Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Required
2.2. Preparation of Material
2.2.1. Preparation of Adhesive Formulations
- AF1: Using the plant Thymus bleicherianus.
- AF2: Using the plant Thymus capitates.
- AF3: Using the plant Thymus satureioides.
- AF4: Using the plant Thymus vulgaris.
- AF5: Using the plant Thymus zygis.
2.2.2. Preparation of Plywood Panels
2.3. AFs and Plywood Characterization Techniques
2.3.1. Determination of the AFs Properties
2.3.2. Analytical Instruments
2.3.3. Determination of Plywood Properties
2.4. Statistical Analysis
3. Results
3.1. Physical-Chemical Properties of AFs
3.2. Characterization of AFs
3.2.1. Scanning Electron Microscopy (SEM)
3.2.2. X-ray Diffraction (XRD)
3.2.3. Thermal Analysis
3.2.4. Fourier Transform Infrared Spectroscopy
3.3. Mechanical Properties of Plywood
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamperidou, V.; Terzopoulou, P.; Barboutis, I. Marginal lands providing treeinal biomass as feedstock for solid biofuels. Biofuels Bioprod. Biorefining 2021, 15, 1395–1405. [Google Scholar] [CrossRef]
- Khammour, F.; Kenz, A.; Ainane, A.; El Kouali, M.; Talbi, M.; Ainane, T. Determination of the content and release of formaldehyde from a particle board sample. J. Anal. Sci. Appl. Biotechnol. 2019, 1, 19–21. [Google Scholar]
- Otero-Chans, D.; Estévez-Cimadevila, J.; Suárez-Riestra, F.; Martín-Gutiérrez, E. Experimental analysis of glued-in steel plates used as shear connectors in Timber-Concrete-Composites. Eng. Struct. 2018, 170, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Zhou, A. Mechanical behavior of laminated bamboo lumber dowel-type connection. Adv. Struct. Eng. 2020, 23, 65–73. [Google Scholar] [CrossRef]
- Aladejana, J.T.; Wu, Z.; Yves, K.G.; Hou, X.; Xie, Y. Application of functionalized carboxymethyl cellulose in development of hierarchical lamellar aluminophosphate for the industrial fabrication of wood based panels. Int. J. Adhes. Adhes. 2022, 113, 103051. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Mo, H.; Xie, E.; Fang, J.; Gan, W. Current utilization of waste biomass as filler for wood adhesives: A review. J. Ind. Eng. Chem. 2022, 115, 48–61. [Google Scholar] [CrossRef]
- Khammour, F.; Ainane, A.; Elmatar, M.; Kenz, A.; Elkouali, M.H.; Talbi, M.; Ainane, T. Effect of waste mint in urea formaldehyde adhesive on the thermal degradation of plywood. Orient. J. Chem. 2018, 34, 1375. [Google Scholar] [CrossRef]
- Khammour, F.; Ainane, A.; Kenz, A.; Talbi, M.; Elkouali, M.H.; Ainane, T.; Elmatar, M. Mechanical properties of particleboards based on mint waste manufactured from different content of urea formaldehyde adhesive. Int. J. Mech. Eng. Technol. 2018, 9, 756–762. [Google Scholar]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Hejna, A. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Mater. Sci. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
- Solt, P.; Konnerth, J.; Gindl-Altmutter, W.; Kantner, W.; Moser, J.; Mitter, R.; van Herwijnen, H.W. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. Int. J. Adhes. Adhes. 2019, 94, 99–131. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of various fillers in adhesives applications: A review. Polym. Bull. 2022, 1–63. [Google Scholar] [CrossRef]
- Bekhta, P.; Noshchenko, G.; Réh, R.; Kristak, L.; Sedliačik, J.; Antov, P.; Savov, V. Properties of eco-friendly particleboards bonded with lignosulfonate-urea-formaldehyde adhesives and PMDI as a crosslinker. Materials 2021, 14, 4875. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mo, H.; Xie, E.; Fang, J.; Hou, Z.; Gan, W. Utilization of carbon black from Mao bamboo as reinforcing agent for melamine urea formaldehyde resin wood adhesive. Ind. Crops Prod. 2022, 187, 115373. [Google Scholar] [CrossRef]
- Ebewele, R.O.; River, B.H.; Koutsky, J.A. Relationship between phenolic adhesive chemistry and adhesive joint performance: Effect of filler type on fraction energy. J. Appl. Polym. Sci. 1986, 31, 2275–2302. [Google Scholar] [CrossRef]
- Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Savov, V. Utilization of birch bark as an eco-friendly filler in urea-formaldehyde adhesives for plywood manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef] [PubMed]
- Bumanis, G.; Vitola, L.; Pundiene, I.; Sinka, M.; Bajare, D. Gypsum, Geopolymers, and starch—Alternative binders for bio-based building materials: A review and life-cycle assessment. Sustainability 2020, 12, 5666. [Google Scholar] [CrossRef]
- Aydin, I.; Demirkir, C.; Colak, S.; Colakoglu, G. Utilization of bark flours as additive in plywood manufacturing. Eur. J. Wood Wood Prod. 2017, 75, 63–69. [Google Scholar] [CrossRef]
- Böhm, M.; Salem, M.Z.; Srba, J. Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. J. Hazard. Mater. 2012, 221, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Dorieh, A.; Mahmoodi, N.O.; Mamaghani, M.; Pizzi, A.; Zeydi, M.M. New insight into the use of latent catalysts for the synthesis of urea formaldehyde adhesives and the mechanical properties of medium density fiberboards bonded with them. Eur. Polym. J. 2019, 112, 195–205. [Google Scholar] [CrossRef]
- EN 314-1:2004; Plywood—Bonding Quality—Part 1: Test Methods. European Committee for Standardization: Brussels, Belgium, 2004.
- EN 310: 1993; Wood-Based Panels: Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- Ding, R.; Su, C.; Yang, Y.; Li, C.; Liu, J. Effect of wheat flour on the viscosity of urea-formaldehyde adhesive. Int. J. Adhes. Adhes. 2013, 41, 1–5. [Google Scholar] [CrossRef]
- Marsal, A.; Cuadros, S.; Manich, A.M.; Izquierdo, F.; Font, J. Reduction of the formaldehyde content in leathers treated with formaldehyde resins by means of plant polyphenols. J. Clean. Prod. 2017, 148, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, Y. Morphology and crystallinity of urea-formaldehyde resin adhesives with different molar ratios. Polymers 2021, 13, 673. [Google Scholar] [CrossRef] [PubMed]
- Despres, A.; Pizzi, A. Colloidal aggregation of aminoplastic polycondensation resins: Urea–formaldehyde versus melamine–formaldehyde and melamine–urea–formaldehyde resins. J. Appl. Polym. Sci. 2006, 100, 1406–1412. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Park, B.D. Crystalline Lamellar Structure of Thermosetting Urea–Formaldehyde Resins at a Low Molar Ratio. Macromolecules 2021, 54, 2366–2375. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Park, B.D.; Causin, V. Hydrogen-bond-induced crystallization in low-molar-ratio urea–formaldehyde resins during synthesis. Ind. Eng. Chem. Res. 2020, 59, 13095–13104. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Lubis, M.A.R.; Park, B.D.; Kim, J.S.; Causin, V. Converting crystalline thermosetting urea–formaldehyde resins to amorphous polymer using modified nanoclay. J. Ind. Eng. Chem. 2020, 87, 78–89. [Google Scholar] [CrossRef]
- Samaržija-Jovanović, S.; Jovanović, V.; Konstantinović, S.; Marković, G.; Marinović-Cincović, M. Thermal behavior of modified urea–formaldehyde resins. J. Therm. Anal. Calorim. 2011, 104, 1159–1166. [Google Scholar] [CrossRef]
- Siimer, K.; Kaljuvee, T.; Christjanson, P. Thermal behaviour of urea-formaldehyde resins during curing. J. Therm. Anal. Calorim. 2003, 72, 607–617. [Google Scholar] [CrossRef]
- Faris, A.H.; Ibrahim, M.N.M.; Rahim, A.A. Preparation and characterization of green adhesives using modified tannin and hyperbranched poly (amine-ester). Int. J. Adhes. Adhes. 2016, 71, 39–47. [Google Scholar] [CrossRef]
- Poljanšek, I.; Šebenik, U.; Krajnc, M. Characterization of phenol–urea–formaldehyde resin by inline FTIR spectroscopy. J. Appl. Polym. Sci. 2006, 99, 2016–2028. [Google Scholar] [CrossRef]
- Demirkir, C.; Özsahin, Ş.; Aydin, I.; Colakoglu, G. Optimization of some panel manufacturing parameters for the best bonding strength of plywood. Int. J. Adhes. Adhes. 2013, 46, 14–20. [Google Scholar] [CrossRef]
- Bekhta, P.; Hiziroglu, S.; Shepelyuk, O. Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 2009, 30, 947–953. [Google Scholar] [CrossRef]
- Abdullah, Z.A.; Park, B.D. Influence of acrylamide copolymerization of urea–formaldehyde resin adhesives to their chemical structure and performance. J. Appl. Polym. Sci. 2010, 117, 3181–3186. [Google Scholar] [CrossRef]
- Tohmura, S.I.; Hse, C.Y.; Higuchi, M. Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins. J. Wood Sci. 2000, 46, 303–309. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Hosseini, S.B.; Ghahri, S.; Ghofrani, M.; Papadopoulos, A.N. Formaldehyde emission in micron-sized wollastonite-treated plywood bonded with soy flour and urea-formaldehyde resin. Appl. Sci. 2020, 10, 6709. [Google Scholar] [CrossRef]
- Park, B.D.; Causin, V. Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Eur. Polym. J. 2013, 49, 532–537. [Google Scholar] [CrossRef]
- Boran, S.; Usta, M.; Gümüşkaya, E. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin. Int. J. Adhes. Adhes. 2011, 31, 674–678. [Google Scholar] [CrossRef]
- Moubarik, A.; Pizzi, A.; Allal, A.; Charrier, F.; Khoukh, A.; Charrier, B. Cornstarch–mimosa tannin–urea formaldehyde resins as adhesives in the particleboard production. Starch-Stärke 2010, 62, 131–138. [Google Scholar] [CrossRef]
- Park, B.D.; Chang Kang, E.; Yong Park, J. Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea–formaldehyde resin and properties of particleboard. J. Appl. Polym. Sci. 2006, 101, 1787–1792. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Park, B.D.; Lee, S.M. Modification of urea-formaldehyde resin adhesives with blocked isocyanates using sodium bisulfite. Int. J. Adhes. Adhes. 2017, 73, 118–124. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Kačík, F.; Noshchenko, G.; Kleinová, A. Lignocellulosic waste fibers and their application as a component of urea-formaldehyde adhesive composition in the manufacture of plywood. Eur. J. Wood Wood Prod. 2019, 77, 495–508. [Google Scholar] [CrossRef]
- Ong, H.R.; Khan, M.R.; Yousuf, A.; Jeyaratnam, N.; Prasad, D.R. Effect of waste rubber powder as filler for plywood application. Pol. J. Chem. Technol. 2015, 17, 41–47. [Google Scholar] [CrossRef]
- Nazeryan, M.; Dalirzadeh, A.; Farokhpayam, S.R. The effect of old corrugated container (OCC) powder and as urea formaldehyde adhesive filler on properties of medium density fiberboard made from bagasse and waste MDF. Iran. J. Wood Pap. Sci. Res. 2014, 29, 452–463. [Google Scholar]
- Alma, M.H.; Basturk, M.A. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol–formaldehyde type adhesive. Ind. Crops Prod. 2006, 24, 171–176. [Google Scholar] [CrossRef]
- Yadav, S.M.; Lubis, M.A.R.; Wibowo, E.S.; Park, B.D. Effects of nanoclay modification with transition metal ion on the performance of urea–formaldehyde resin adhesives. Polym. Bull. 2021, 78, 2375–2388. [Google Scholar] [CrossRef]
- De Cademartori, P.H.G.; Artner, M.A.; de Freitas, R.A.; Magalhães, W.L.E. Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in-situ cure performance. Compos. Part B Eng. 2019, 176, 107281. [Google Scholar] [CrossRef]
- Ružiak, I.; Igaz, R.; Krišťák, L.; Réh, R.; Mitterpach, J.; Očkajová, A.; Kučerka, M. Influence of urea-formaldehyde adhesive modification with beech bark on chosen properties of plywood. BioResources 2017, 12, 3250–3264. [Google Scholar] [CrossRef]
Raw Materials | AFBP | SAF |
---|---|---|
Urea-formaldehyde resin | 50 | 50 |
Water | 15 | 15 |
Urea | 2 | 2 |
Ammonium sulfate | 3 | 3 |
Filler 1: Starch | 15 | 30 |
Filler 2: Plant | 15 | 0 |
Total | 100 | 100 |
Proprieties | AF1 | AF2 | AF3 | AF4 | AF5 | SAF | ANOVA | |
---|---|---|---|---|---|---|---|---|
F-Ratio | p-Value | |||||||
pH | 6.8 ± 0.1 | 6.7 ± 0.2 | 6.7 ± 0.1 | 6.8 ± 0.2 | 6.8 ± 0.1 | 6.7 ± 0.1 | 0.79 | 0.4649 |
Viscosity (mPa·s) | 1100 ± 22 a | 1125 ± 31 a | 1112 ± 34 a | 1122 ± 29 a | 1125 ± 28 a | 785 ± 41 b | 338.15 | <0.0001 * |
Gel time (s) | 45 ± 2 | 44 ± 2 | 44 ± 1 | 44 ± 2 | 44 ± 1 | 48 ± 3 | 3.78 | 0.7663 |
Solid content (%) | 66.84 ± 3.61 | 66.74 ± 3.16 | 66.77 ± 1.24 | 66.82 ± 0.83 | 66.87 ± 1.41 | 67.00 ± 2.73 | 1.00 | 0.3699 |
Density (g/cm3) | 1.14 ± 0.02 | 1.14 ± 0.02 | 1.14 ± 0.02 | 1.14 ± 0.02 | 1.14 ± 0.02 | 1.14 ± 0.02 | 0.00 | 1 |
Free formaldehyde content (%) | 0.26 ± 0.01 a | 0.29 ± 0.03 b | 0.30 ± 0.02 b | 0.28 ± 0.04 b | 0.30 ± 0.03 b | 0.36 ± 0.03 c | 9.61 | 0.0002 * |
Color | Brown | Brown | Brown | Brown | Brown | White | - |
Mechanical Properties | AF1 | AF2 | AF3 | AF4 | AF5 | SAF | ANOVA | ||
---|---|---|---|---|---|---|---|---|---|
F-Ratio | p-Value | ||||||||
Shear strength (N/mm2) | 1.03 ± 0.07 | 0.92 ± 0.01 | 0.97 ± 0.03 | 1.14 ± 0.11 | 1.14 ± 0.94 | 1.01 ± 0.05 | 5.84 | 3.0451 | |
Bending strength (N/mm2) | LD | 36.5 ± 0.07 | 34.3 ± 2.70 | 35.1 ± 2.76 | 35.1 ± 2.61 | 34.7 ± 1.57 | 35.0 ± 3.53 | 0.52 | 0.6130 |
TD | 31.1 ± 0.2 | 31.2 ± 0.6 | 31.2 ± 0.4 | 31.5 ± 0.3 | 31.4 ± 0.4 | 31.1 ± 0.1 | 1.27 | 0.2734 | |
Modulus of elasticity (N/mm2) | LD | 3154 ± 70 | 3133 ± 79 | 3154 ± 65 | 3099 ± 47 | 3147 ± 62 | 3001 ± 37 | 5.14 | 2.0812 |
TD | 2985 ± 85 | 2863 ± 72 | 2955 ± 51 | 2920 ± 92 | 2994 ± 70 | 2835 ± 84 | 4.11 | 1.0711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Abdoul-Latif, F.; El Montassir, Z.; Ainane, A.; Gharby, S.; Sakar, E.H.; Merito, A.; Mohamed, J.; Ainane, T. Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood. Processes 2022, 10, 2209. https://doi.org/10.3390/pr10112209
Mohamed Abdoul-Latif F, El Montassir Z, Ainane A, Gharby S, Sakar EH, Merito A, Mohamed J, Ainane T. Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood. Processes. 2022; 10(11):2209. https://doi.org/10.3390/pr10112209
Chicago/Turabian StyleMohamed Abdoul-Latif, Fatouma, Zineb El Montassir, Ayoub Ainane, Said Gharby, El Hassan Sakar, Ali Merito, Jalludin Mohamed, and Tarik Ainane. 2022. "Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood" Processes 10, no. 11: 2209. https://doi.org/10.3390/pr10112209
APA StyleMohamed Abdoul-Latif, F., El Montassir, Z., Ainane, A., Gharby, S., Sakar, E. H., Merito, A., Mohamed, J., & Ainane, T. (2022). Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood. Processes, 10(11), 2209. https://doi.org/10.3390/pr10112209