Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Elemental Analysis
2.4. FTIR Analysis
2.5. Subcritical Water Treatment of PET
2.6. HPLC Method
3. Results and Discussion
3.1. Degradation of Colorless PET Waste in SubCW
3.2. FTIR Analysis of Colorless PET Waste and Recycled TPA
3.3. Kinetics of Hydrothermal Degradation of Colorless PET Waste
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Plastic Production 1950–2020. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 20 September 2021).
- Allaf, R.M.; Albarahmieh, E.; Futian, M. Preparation of Sawdust-Filled Recycled-PET Composites via Solid-State Compounding. Processes 2020, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishna, K.G.; Reddy, N. 2-Regulations on Recycling PET Bottles. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., Abitha, V.K., Thomas, M.G., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 23–35. ISBN 978-0-12-811361-5. [Google Scholar]
- Karayannidis, G.P.; Chatziavgoustis, A.P.; Achilias, D.S. Poly (Ethylene Terephthalate) Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Adv. Polym. Technol. 2002, 21, 250–259. [Google Scholar] [CrossRef]
- PET Bottle Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021–2026. Available online: https://www.researchandmarkets.com/reports/5264119/pet-bottle-market-global-industry-trends-share (accessed on 26 August 2021).
- Mandal, S.; Dey, A. 1-PET Chemistry. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., VK, A., Thomas, M.G., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 1–22. ISBN 978-0-12-811361-5. [Google Scholar]
- Queiroz, A.; Pedroso, G.B.; Kuriyama, S.N.; Fidalgo-Neto, A.A. Subcritical and Supercritical Water for Chemical Recycling of Plastic Waste. Curr. Opin. Green Sustain. Chem. 2020, 25, 100364. [Google Scholar] [CrossRef]
- Chirayil, C.J.; Mishra, R.K.; Thomas, S. 3-Materials Recovery, Direct Reuse and Incineration of PET Bottles. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., VK, A., Thomas, M.G., Eds.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 37–60. ISBN 978-0-12-811361-5. [Google Scholar]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gullón, I.; Esperanza, M.; Font, R. Kinetic Model for the Pyrolysis and Combustion of Poly-(Ethylene Terephthalate) (PET). J. Anal. Appl. Pyrolysis 2001, 58–59, 635–650. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Cheng, L.; Gu, J.; Wang, Y.; Zhang, J.; Yuan, H.; Chen, Y. Polyethylene High-Pressure Pyrolysis: Better Product Distribution and Process Mechanism Analysis. Chem. Eng. J. 2020, 385, 123866. [Google Scholar] [CrossRef]
- Dhahak, A.; Grimmer, C.; Neumann, A.; Rüger, C.; Sklorz, M.; Streibel, T.; Zimmermann, R.; Mauviel, G.; Burkle-Vitzthum, V. Real Time Monitoring of Slow Pyrolysis of Polyethylene Terephthalate (PET) by Different Mass Spectrometric Techniques. Waste Manage. 2020, 106, 226–239. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. Thermal Degradation of Waste Plastics under Non-Sweeping Atmosphere: Part 1: Effect of Temperature, Product Optimization, and Degradation Mechanism. J. Environ. Manag. 2019, 239, 395–406. [Google Scholar] [CrossRef]
- Muhammad, C.; Onwudili, J.A.; Williams, P.T. Thermal Degradation of Real-World Waste Plastics and Simulated Mixed Plastics in a Two-Stage Pyrolysis–Catalysis Reactor for Fuel Production. Energ. Fuel. 2015, 29, 2601–2609. [Google Scholar] [CrossRef]
- Knez, Ž.; Hrnčič, M.K.; Čolnik, M.; Škerget, M. Chemicals and Value Added Compounds from Biomass Using Sub- and Supercritical Water. J. Supercrit. Fluids 2018, 133, 591–602. [Google Scholar] [CrossRef]
- Knez, Ž.; Markočič, E.; Hrnčič, M.K.; Ravber, M.; Škerget, M. High Pressure Water Reforming of Biomass for Energy and Chemicals: A Short Review. J. Supercrit. Fluids 2015, 96, 46–52. [Google Scholar] [CrossRef]
- Pavlovič, I.; Knez, Ž.; Škerget, M. Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research. J. Agric. Food Chem. 2013, 61, 8003–8025. [Google Scholar] [CrossRef] [PubMed]
- Čolnik, M.; Knez, Ž.; Škerget, M. Sub- and Supercritical Water for Chemical Recycling of Polyethylene Terephthalate Waste. Chem. Eng. Sci. 2021, 233, 116389. [Google Scholar] [CrossRef]
- Cata, A.; Miclau, M.; Ienascu, I.; Ursu, D.; Tanasie, C.; Stefanuta, M.N. Chemical Recycling of Polyethylene Terephthalate (PET) Waste Using Sub- and Supercritical Water. Rev. Roum. Chim 2015, 60, 579–585. [Google Scholar]
- Sato, O.; Arai, K.; Shirai, M. Hydrolysis of Poly (Ethylene Terephthalate) and Poly (Ethylene 2,6-Naphthalene Dicarboxylate) Using Water at High Temperature: Effect of Proton on Low Ethylene Glycol Yield. Catal. Today 2006, 111, 297–301. [Google Scholar] [CrossRef]
- Zhou, J.H.; Shen, G.Z.; Zhu, J.; Yuan, W.K. Terephthalic Acid Hydropurification over Pd/C Catalyst. In Studies in Surface Science and Catalysis; Rhee, H.-K., Nam, I.-S., Park, J.M., Eds.; New Developments and Application in Chemical Reaction Engineering; Elsevier: Amsterdam, The Netherlands, 2006; Volume 159, pp. 293–296. [Google Scholar]
- Takebayashi, Y.; Sue, K.; Yoda, S.; Hakuta, Y.; Furuya, T. Solubility of Terephthalic Acid in Subcritical Water. J. Chem. Eng. Data 2012, 57, 1810–1816. [Google Scholar] [CrossRef]
- Machado Cruz, R.; Boleslavská, T.; Beránek, J.; Tieger, E.; Twamley, B.; Santos-Martinez, M.J.; Dammer, O.; Tajber, L. Identification and Pharmaceutical Characterization of a New Itraconazole Terephthalic Acid Cocrystal. Pharmaceutics 2020, 12, 741. [Google Scholar] [CrossRef]
- Muse, W.T.; Anthony, J.S.; Bergmann, J.D.; Burnett, D.C.; Crouse, C.L.; Gaviola, B.P.; Thomson, S.A. Chemical and Toxicological Evaluation of Pyrotechnically Disseminated Terephthalic Acid Smoke. Drug. Chem. Toxicol. 1997, 20, 293–302. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Sun, Y.Q.; Wang, Z.J.; Zhang, J. Degradation of Terephthalic Acid by a Newly Isolated Strain of Arthrobacter Sp.0574. S. Afr. J. Sci. 2013, 109, 1–4. [Google Scholar] [CrossRef] [Green Version]
- PTA Production Capacity Globally 2023. Available online: https://www.statista.com/statistics/1065886/global-purified-terephthalic-acid-production-capacity/ (accessed on 13 September 2021).
- Diaz-Silvarrey, L.S.; McMahon, A.; Phan, A.N. Benzoic Acid Recovery via Waste Poly (Ethylene Terephthalate) (PET) Catalytic Pyrolysis Using Sulphated Zirconia Catalyst. J. Anal. Appl. Pyrolysis 2018, 134, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Del Olmo, A.; Calzada, J.; Nuñez, M. Benzoic Acid and Its Derivatives as Naturally Occurring Compounds in Foods and as Additives: Uses, Exposure, and Controversy. Crit. Rev. Food. Sci. Nutr. 2017, 57, 3084–3103. [Google Scholar] [CrossRef]
- Indrayanto, G.; Syahrani, A.; Mugihardjo; Rahman, A.; Soeharjono; Tanudjojo, W.; Susanti, S.; Yuwono, M.; Ebel, S. Benzoic Acid. In Analytical Profiles of Drug Substances and Excipients; Brittain, H.G., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 26, pp. 1–46. [Google Scholar]
- Benzoic Acid Market Size and Share, Analysis 2021–2027. Available online: https://www.gminsights.com/industry-analysis/benzoic-acid-market (accessed on 22 October 2021).
- Benzoic Acid Global Market Volume 2015–2026. Available online: https://www.statista.com/statistics/1245227/benzoic-acid-market-volume-worldwide/ (accessed on 22 October 2021).
- Adschiri, T.; Sato, O.; Machida, K.; Saito, N.; Arai, K. Recovery of Terepthalic Acid by Decomposition of PET in Supercritical Water. Kagaku Kogaku Ronbunshu 1997, 23, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, E.; Yang, Y. Degradation of Benzoic Acid and Its Derivatives in Subcritical Water. J. Chromatogr. A 2011, 1218, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Palme, A.; Peterson, A.; de la Motte, H.; Theliander, H.; Brelid, H. Development of an Efficient Route for Combined Recycling of PET and Cotton from Mixed Fabrics. Text. Cloth. Sustain. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Chen, Z.; Hay, J.N.; Jenkins, M.J. The Thermal Analysis of Poly (Ethylene Terephthalate) by FTIR Spectroscopy. Thermochim. Acta 2013, 552, 123–130. [Google Scholar] [CrossRef]
- Manatura, K.; Samaksaman, U. Characteristics and Combustion Kinetics of Fuel Pellets Composed of Waste of Polyethylene Terephthalate and Biomass. Glob. J. Environ. Sci. Manag. 2021, 7, 625–642. [Google Scholar] [CrossRef]
- Hansen, E. Hazardous Substances in Plastic Materials 2013. Available online: https://www.byggemiljo.no/wp-content/uploads/2014/10/72_ta3017.pdf (accessed on 10 September 2021).
- Khaneghah, A.M.; Limbo, S.; Shoeibi, S.; Mazinani, S. HPLC Study of Migration of Terephthalic Acid and Isophthalic Acid from PET Bottles into Edible Oils. J. Sci. Food Agric. 2014, 94, 2205–2209. [Google Scholar] [CrossRef]
- Sandy, T.; Grady Jr, L.; Meininger, S.; Boe, R. Biological Treatment of 1,4-Dioxane in Wastewater from an Integrated Polyethylene Terephthalate (PET) Manufacturing. Proc. Water Environ. Fed. 2001, 2001, 88–117. [Google Scholar] [CrossRef]
Element | wt% |
---|---|
C | 62.1 |
H | 4.20 |
N | 0.14 |
S | 0.32 |
O by difference (wt%) | 33.24 |
t1 min | c(TPA) gTPA/gPET | c(benzoic acid) gbenzoic acid/gPET | c(1,4-dioxane) g1,4-dioxane /gPET | c(EG) gEG/gPET | c(acetaldehyde) gacetaldehyde/gPET | c(IPA) gIPA/gPET | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
300 °C | 350 °C | 300 °C | 350 °C | 300 °C | 350 °C | 300 °C | 350 °C | 300 °C | 350 °C | 300 °C | 350 °C | |
1 | 0.73 | 0.71 | 0 | 0.0014 | 0.0075 | 0.0076 | 0.112 | 0.140 | 0.0009 | 0.0586 | 0.0021 | 0.0035 |
10 | 0.74 | 0.72 | 0 | 0.0033 | 0.0074 | 0.0075 | 0.224 | 0.162 | 0.0024 | 0.0831 | 0.0030 | 0.0043 |
30 | 0.76 | 0.69 | 0.0003 | 0.0063 | 0.0072 | 0.0078 | 0.193 | 0.125 | 0.0123 | 0.1405 | 0.0030 | 0.0049 |
60 | 0.75 | 0.64 | 0.0016 | 0.0425 | 0.0544 | 0.0156 | 0.129 | 0.086 | 0.0288 | 0.1806 | 0.0173 | 0.0145 |
120 | 0.73 | 0.61 | 0.0027 | 0.0502 | 0.0400 | 0.0031 | 0.064 | 0.020 | 0.0942 | 0.2689 | 0.0188 | 0.0101 |
180 | 0.70 | 0.56 | 0.0051 | 0.0592 | 0.0498 | 0.0013 | 0.016 | 0 | 0.1150 | 0.2753 | 0.0186 | 0.0118 |
240 | 0.68 | 0.44 | 0.0088 | 0.0691 | 0.0239 | 0.0004 | 0 | 0 | 0.1200 | 0.2641 | 0.0184 | 0.0121 |
k (min−1) | 300 °C | 350 °C |
---|---|---|
k1 (min−1) | 0.07804 ± 0.00882 | 0.07472 ± 0.00896 |
k2 (min−1) | 0.00030 ± 0.00036 | 0.00101 ± 0.00044 |
k3 (min−1) | 0.00245 ± 0.00422 | 0.00057 ± 0.00444 |
k4 (min−1) | 0.01879 ± 0.00477 | 0.02615 ± 0.00545 |
k5 (min−1) | 0.00804 ± 0.00458 | 0.02697 ± 0.01590 |
k6 (min−1) | 0.00261 ± 0.00376 | 0.00169 ± 0.00392 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čolnik, M.; Pečar, D.; Knez, Ž.; Goršek, A.; Škerget, M. Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products. Processes 2022, 10, 24. https://doi.org/10.3390/pr10010024
Čolnik M, Pečar D, Knez Ž, Goršek A, Škerget M. Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products. Processes. 2022; 10(1):24. https://doi.org/10.3390/pr10010024
Chicago/Turabian StyleČolnik, Maja, Darja Pečar, Željko Knez, Andreja Goršek, and Mojca Škerget. 2022. "Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products" Processes 10, no. 1: 24. https://doi.org/10.3390/pr10010024
APA StyleČolnik, M., Pečar, D., Knez, Ž., Goršek, A., & Škerget, M. (2022). Kinetics Study of Hydrothermal Degradation of PET Waste into Useful Products. Processes, 10(1), 24. https://doi.org/10.3390/pr10010024