Plant Extraction in Water: Towards Highly Efficient Industrial Applications
Abstract
:1. Introduction
2. Plant Material Pretreatment
3. Ultrasound-Assisted Extraction
4. Microwave-Assisted Extraction
5. Subcritical Water Extraction
6. Pulsed Electric Field Extraction
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. TrAC—Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Mariatti, F.; Gunjević, V.; Boffa, L.; Cravotto, G. Process Intensification Technologies for the Recovery of Valuable Compounds from Cocoa By-Products. Innov. Food Sci. Emerg. Technol. 2021, 68, 102601. [Google Scholar] [CrossRef]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent Advances in Scaling-up of Non-Conventional Extraction Techniques: Learning from Successes and Failures. TrAC—Trends Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- Deli, M.; Ndjantou, E.B.; Ngatchic Metsagang, J.T.; Petit, J.; Njintang Yanou, N.; Scher, J. Successive Grinding and Sieving as a New Tool to Fractionate Polyphenols and Antioxidants of Plants Powders: Application to Boscia senegalensis Seeds, Dichrostachys glomerata Fruits, and Hibiscus sabdariffa Calyx Powders. Food Sci. Nutr. 2019, 7, 1795–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, L.; Zaiter, A.; Petit, J.; Zimmer, D.; Karam, M.C.; Baudelaire, E.; Scher, J.; Dicko, A. Improvement of Antioxidant Activity and Polyphenol Content of Hypericum perforatum and Achillea millefolium Powders Using Successive Grinding and Sieving. Ind. Crops Prod. 2016, 87, 116–123. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Demuez, M.; Mahdy, A.; Tomas-Pej, E.; Gonzalez-Fernandez, C.; Ballesteros, M. Enzymatic Cell Disruption of Microalgae Biomass in Biorefinery Processes. Biotechnol. Bioeng. 2015, 112, 1955–1966. [Google Scholar] [CrossRef]
- Giovannoni, M.; Gramegna, G.; Benedetti, M.; Mattei, B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line between Production Strategy and Economic Feasibility. Front. Bioeng. Biotechnol. 2020, 8, 356. [Google Scholar] [CrossRef]
- Zou, L.; Wan, Y.; Zhang, S.; Luo, J.; Li, Y.Y.; Liu, J. Valorization of Food Waste to Multiple Bio-Energies Based on Enzymatic Pretreatment: A Critical Review and Blueprint for the Future. J. Clean. Prod. 2020, 277, 124091. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Mariatti, F.; Gunjevic, V.; Secondo, M.; Villa, M.; Parolin, J.; Cavaglià, G. Pilot Scale Cavitational Reactors and Other Enabling Technologies to Design the Industrial Recovery of Polyphenols from Agro-Food By-Products, a Technical and Economical Overview. Foods 2018, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Calcio Gaudino, E.; Tabasso, S.; Grillo, G.; Cravotto, G.; Dreyer, T.; Schories, G.; Altenberg, S.; Jashina, L.; Telysheva, G. Wheat Straw Lignin Extraction with Bio-Based Solvents Using Enabling Technologies. Comptes Rendus Chim. 2018, 21, 563–571. [Google Scholar] [CrossRef]
- Lauberte, L.; Telysheva, G.; Cravotto, G.; Andersone, A.; Janceva, S.; Dizhbite, T.; Arshanitsa, A.; Jurkjane, V.; Vevere, L.; Grillo, G.; et al. Lignin—Derived Antioxidants as Value-Added Products Obtained under Cavitation Treatments of the Wheat Straw Processing for Sugar Production. J. Clean. Prod. 2021, 303, 126369. [Google Scholar] [CrossRef]
- Elmi Kashtiban, A.; Esmaiili, M. Extraction of Phenolic Compounds from Siah-Sardasht Grape Skin Using Subcritical Water and Ultrasound Pretreatment. J. Food Process. Preserv. 2019, 43, e14071. [Google Scholar] [CrossRef]
- Boussetta, N.; Grimi, N.; Vorobiev, E. Pulsed Electrical Technologies Assisted Polyphenols Extraction from Agricultural Plants and Bioresources: A Review. Int. J. Food Process. Technol. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorization Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.W.; Aadil, R.M. Effective Valorization of Food Wastes and By-Products through Pulsed Electric Field: A Systematic Review. J. Food Process. Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Naliyadhara, N.; Kumar, A.; Girisa, S.; Daimary, U.D.; Hegde, M.; Kunnumakkara, A.B. Pulsed Electric Field (PEF): Avant-Garde Extraction Escalation Technology in Food Industry. Trends Food Sci. Technol. 2022, 122, 238–255. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z. Sono-Physical and Sono-Chemical Effects of Ultrasound: Primary Applications in Extraction and Freezing Operations and Influence on Food Components. Ultrason. Sonochem. 2020, 60, 104726. [Google Scholar] [CrossRef]
- Suslick, K.S. The Chemical Effects of Ultrasound. JSTOR 1989, 260, 80–87. [Google Scholar] [CrossRef]
- Chemat, S.; Lagha, A.; AitAmar, H.; Bartels, P.V.; Chemat, F. Comparison of Conventional and Ultrasound-Assissted Extraction of Carvone and Limonene from Caraway Seeds. Flavour Fragr. J. 2004, 19, 188–195. [Google Scholar] [CrossRef]
- Machado, I.; Faccio, R.; Pistón, M. Characterization of the Effects Involved in Ultrasound-Assisted Extraction of Trace Elements from Artichoke Leaves and Soybean Seeds. Ultrason. Sonochem. 2019, 59, 104752. [Google Scholar] [CrossRef] [PubMed]
- Alexandra Pătrăuanu, O.; Lazăr, L.; Popa, V.I.; Volf, I. Influence of Particle Size and Size Distribution on Kinetic Mechanism of Spruce Bark Polyphenols Extraction. Cellul. Chem. Technol. 2019, 53, 71–78. [Google Scholar] [CrossRef]
- Budiastra, I.W.; Damanik, A.P.; Akbar, M.T.F. Effect of Particle Size of White Pepper to Yield and Quality of Oleoresin Produced by Using an Ultrasonic-Assisted Extraction Method. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 14–15 October 2019; Institute of Physics Publishing: Bristol, UK, 2020; Volume 542. [Google Scholar] [CrossRef]
- Vernès, L.; Abert-Vian, M.; el Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of Ultrasound for Green Extraction of Proteins from Spirulina. Mechanism, Optimization, Modeling, and Industrial Prospects. Ultrason. Sonochem. 2019, 54, 48–60. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Breil, C.; Abert-Vian, M.; Chemat, F. Microwave, Ultrasound, Thermal Treatments, and Bead Milling as Intensification Techniques for Extraction of Lipids from Oleaginous Yarrowia Lipolytica Yeast for a Biojetfuel Application. Bioresour. Technol. 2016, 211, 190–199. [Google Scholar] [CrossRef]
- Ruzgys, P.; Tamošiūnas, M.; Lukinsone, V.; Šatkauskas, S. FRET-Based Method for Evaluation of the Efficiency of Reversible and Irreversible Sonoporation. J. Biomed. Opt. 2017, 22, 1. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, H.; Mayer, M.; Deng, C.X. Spatiotemporally Controlled Single Cell Sonoporation. Proc. Natl. Acad. Sci. USA 2012, 109, 16486–16491. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Kumon, R.E.; Deng, C.X. Mechanisms of Microbubble-Facilitated Sonoporation for Drug and Gene Delivery. Ther. Deliv. 2014, 5, 467–486. [Google Scholar] [CrossRef]
- Prentice, P.; Cuschieri, A.; Dholakia, K.; Prausnitz, M.; Campbell, P. Membrane Disruption by Optically Controlled Microbubble Cavitation. Nat. Phys. 2005, 1, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xu, L. Cell Experimental Studies on Sonoporation: State of the Art and Remaining Problems. J. Control Release 2014, 174, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Mehier-Humbert, S.; Bettinger, T.; Yan, F.; Guy, R.H. Plasma Membrane Poration Induced by Ultrasound Exposure: Implication for Drug Delivery. J. Control Release 2005, 104, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Lentacker, I.; de Cock, I.; Deckers, R.; de Smedt, S.C.; Moonen, C.T.W. Understanding Ultrasound Induced Sonoporation: Definitions and Underlying Mechanisms. Adv. Drug Deliv. Rev. 2014, 72, 49–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ter Haar, G. Therapeutic Applications of Ultrasound. Prog. Biophys. Mol. Biol. 2007, 93, 111–129. [Google Scholar] [CrossRef]
- Delalande, A.; Kotopoulis, S.; Postema, M.; Midoux, P.; Pichon, C. Sonoporation: Mechanistic Insights and Ongoing Challenges for Gene Transfer. Gene 2013, 525, 191–199. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Vinatoru, M. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Mason, T.J.; Lorimer, J.P. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing; Wiley-VCH: Weinheim, Germany, 2001; ISBN 978-3-527-30205-5. [Google Scholar]
- Cravotto, G.; Cravotto, C.; Veselov, V.V. Ultrasound- and Hydrodynamic-Cavitation Assisted Extraction in Food Processing. In Innovative Food Processing Technologies: A Comprehensive Review; Elsevier: Amsterdam, The Netherlands, 2020; pp. 359–366. ISBN 9780128157824. [Google Scholar]
- Peng, K.; Qin, F.G.F.; Jiang, R.; Kang, S. Interpreting the Influence of Liquid Temperature on Cavitation Collapse Intensity through Bubble Dynamic Analysis. Ultrason. Sonochem. 2020, 69, 105253. [Google Scholar] [CrossRef]
- Niemczewski, B. Observations of Water Cavitation Intensity under Practical Ultrasonic Cleaning Conditions. Ultrason. Sonochem. 2007, 14, 13–18. [Google Scholar] [CrossRef]
- Del Delgado-Povedano, M.M.; Luque de Castro, M.D. Ultrasound-Assisted Extraction of Food Components. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-08-100596-5. [Google Scholar]
- Wu, Z.; Ferreira, D.F.; Crudo, D.; Bosco, V.; Stevanato, L.; Costale, A.; Cravotto, G. Plant and Biomass Extraction and Valorisation under Hydrodynamic Cavitation. Processes 2019, 7, 965. [Google Scholar] [CrossRef] [Green Version]
- Panda, D.; Saharan, V.K.; Manickam, S. Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes 2020, 8, 220. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Cánovas, G.V.; María Pastore, G.; Candoğan, K.; Medina Meza, I.G.; Caetano da Silva Lannes, S.; Buckle, K.; Yada, R.Y.; Rosenthal, A. Global Food Security and Wellness; Springer: New York, NY, USA, 2017; ISBN 978-1-4939-6494-9. [Google Scholar]
- Verdini, F.; Calcio Gaudino, E.; Grillo, G.; Tabasso, S.; Cravotto, G. Cellulose Recovery from Agri-Food Residues by Effective Cavitational Treatments. Appl. Sci. 2021, 11, 4963. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Chatel, G.; de Oliveira Vigier, K.; Jérôme, F. Sonochemistry: What Potential for Conversion of Lignocellulosic Biomass into Platform Chemicals? ChemSusChem 2014, 7, 2774–2787. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Talarico, S.; Solarino, R.; Binello, A.; Cavaglià, G.; Bensaid, S.; Telysheva, G.; Cravotto, G. Batch and Flow Ultrasound-assisted Extraction of Grape Stalks: Process Intensification Design up to a Multi-kilo Scale. Antioxidants 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Taticchi, A.; Selvaggini, R.; Esposto, S.; Sordini, B.; Veneziani, G.; Servili, M. Physicochemical Characterization of Virgin Olive Oil Obtained Using an Ultrasound-Assisted Extraction at an Industrial Scale: Influence of Olive Maturity Index and Malaxation Time. Food Chem. 2019, 289, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.J.; Kim, Y.E.; Kim, J.E.; Park, J.; Kim, Y.H.; Song, K.M.; Lee, N.H. Production of Undaria Pinnatifida Sporophyll Extract Using Pilot-Scale Ultrasound-Assisted Extraction: Extract Characteristics and Antioxidant and Anti-Inflammatory Activities. Algal. Res. 2020, 51, 102039. [Google Scholar] [CrossRef]
- Eom, S.J.; Zu, H.D.; Lee, J.; Kang, M.C.; Park, J.; Song, K.M.; Lee, N.H. Development of an Ultrasonic System for Industrial Extraction of Unheated Sesame Oil Cake. Food Chem. 2021, 354, 129582. [Google Scholar] [CrossRef]
- Preece, K.E.; Hooshyar, N.; Krijgsman, A.J.; Fryer, P.J.; Zuidam, N.J. Intensification of Protein Extraction from Soybean Processing Materials Using Hydrodynamic Cavitation. Innov. Food Sci. Emerg. Technol. 2017, 41, 47–55. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Brunetti, C.; Fidalgo, A.; Ciriminna, R.; Delisi, R.; Albanese, L.; Zabini, F.; Gori, A.; dos Nascimento, L.B.S.; de Carlo, A.; et al. Real-Scale Integral Valorization of Waste Orange Peel via Hydrodynamic Cavitation. Processes 2019, 7, 581. [Google Scholar] [CrossRef] [Green Version]
- Albanese, L.; Bonetti, A.; D’Acqui, L.P.; Meneguzzo, F.; Zabini, F. Affordable Production of Antioxidant Aqueous Solutions by Hydrodynamic Cavitation Processing of Silver Fir (Abies alba Mill.) Needles. Foods 2019, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravotto, G.; Binello, A.; Merizzi, G.; Avogadro, M. Improving Solvent-Free Extraction of Policosanol from Rice Bran by High-Intensity Ultrasound Treatment. Eur. J. Lipid Sci. Technol. 2004, 106, 147–151. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC—Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Cravotto, G.; Carnaroglio, D. Microwave Chemistry; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2017; ISBN 978-3-11-047993-5. [Google Scholar]
- Acciardo, E.; Tabasso, S.; Cravotto, G.; Bensaid, S. Process Intensification Strategies for Lignin Valorization. Chem. Eng. Process.—Process Intensif. 2022, 171, 108732. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Mariatti, F.; Tabasso, S.; Sánchez-Verdú, M.P.; Moreno, A.; Cravotto, G. Sustainable and Non-Conventional Protocols for the Three-Way Valorisation of Lignin from Grape Stalks. Chem. Eng. Process.—Process Intensif. 2022, 178, 109027. [Google Scholar] [CrossRef]
- Mello, P.A.; Barin, J.S.; Guarnieri, R.A. Chapter 2—Microwave Heating, Microwave-Assisted Sample Preparation for Trace Element Analysis; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-444-59420-4. [Google Scholar]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Flórez, N.; Conde, E.; Domínguez, H. Microwave Assisted Water Extraction of Plant Compounds. J. Chem. Technol. Biotechnol. 2015, 90, 590–607. [Google Scholar] [CrossRef]
- Leonelli, C.; Mason, T.J. Microwave and Ultrasonic Processing: Now a Realistic Option for Industry. Chem. Eng. Process. Process Intensif. 2010, 49, 885–900. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Cravotto, G.; Manzoli, M.; Tabasso, S. From Waste Biomass to Chemicals and Energy: Via Microwave-Assisted Processes. Green Chem. 2019, 21, 1202–1235. [Google Scholar] [CrossRef]
- Siddique, I.J.; Salema, A.A.; Antunes, E.; Vinu, R. Technical Challenges in Scaling up the Microwave Technology for Biomass Processing. Renew. Sustain. Energy Rev. 2022, 153, 111767. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.M.; Carnaroglio, D.; Tamburino, A.; Cravotto, G.; Ilharco, L.M.; Pagliaro, M. Lemon Essential Oil of Variable Composition by Changing the Conditions of the Extraction from Lemon Peel via Microwave Hydrodiffusion and Gravity. ChemistrySelect 2017, 2, 7123–7127. [Google Scholar] [CrossRef]
- Gunjević, V.; Grillo, G.; Carnaroglio, D.; Binello, A.; Barge, A.; Cravotto, G. Selective Recovery of Terpenes, Polyphenols and Cannabinoids from Cannabis sativa L. Inflorescences under Microwaves. Ind. Crops Prod. 2021, 162, 113247. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Avellone, G.; Danzì, C.; Timpanaro, G.; Locatelli, M.; Carnaroglio, D.; Meneguzzo, F.; Ilharco, L.M.; Pagliaro, M. Integral Extraction of 69 Ficus-Indica Peel Bioproducts via Microwave-Assisted Hydrodiffusion and Hydrodistillation. ACS Sustain. Chem. Eng. 2019, 7, 7884–7891. [Google Scholar] [CrossRef]
- Lamberti, L.; Grillo, G.; Gallina, L.; Carnaroglio, D.; Chemat, F.; Cravotto, G. Microwave-Assisted Hydrodistillation of Hop (Humulus lupulus L.) Terpenes: A Pilot-Scale Study. Foods 2021, 10, 2726. [Google Scholar] [CrossRef]
- Garcia-Garcia, G.; Rahimifard, S.; Matharu, A.S.; Dugmore, T.I.J. Life-Cycle Assessment of Microwave-Assisted Pectin Extraction at Pilot Scale. ACS Sustain. Chem. Eng. 2019, 7, 5167–5175. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC—Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent Advances in the Extraction of Bioactive Compounds with Subcritical Water: A Review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; Rodríguez-Seoane, P.; Flórez-Fernández, N.; Torres, M.D.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-Food Wastes and Algae: A Review. Food Bioprocess Technol. 2021, 14, 373–387. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef] [PubMed]
- Cova, C.M.; Boffa, L.; Pistocchi, M.; Giorgini, S.; Luque, R.; Cravotto, G. Technology and Process Design for Phenols Recovery from Industrial Chicory (Chicorium intybus) Leftovers. Molecules 2019, 24, 2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Uhler, B.; Lipkie, T. Microwave-Assisted Subcritical Water Extraction of Steviol Glycosides from Stevia rebaudiana Leaves. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.T.; Jing, C.; Wood, C.; Nagardeolekar, A.; Kohan, N.; Dongre, P.; Amidon, T.E.; Bujanovic, B.M. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery. Energies 2018, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Amir, S.N.K.M.; Nordin, M.F.M.; Shameli, K.; Wahab, I.M.A.; Hamid, M.A. Modeling and Optimization of Pilot-Scale Subcritical Water Extraction on Zingiber Zerumbet by Central Composite Design. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012077. [Google Scholar] [CrossRef]
- Rudjito, R.C.; Ruthes, A.C.; Jiménez-Quero, A.; Vilaplana, F. Feruloylated Arabinoxylans from Wheat Bran: Optimization of Extraction Process and Validation at Pilot Scale. ACS Sustain. Chem. Eng. 2019, 7, 13167–13177. [Google Scholar] [CrossRef]
- Cravotto, C.; Grillo, G.; Binello, A.; Gallina, L.; Olivares-vicente, M.; Herranz-López, M.; Micol, V.; Barrajón-Catalán, E.; Cravotto, G. Bioactive Antioxidant Compounds from Chestnut Peels through Semi-Industrial Subcritical Water Extraction. Antioxidants 2022, 11, 988. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.; Abert-Vian, M. Review of green food processing techniques. Preservation, transfortmation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Andrés Maza, M.; Martínez, J.M.; Hernández-Orte, P.; Cebrián, G.; Sánchez-Gimeno, A.C.; Álvarez, I.; Raso, J. Influence of pulsed electric fields on aroma and polyphenolic compounds of Garnacha wine. Food Bioprod. Process. 2019, 119, 249–257. [Google Scholar] [CrossRef]
- Comuzzo, P.; Marconi, M.; Zanella, G.; Querzè, M. Pulsed Electric Field Processing of White Grapes (cv. Garganega): Effects on Wine Composition and Volatile Compounds. Food Chem. 2018, 264, 16–23. [Google Scholar] [CrossRef]
Matrix | Technology | Scale | Other Parameters | Results | Ref. |
---|---|---|---|---|---|
Grape stalks | US; recirculating flow | 2 kg/60 L | Water; 1 h; S/L 1:30; 30 L/min; RT; 29 kHz; 2 kW | Efficient process scaling-up in terms of extraction yield and antioxidant power of the extract | [50] |
Olives | US; continuous flow | 2 tons/h | RT; 20 kHz; 2.8 kW | 22.7% increase in oil yield and 10.1% increase in oil phenolic compounds | [51] |
Spirulina | US; recirculating flow | 1.5 kg/30 L | Water (Phosphate buffer); 40 min; S/L 1:20; 20 kHz | 127% increase in protein yield compared to the conventional method | [26] |
Undaria pinnatifida | US; recirculating flow | 200 g/20 L | Water; 3 h; S/L 1:100; 30 °C; 20 kHz; 960 W | 111% increase in extraction yield compared to the conventional method | [52] |
Sesame oil cake | US; recirculating flow | 33 kg/1000 L | Water; 4 h; S/L 1:30; 25 °C; 20 kHz; 900 W | 193% increase in extraction yield compared to conventional method | [53] |
Soybean | HC; high-pressure homogenizer | 9 L/h | Water; S/L 1:7; 100 MPa | Protein yield increase of 82%; a single step was optimal | [54] |
Orange peel | HC (reactor with Venturi cross-section); recirculating flow | 42 kg/120 L (1° test) 6.38 kg/147 L (2° test) | Water; S/L 1:2.85; 330 L/min; 0.62 kWh/kg matrix (1° test) Water; S/L 1:23.04; 330 L/min; 2.20 kWh/kg matrix (2° test) | No optimal extraction parameters are given. Efficient and rapid extraction of flavones and monoterpenes; isolation of high-quality pectin. | [55] |
Silver fir needles | HC (reactor with Venturi cross-section); recirculating flow | 0.529 kg/120 L | Water; S/L 1:227; 330 L/min; 4.8 kWh | No optimal extraction parameters are given. The ORAC/ TPC ratio increased as a function of cavitation time, reaching a maximum at 60 min of extraction. | [56] |
Matrix | Technology | Scale | Other Parameters | Results | Ref. |
---|---|---|---|---|---|
Lemon peel | MHG | 20 kg | S/L 1:1.8; no fixed time | 0.025% w/w EO | [70] |
Cannabis | MAHD | 2.6 kg | S/L 1:1; 1 h 50 min | 0.35% w/w EO | [71] |
Opuntia ficus-indica peel | MAHD; MHG | 1–2 kg | S/L 1:0.067; 1 h; 1.5 kW (MAHD) S/L 1:0.121; 70 °C; 40 min; 1.2 kW (MHG) | About 128 mL extract/kg matrix (MAHD) About 342 mL extract/kg matrix (MHG) | [72] |
Hops | MAHD | 2–8 kg | S/L 2:1; 1 h 50 min | Increased extraction yield: 4 times higher (pellets), 2 times higher (dry matrix) than on a laboratory scale | [73] |
Orange peel | MAE | 3 kg | S/L 1:5; 1 h 30 min | 64% increase in pectin yield | [74] |
Matrix | Scale | Other Parameters | Yield % | Ref. |
---|---|---|---|---|
Miscanthus | 150 kg/1200 L | 160 °C; 2 h; S/L 1:8 | 33.05% | [81] |
Zingiber zerumbet | 0.25 kg/5 L | 170 °C; 20 min; S/L 1:20 | 20.70% | [82] |
Wheat bran | 0.1 kg/1 L | 160 °C; 60 min; S/L 1:10 | 15.82% | [83] |
Chestnut peel | 60 kg/180 L | 150 °C; 30 min; S/L 1:3 | 39.42% | [84] |
Matrix | Technology | Scale | Other Parameters | Results | Ref. |
---|---|---|---|---|---|
Grapes | PEF, flow mode. | 2500 kg/h | 0.09 s residence time; 3.7 pulses of 4 kV cm−1 | Reduced maceration time, improved polyphenols concentration (up to 35% increase). | 86 |
Grapes | PEF, flow mode. | 200 L/h | 0.09 s residence time; pulse duration of 8–16 µs | Increased varietal aroma precursors extraction, limited impact on wine color. | 87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallina, L.; Cravotto, C.; Capaldi, G.; Grillo, G.; Cravotto, G. Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes 2022, 10, 2233. https://doi.org/10.3390/pr10112233
Gallina L, Cravotto C, Capaldi G, Grillo G, Cravotto G. Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes. 2022; 10(11):2233. https://doi.org/10.3390/pr10112233
Chicago/Turabian StyleGallina, Lorenzo, Christian Cravotto, Giorgio Capaldi, Giorgio Grillo, and Giancarlo Cravotto. 2022. "Plant Extraction in Water: Towards Highly Efficient Industrial Applications" Processes 10, no. 11: 2233. https://doi.org/10.3390/pr10112233
APA StyleGallina, L., Cravotto, C., Capaldi, G., Grillo, G., & Cravotto, G. (2022). Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes, 10(11), 2233. https://doi.org/10.3390/pr10112233