 | 4.2561 | 0.9351 | |
(20) | 8.3565 | 0.9892 | 8.2754 | 0.9899 | 9.4516 | 0.9771 | |
(5) | 6.0588 | 0.1088 | 5.4490 | 0.1417 | 5.1602 | 0.1665 | |
(10) | 11.5106 | 0.1744 | 10.4438 | 0.2352 | 10.9794 | 0.2329 | |
(20) | 19.0266 | 0.3902 | 18.1899 | 0.4432 | 18.1842 | 0.4438 | |
ARCH(5) | 5.9961 | 0.3066 | 5.3808 | 0.3712 | 5.1144 | 0.4221 | |
ARCH(10) | 11.593 | 0.3132 | 10.527 | 0.3955 | 11.3057 | 0.3343 | |
AIC | −4.8564 | −4.8574 | −4.8748 | ||||
SStD | 0.5484 | <0.0001 | 0.5557 | <0.0001 | 0.3148 | 0.0435 | |
0.3001 | <0.0001 | 0.2534 | <0.0001 | 0.3478 | <0.0001 | ||
0.71675 | <0.0001 | 0.7145 | <0.0001 | 0.6531 | <0.0001 | ||
- | - | - | - | 0.5690 | 0.4221 | ||
- | - | - | - | 1.6988 | <0.0001 | ||
(5) | 2.3421 | 0.8336 | 2.1018 | 0.8377 | 3.4791 | 0.6266 | |
(10) | 3.4447 | 0.9878 | 2.9869 | 0.9844 | 4.3971 | 0.9277 | |
(20) | 7.2145 | 0.9832 | 8.2411 | 1.0000 | 9.6453 | 0.9741 | |
(5) | 6.6143 | 0.2325 | 5.4298 | 0.2779 | 6.2138 | 0.1017 | |
(10) | 10.9167 | 0.2375 | 9.7245 | 0.2823 | 12.4548 | 0.1320 | |
(20) | 18.6423 | 0.4179 | 15.7631 | 0.4779 | 19.4281 | 0.3659 | |
ARCH(5) | 6.6237 | 0.3738 | 4.6585 | 0.43186 | 6.1411 | 0.2927 | |
ARCH(10) | 11.3100 | 0.3582 | 9.8378 | 0.46391 | 12.756 | 0.2376 | |
AIC | −4.8821 | −4.8871 | −4.8894 | ||||
GED | 0.5454 | <0.0001 | 0.5668 | <0.0001 | 0.4357 | <0.0001 | |
0.3429 | <0.0001 | 0.2667 | <0.0001 | 0.3448 | <0.0001 | ||
0.7654 | <0.0001 | 0.7432 | <0.0001 | 0.6683 | <0.0001 | ||
- | - | - | - | 0.4954 | <0.0001 | ||
- | - | - | - | 1.7528 | <0.0001 | ||
(5) | 2.1401 | 0.8294 | 2.0903 | 0.8365 | 3.2987 | 0.6575 | |
(10) | 3.0349 | 0.9806 | 2.9896 | 0.9817 | 4.2162 | 0.9389 | |
(20) | 8.3584 | 0.9892 | 8.2442 | 0.9901 | 9.3437 | 0.9654 | |
(5) | 4.6997 | 0.1951 | 4.0983 | 0.2510 | 4.6536 | 0.3267 | |
(10) | 9.9311 | 0.2699 | 8.73317 | 0.3653 | 8.7766 | 0.3614 | |
(20) | 17.6982 | 0.4757 | 16.8868 | 0.5309 | 16.2765 | 0.5776 | |
ARCH(5) | 4.6607 | 0.4587 | 4.0469 | 0.5427 | 3.2572 | 0.6512 | |
ARCH(10) | 10.029 | 0.4379 | 8.8081 | 0.5504 | 10.1202 | 0.5219 | |
AIC | −4.8830 | −4.8866 | −4.8876 |
StD | GED | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value |
0.0003 | 0.0003 | 0.0004 | 0.0001 | 0.0004 | 0.0130 | 0.0025 | <0.0001 | |
−0.0855 | 0.0445 | 0.0165 | 0.4526 | 0.0158 | 0.3964 | 0.0345 | 0.0174 | |
0.6938 | <0.0001 | −0.0669 | 0.0216 | −0.0554 | 0.0158 | −0.0528 | 0.0032 | |
0.0612 | 0.0076 | 0.0469 | 0.0058 | 0.0448 | 0.0036 | 0.0559 | 0.0044 | |
0.3354 | <0.0001 | 0.4275 | <0.0001 | 0.4156 | <0.0001 | 0.3820 | <0.0001 | |
0.2981 | <0.0001 | 0.2568 | <0.0001 | 0.2645 | <0.0001 | 0.2853 | <0.0001 | |
0.5924 | <0.0001 | 0.6667 | <0.0001 | 0.6575 | <0.0001 | 0.6277 | <0.0001 | |
(5) | 2.4659 | 0.4856 | 5.4685 | 0.1411 | 5.6612 | 0.2261 | 5.9411 | 0.2036 |
(10) | 5.7557 | 0.6748 | 9.4297 | 0.3111 | 9.8789 | 0.3615 | 10.2934 | 0.3273 |
(20) | 11.6773 | 0.8664 | 16.1643 | 0.5856 | 16.5665 | 0.6216 | 16.8477 | 0.6002 |
(5) | 3.1231 | 0.3938 | 18.8094 | 0.0006 | 19.3649 | 0.0006 | 9.7928 | 0.0554 |
(10) | 5.3534 | 0.7234 | 21.8628 | 0.038 | 20.2255 | 0.0089 | 11.9387 | 0.1540 |
(20) | 6.9882 | 0.9956 | 22.4342 | 0.2131 | 21.8685 | 0.2377 | 13.6411 | 0.7522 |
ARCH(5) | 3.2137 | 0.7013 | 20.2578 | 0.0269 | 17.9099 | 0.0035 | 9.5923 | 0.0877 |
ARCH(10) | 6.0125 | 0.9678 | 18.2637 | 0.0028 | 19.8198 | 0.0312 | 11.8150 | 0.2976 |
AIC | −6.3239 | −6.4068 | −6.4084 | −6.4176 |
StD | GED | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value |
0.003 | 0.0003 | 0.0005 | - | - | - | 0.0005 | <0.0001 | |
−0.0764 | <0.0001 | 0.0113 | 0.1200 | 0.0343 | 0.2543 | 0.0334 | 0.0235 | |
0.6985 | <0.0001 | 0.1447 | 0.5762 | 0.6978 | 0.2939 | 0.0812 | 0.6987 | |
0.0645 | 0.0342 | −0.2164 | 0.4132 | - | - | −0.1516 | 0.4732 | |
0.3450 | <0.0001 | 0.2912 | <0.0001 | 0.2963 | <0.0001 | 0.2683 | <0.0001 | |
0.3015 | <0.0001 | 0.3065 | <0.0001 | 0.3061 | <0.0001 | 0.3209 | <0.0001 | |
0.5954 | <0.0001 | 0.6438 | <0.0001 | 0.6376 | <0.0001 | 0.6085 | <0.0001 | |
(5) | 2.4482 | 0.4847 | 4.76154 | 0.1901 | 5.4529 | 0.1448 | 5.7567 | 0.1923 |
(10) | 5.7778 | 0.6725 | 10.1397 | 0.2554 | 10.3058 | 0.2442 | 8.9754 | 0.2700 |
(20) | 11.6768 | 0.8635 | 17.7536 | 0.4720 | 17.7054 | 0.47521 | 17.3138 | 0.5268 |
(5) | 3.2942 | 0.3881 | 18.5393 | 0.0003 | 18.1850 | 0.0004 | 9.5762 | 0.0735 |
(10) | 5.3754 | 0.7169 | 20.2017 | 0.0096 | 19.8497 | 0.0109 | 11.5187 | 0.1726 |
(20) | 6.9972 | 1.0000 | 21.8231 | 0.2399 | 21.4678 | 0.2565 | 13.2129 | 0.7784 |
ARCH(5) | 3.1296 | 0.6954 | 18.1470 | 0.0028 | 7.7830 | 0.0032 | 9.4157 | 0.1943 |
ARCH(10) | 5.3565 | 0.866 | 19.9610 | 0.0296 | 19.3323 | 0.0332 | 11.4446 | 0.3274 |
AIC | −6.3852 | −6.4013 | −6.4063 | −6.4127 |
, 1)-FIGARCH (1, , 1) | , 1)-FIAPARCH (1, , 1) | |||
---|---|---|---|---|
Parameter | Estimate | p-Value | Estimate | p-Value |
0.8156 | <0.0001 | 0.8396 | <0.0001 | |
0.2124 | 0.0034 | 0.2032 | 0.0096 | |
−0.7690 | <0.0001 | −0.7845 | <0.0001 | |
0.3879 | <0.0001 | 0.3528 | 0.0015 | |
0.3772 | <0.0001 | 0.3383 | <0.0001 | |
0.6915 | <0.0001 | 0.6082 | <0.0001 | |
- | - | −0.1173 | <0.0001 | |
- | - | 2.2703 | <0.0001 | |
(5) | 2.5945 | 0.4597 | 1.4876 | 0.6851 |
(10) | 6.3577 | 0.6329 | 5.9294 | 0.6551 |
(20) | 22.5264 | 0.2354 | 21.6694 | 0.2470 |
(5) | 1.6448 | 0.6467 | 0.8165 | 0.8455 |
(10) | 1.7268 | 0.9937 | 1.0042 | 0.9982 |
(20) | 12.7376 | 0.8132 | 10.7321 | 0.9054 |
ARCH(5) | 1.6334 | 0.8956 | 0.8149 | 0.9761 |
ARCH(10) | 1.7326 | 0.9991 | 0.9885 | 1.0000 |
AIC | −7.0437 | −7.0664 |
, 1) | , 1) | ||||||
---|---|---|---|---|---|---|---|
Innovations | Parameters | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value |
ND | 0.3467 | <0.0001 | 0.0457 | 0.8963 | 0.2488 | <0.0001 | |
−0.9343 | <0.0001 | 0.5634 | 0.0190 | −0.9235 | <0.0001 | ||
−0.9448 | <0.0001 | 0.3268 | 0.04713 | −0.9383 | <0.0001 | ||
- | - | - | - | −0.0677 | 0.2540 | ||
- | - | - | - | 2.1374 | <0.0001 | ||
(5) | 3.2499 | 0.6675 | 3.2297 | 0.6686 | 3.5056 | 0.6261 | |
(10) | 6.6768 | 0.6597 | 6.9526 | 0.7342 | 7.1638 | 0.7286 | |
(20) | 17.7361 | 0.6394 | 18.8365 | 0.5687 | 19.4013 | 0.5593 | |
(5) | 0.5867 | 0.8445 | 0.5690 | 0.9146 | 0.5624 | 0.9317 | |
(10) | 0.8638 | 1.0000 | 0.7724 | 1.0000 | 0.6686 | 1.0000 | |
(20) | 1.3354 | 1.0000 | 1.1868 | 1.0000 | 1.2132 | 1.0000 | |
ARCH(5) | 0.5877 | 0.9899 | 0.5356 | 0.9946 | 0.4589 | 1.0000 | |
ARCH(10) | 0.8612 | 1.0000 | 0.7455 | 1.0000 | 0.6674 | 1.0000 | |
AIC | 7.0268 | −7.0270 | −7.0136 | ||||
StD | 0.5323 | <0.0001 | 0.5397 | <0.0001 | 0.3943 | <0.0001 | |
0.2699 | <0.0001 | 0.2612 | <0.0001 | 0.3505 | <0.0001 | ||
0.7148 | <0.0001 | 0.7187 | <0.0001 | 0.6526 | <0.0001 | ||
- | - | - | - | 0.5148 | 0.0853 | ||
- | - | - | - | 1.7324 | <0.0001 | ||
(5) | 2.1277 | 0.8312 | 2.1680 | 0.8369 | 3.3474 | 0.6443 | |
(10) | 3.0332 | 0.9806 | 3.0512 | 0.9814 | 4.2549 | 0.9357 | |
(20) | 8.3565 | 0.9892 | 8.2759 | 0.9899 | 9.4513 | 0.9774 | |
(5) | 6.0588 | 0.1088 | 5.4486 | 0.1417 | 5.1627 | 0.1614 | |
(10) | 11.5106 | 0.1744 | 10.4478 | 0.2352 | 10.9814 | 0.2149 | |
(20) | 19.0266 | 0.3902 | 18.1868 | 0.4432 | 18.1855 | 0.4430 | |
ARCH(5) | 5.9961 | 0.3066 | 5.3818 | 0.3712 | 5.1135 | 0.4271 | |
ARCH(10) | 11.593 | 0.3132 | 10.5270 | 0.3955 | 11.3062 | 0.3351 | |
AIC | −7.0268 | −7.0384 | −7.0136 | ||||
SStD | 0.005 | 0.0072 | 0.0003 | 0.1568 | 0.0743 | 0.0730 | |
0.3630 | <0.0001 | 0.0332 | 0.9245 | 0.2775 | <0.0001 | ||
0.8943 | <0.0001 | 0.5696 | 0.03497 | −0.9268 | <0.0001 | ||
0.9549 | <0.0001 | 0.3305 | 0.0976 | −0.9369 | <0.0001 | ||
- | - | - | - | −0.0487 | <0.0001 | ||
- | - | - | - | 2.1201 | <0.0001 | ||
(5) | 4.3476 | 0.5045 | 3.2214 | 0.6658 | 3.5025 | 0.6233 | |
(10) | 9.2757 | 0.611 | 6.9171 | 0.7356 | 7.1724 | 0.7183 | |
(20) | 19.9658 | 0.4600 | 18.317 | 0.5684 | 18.4677 | 0.5568 | |
(5) | 0.3566 | 0.9478 | 0.53513 | 0.9198 | 0.45442 | 0.9287 | |
(10) | 0.4645 | 1.0000 | 0.7461 | 1.0000 | 0.6648 | 1.0000 | |
(20) | 1.3735 | 1.0000 | 1.1779 | 1.0000 | 1.2138 | 1.0000 | |
ARCH(5) | 0.6471 | 0.8991 | 0.5309 | 1.0000 | 0.4576 | 0.8694 | |
ARCH(10) | 0.4648 | 1.0000 | 0.7439 | 1.0000 | 0.6614 | 1.0000 | |
AIC | −7.0198 | −7.0267 | −7.0227 |
StD | ||||||
---|---|---|---|---|---|---|
Parameter | Estimate | p-Value | Estimate | p-Value | Estimate | p-Value |
−0.3964 | <0.0001 | −0.1533 | <0.0001 | −0.1531 | <0.0001 | |
−0.3645 | 0.0010 | 0.2636 | 0.0122 | 0.2774 | 0.0083 | |
0.3967 | 0.0010 | −0.0174 | 0.0329 | −0.0180 | <0.0001 | |
5.5548 | <0.0001 | 2.8488 | <0.0001 | 2.8493 | <0.0001 | |
0.2467 | <0.0001 | 0.4127 | <0.0001 | 0.4132 | <0.0001 | |
0.6624 | <0.0001 | 0.8503 | <0.0001 | 0.8505 | <0.0001 | |
0.4576 | <0.0001 | 0.5445 | <0.0001 | 0.5453 | <0.0001 | |
(5) | 9.4367 | 0.4635 | 17.4762 | 0.0789 | 9.8237 | 0.1932 |
(10) | 11.3828 | 0.5379 | 19.2276 | 0.1241 | 14.6459 | 0.2064 |
(20) | 22.514 | 0.1234 | 28.3018 | 0.0354 | 25.8124 | 0.0639 |
(5) | 7.8769 | 0.6543 | 10.5438 | 0.3617 | 11.7585 | 0.3217 |
(10) | 14.9311 | 0.6717 | 15.6850 | 0.3162 | 16.6893 | 0.4418 |
(20) | 16.6798 | 0.7487 | 17.6592 | 0.4387 | 19.3764 | 0.0935 |
ARCH(5) | 0.4666 | 0.3388 | 0.9874 | 0.4163 | 1.5417 | 0.2235 |
ARCH(10) | 0.5783 | 0.7565 | 0.7943 | 0.6532 | 1.0945 | 0.4387 |
AIC | −2.5982 | −3.1060 | −3.5197 |
FIGARCH (1, , 1) | FIAPARCH (1, , 1) | |||||||
---|---|---|---|---|---|---|---|---|
Forecasting Measure | ND | StD | SStD | GED | ND | StD | SStD | GED |
MSE | 0.0013 | 0.0011 | 0.0011 | 0.0010 | 0.0014 | 0.0009 | 0.0008 | 0.0009 |
MAE | 0.0078 | 0.0077 | 0.0081 | 0.0082 | 0.00811 | 0.0076 | 0.0074 | 0.0084 |
TIC | 0.5723 | 0.5726 | 0.5728 | 0.5727 | 0.5823 | 0.6828 | 0.6859 | 0.6832 |
0.0921 | 0.0845 | 0.0865 | 0.0854 | 0.0847 | 0.0785 | 0.0884 | 0.0875 |
, 1)-FIGARCH (1, , 1) | , 1)-HYGARCH (1, , 1) | |||||||
---|---|---|---|---|---|---|---|---|
Forecasting Measure | ND | StD | SStD | GED | ND | StD | SStD | GED |
MSE | 0.0007 | 0.0006 | 0.0006 | 0.0005 | 0.0059 | 0.0060 | 0.0061 | 0.0061 |
MAE | 0.0216 | 0.0220 | 0.0221 | 0.0185 | 0.0260 | 0.0270 | 0.0270 | 0.0275 |
TIC | 0.6842 | 0.6778 | 0.6781 | 0.6958 | 0.6345 | 0.6363 | 0.6403 | 0.6353 |
0.0737 | 0.0491 | 0.0495 | 0.0470 | 0.1076 | 0.0998 | 0.0966 | 0.0998 |
Tobacco | Cotton | |||||||
---|---|---|---|---|---|---|---|---|
, 1)-FIGARCH (1, , 1) | HYGARCH (1, , 1) | |||||||
Forecasting Measure | ND | StD | SStD | GED | ND | StD | SStD | GED |
MSE | 0.0003 | 0.0002 | 0.0002 | N/A | 0.0084 | 0.0078 | 0.0081 | N/A |
MAE | 0.0067 | 0.0069 | 0.0065 | 0.0058 | 0.0061 | 0.0063 | ||
TIC | 0.5491 | 0.5528 | 0.5529 | 0.6183 | 0.6574 | 0.6574 | ||
R2 | 0.0821 | 0.0845 | 0.0865 | 0.0832 | 0.0877 | 0.0830 |
, 1)-FIGARCH (1, , 1) | , 1)-FIAPARCH (1, , 1) | |||||||
---|---|---|---|---|---|---|---|---|
Forecasting Measure | ND | StD | SStD | GED | ND | StD | SStD | GED |
MSE | 0.0005 | N/A | 0.0014 | N/A | ||||
MAE | 0.0012 | 0.0015 | ||||||
TIC | 0.5723 | 0.5823 | ||||||
R2 | 0.0921 | 0.0811 |
Commodity | Best Model | Selection Criteria | Distribution |
---|---|---|---|
Crude oil | Lowest AIC (−4.8876), lowest MSE and MAE, higher TIC (69%), (0.05) | SStD | |
Gold | ARFIMA (1, , 1)-FIGARCH (1, , 1) | Lowest AIC (−6.4176), significance of parameter estimates, lower MSE and MAE, and higher TIC (70%) | GED |
Cotton | HYGARCH (1, , 1) | Lowest AIC (−7.0384), lowest MSE and MAE, and favourable TIC (66%) and (0.0877) | StD |
Lithium | ARFIMA (1, , 1)-FIAPARCH (1, , 1) | The only plausible models with parameter convergence | ND |
Tobacco | ARFIMA (1, , 1)-FIGARCH (1, , 1) | Lowest AIC (−3.5197), lower MSE and MAE, TIC (55%), and (0.0865) | SStD |
Parameters | Estimate | p-Value |
---|---|---|
0.3005 | <0.0001 | |
0.8469 | <0.0001 | |
0.76175 | <0.0001 | |
0.12167 | 0.0258 | |
1.5770 | <0.0001 | |
(5) | 15.4536 | 0.3246 |
(10) | 19.8421 | 0.3923 |
(20) | 21.0822 | 1.0000 |
(5) | 0.0008 | 1.0000 |
(10) | 0.0018 | 1.0000 |
(20) | 0.0032 | 1.0000 |
ARCH(5) | 9.3644 | 0.1058 |
ARCH(10) | 9.6009 | 0.4762 |
AIC: −4.8953 |
Parameter | Estimate | p-Value |
---|---|---|
0.0020 | <0.0001 | |
0.0327 | <0.0001 | |
−0.0588 | 0.0242 | |
0.0659 | <0.0001 | |
0.4013 | <0.0001 | |
0.3246 | <0.0001 | |
0.6552 | <0.0001 | |
(5) | 7.1849 | 0.3221 |
(10) | 15.5437 | 0.4743 |
(20) | 9.3721 | 0.6714 |
(5) | 8.2964 | 0.1463 |
(10) | 12.0175 | 0.2160 |
(20) | 16.6411 | 0.5874 |
ARCH(5) | 6.3285 | 0.1877 |
ARCH(10) | 13.2517 | 0.3428 |
AIC: −6.4086 |
Parameter | Estimate | p-Value |
---|---|---|
0.7865 | <0.0001 | |
0.3317 | <0.0001 | |
−0.5934 | <0.0001 | |
0.3882 | <0.0001 | |
0.4162 | <0.0001 | |
0.6753 | <0.0001 | |
−0.2318 | <0.0001 | |
2.6435 | <0.0001 | |
(5) | 1.7683 | 0.7231 |
(10) | 6.4745 | 0.6879 |
(20) | 19.4926 | 0.3276 |
(5) | 1.1326 | 0.9375 |
(10) | 1.5372 | 0.9052 |
(20) | 0.9396 | 0.9054 |
ARCH (5) | 0.8867 | 1.0000 |
ARCH (10) | 0.9885 | 1.0000 |
AIC: −7.0660 |
Parameters | Estimate | p-Value |
---|---|---|
0.5385 | <0.0001 | |
0.3003 | <0.0001 | |
0.7410 | <0.0001 | |
(5) | 2.1670 | 0.8766 |
(10) | 3.0947 | 0.98836 |
(20) | 7.7926 | 1.0000 |
(5) | 5.463 | 0.2367 |
(10) | 10.5048 | 0.2358 |
(20) | 17.7919 | 0.4642 |
ARCH(5) | 5.377 | 0.3765 |
ARCH(10) | 10.6751 | 0.3736 |
AIC | −7.0378 |
Parameter | Estimate | p-Value |
---|---|---|
−0.1832 | <0.0001 | |
0.3076 | <0.0001 | |
−0.0254 | <0.0001 | |
2.8441 | <0.0001 | |
0.4053 | <0.0001 | |
0.8512 | <0.0001 | |
0.5487 | <0.0001 | |
(5) | 10.8163 | 0.1954 |
(10) | 14.7179 | 0.2791 |
20) | 25.8674 | 0.0601 |
(5) | 12.1638 | 0.3263 |
(10) | 16.6225 | 0.4672 |
(20) | 22.1682 | 0.0855 |
ARCH(5) | 2.0036 | 0.2421 |
ARCH(10) | 1.0945 | 0.4387 |
AIC: −3.5197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basira, K.; Dhliwayo, L.; Chinhamu, K.; Chifurira, R.; Matarise, F. Estimation and Prediction of Commodity Returns Using Long Memory Volatility Models. Risks 2024, 12, 73. https://doi.org/10.3390/risks12050073
Basira K, Dhliwayo L, Chinhamu K, Chifurira R, Matarise F. Estimation and Prediction of Commodity Returns Using Long Memory Volatility Models. Risks. 2024; 12(5):73. https://doi.org/10.3390/risks12050073
Chicago/Turabian StyleBasira, Kisswell, Lawrence Dhliwayo, Knowledge Chinhamu, Retius Chifurira, and Florence Matarise. 2024. "Estimation and Prediction of Commodity Returns Using Long Memory Volatility Models" Risks 12, no. 5: 73. https://doi.org/10.3390/risks12050073
APA StyleBasira, K., Dhliwayo, L., Chinhamu, K., Chifurira, R., & Matarise, F. (2024). Estimation and Prediction of Commodity Returns Using Long Memory Volatility Models. Risks, 12(5), 73. https://doi.org/10.3390/risks12050073