Energy and Economic Assessment of a System Integrated by a Biomass Downdraft Gasifier and a Gas Microturbine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Downdraft Gasifier Model
2.2. Validation of Gasification Model
2.3. Gas Microturbine Model
2.4. Economic Assessment
- The operation and maintenance costs of the gasification system, excluding biomass cost: range from 3.5 to 5.7% of the gasifier CAPEX [40]. In this study, the mean value (4.6%) was taken as the starting parameter, and during the risk study, the lower and upper limits were subsequently incorporated into the analysis;
- The operation and maintenance costs of the gas microturbine were estimated at 0.019 USD/kWh from [41], with lower and upper limits of 0.018 and 0.020 USD/kWh during risk analysis, respectively;
- The electricity price: the reference value for the pre-tax electricity price in the baseline case was 0.1614 USD/kWh (current price). The variation of this parameter was estimated from the local energy price adjustments historical distribution;
- The biomass (wood pellets) price: the variation range of raw material prices was established from the survey of local prices. The baseline value for the biomass price was 126.37 USD/ton;
- The net electrical power delivered: a variation of ±15% in the net electrical power delivered due to the operation regime itself was considered;
- The total capital expenditure investment: it was assumed that a possible short-term local market transformation and fluctuations of ±15% in the international equipment prices could occur.
3. Results
3.1. System Operating with Atmospheric Air as the Gasification Agent
3.2. System Operating with Oxygen-Enriched Air as Gasification Agent
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
APY | Annual percentage yield |
ASU | Air separation unit |
BM | Boston–Mathias alpha function |
CAPEX | Capital expenditures |
CAPM | Capital asset pricing model |
CGE | Cold gas efficiency |
COFINS | Contribution to social security financing |
DCOALIGT | Non-conventional compounds density |
ER | Equivalence ratio |
HCOALGEN | Non-conventional compounds enthalpy |
IAPWS-95 | International association for the properties of water and steam method |
ICMS | Tax on the movement of goods and services |
IPI | Taxes over industrialized products |
LHV | Low heating value |
MARR | Minimum acceptable rate of return |
NPV | Net present value |
ORC | Organic Rankine cycle |
PIS | Social integration program contribution |
SOFC | Solid oxide fuel cell |
TEC | Common external tariff |
WACC | Weighted average capital cost |
Air flow for air gasification scenario | |
Air flow for oxygen-enriched air gasification scenario | |
Biomass flow | |
Equivalence ratio | |
Removed nitrogen split fraction in ASU |
References
- International Energy Agency. World Energy Outlook; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Koirala, B.P.; Koliou, E.; Friege, J.; Hakvoort, R.A.; Herder, P.M. Energetic Communities for Community Energy: A Review of Key Issues and Trends Shaping Integrated Community Energy Systems. Renew. Sustain. Energy Rev. 2016, 56, 722–744. [Google Scholar] [CrossRef] [Green Version]
- Castillo Santiago, Y.; Martínez González, A.; Venturini, O.J.; Sphaier, L.A.; Ocampo Batlle, E.A. Energetic and Environmental Assessment of Oil Sludge Use in a Gasifier/Gas Microturbine System. Energy 2022, 244, 123103. [Google Scholar] [CrossRef]
- Marques, T.E.; Castillo Santiago, Y.; Renó, M.L.; Yepes Maya, D.M.; Sphaier, L.A.; Shi, Y.; Ratner, A. Environmental and Energetic Evaluation of Refuse-Derived Fuel Gasification for Electricity Generation. Processes 2021, 9, 2255. [Google Scholar] [CrossRef]
- Benini, E. Progress in Gas Turbine Performance, 1st ed.; Benini, E., Ed.; IntechOpen: London, UK, 2013; ISBN 978-953-51-1166-5. [Google Scholar]
- Fershalov, A.Y.; Fershalov, Y.Y.; Fershalov, M.Y. Principles of Designing Gas Microturbine Stages. Energy 2021, 218, 119488. [Google Scholar] [CrossRef]
- Henao, N.C.; Lora, E.E.S.; Maya, D.M.Y.; Venturini, O.J.; Franco, E.H.M. Technical Feasibility Study of 200 kW gas Microturbine Coupled to a Dual Fluidized Bed Gasifier. Biomass Bioenergy 2019, 130, 105369. [Google Scholar] [CrossRef]
- Konečná, E.; Teng, S.Y.; Máša, V. New Insights into the Potential of the Gas Microturbine in Microgrids and Industrial Applications. Renew. Sustain. Energy Rev. 2020, 134, 110078. [Google Scholar] [CrossRef]
- Amaro, J.; Mendiburu, A.Z.; de Carvalho, J.A. Thermodynamic Study of Syngas Combustion in Gas Microturbines with Regeneration Composed with Metallic and Ceramic Materials. Appl. Therm. Eng. 2019, 157, 113285. [Google Scholar] [CrossRef]
- Castillo Santiago, Y.; Martínez González, A.; Venturini, O.J.; Yepes Maya, D.M. Assessment of the Energy Recovery Potential of Oil Sludge through Gasification Aiming Electricity Generation. Energy 2021, 215, 119210. [Google Scholar] [CrossRef]
- Martínez González, A.; Silva Lora, E.E.; Escobar Palacio, J.C. Syngas Production from Oil Sludge Gasification and Its Potential Use in Power Generation Systems: An Energy and Exergy Analysis. Energy 2019, 169, 1175–1190. [Google Scholar] [CrossRef]
- Hanchate, N.; Ramani, S.; Mathpati, C.S.; Dalvi, V.H. Biomass Gasification Using Dual Fluidized Bed Gasification Systems: A Review. J. Clean. Prod. 2021, 280, 123148. [Google Scholar] [CrossRef]
- Antolini, D.; Ail, S.S.; Patuzzi, F.; Grigiante, M.; Baratieri, M. Experimental Investigations of Air-CO2 Biomass Gasification in Reversed Downdraft Gasifier. Fuel 2019, 253, 1473–1481. [Google Scholar] [CrossRef]
- Kan, X.; Zhou, D.; Yang, W.; Zhai, X.; Wang, C.-H. An Investigation on Utilization of Biogas and Syngas Produced from Biomass Waste in Premixed Spark Ignition Engine. Appl. Energy 2018, 212, 210–222. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Cao, J.; Liu, C.; Dong, L.; Xu, L.; Zha, J. Experimental Study of Biomass Gasification with Oxygen-Enriched Air in Fluidized Bed Gasifier. Sci. Total Environ. 2018, 626, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Du, X.; Chen, J.; Wu, Z. Numerical Study on Characteristics of Biomass Oxygen Enriched Gasification in the New Gasifier on an Experimental Basis. Renew. Energy 2021, 179, 815–827. [Google Scholar] [CrossRef]
- Cui, X.; Song, G.; Yao, A.; Wang, H.; Wang, L.; Xiao, J. Technical and Economic Assessments of a Novel Biomass-to-Synthetic Natural Gas (SNG) Process Integrating O2-Enriched Air Gasification. Process Saf. Environ. Prot. 2021, 156, 417–428. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Muhammad Anwar, S.N.B.; Weerachanchai, P.; Bae, T.-H.; Goh, K.; Wang, R. Scaling-up Defect-Free Asymmetric Hollow Fiber Membranes to Produce Oxygen-Enriched Gas for Integration into Municipal Solid Waste Gasification Process. J. Membr. Sci. 2021, 640, 119787. [Google Scholar] [CrossRef]
- Sittisun, P.; Tippayawong, N.; Pang, S. Biomass Gasification in a Fixed Bed Downdraft Reactor with Oxygen Enriched Air: A Modified Equilibrium Modeling Study. Energy Procedia 2019, 160, 317–323. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Q.; Du, J.; Chen, J. Oxygen-Enriched Air Gasification of Biomass Materials for High-Quality Syngas Production. Energy Convers. Manag. 2019, 199, 111628. [Google Scholar] [CrossRef]
- Gu, H.; Tang, Y.; Yao, J.; Chen, F. Study on Biomass Gasification under Various Operating Conditions. J. Energy Inst. 2019, 92, 1329–1336. [Google Scholar] [CrossRef]
- Kolanowski, B.F. Guide to Microturbines, 1st ed.; Kolanowski, B.F., Ed.; Fairmont Press: Lilburn, GA, USA, 2004; ISBN 9780824740016. [Google Scholar]
- Rabou, L.P.L.M.; Grift, J.M.; Conradie, R.E.; Fransen, S. Micro Gas Turbine Operation with Biomass Producer Gas and Mixtures of Biomass Producer Gas and Natural Gas. Energy Fuels 2008, 22, 1944–1948. [Google Scholar] [CrossRef]
- Page, D.; Shaffer, B.; McDonell, V. Establishing Operating Limits in a Commercial Lean Premixed Combustor Operating on Synthesis Gas Pertaining to Flashback and Blowout. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012; pp. 647–656. [Google Scholar]
- Moradi, R.; Marcantonio, V.; Cioccolanti, L.; Bocci, E. Integrating Biomass Gasification with a Steam-Injected Micro Gas Turbine and an Organic Rankine Cycle Unit for Combined Heat and Power Production. Energy Convers. Manag. 2020, 205, 112464. [Google Scholar] [CrossRef]
- Perna, A.; Minutillo, M.; Jannelli, E.; Cigolotti, V.; Nam, S.W.; Yoon, K.J. Performance Assessment of a Hybrid SOFC/MGT Cogeneration Power Plant Fed by Syngas from a Biomass Down-Draft Gasifier. Appl. Energy 2018, 227, 80–91. [Google Scholar] [CrossRef]
- Renzi, M.; Patuzzi, F.; Baratieri, M. Syngas Feed of Micro Gas Turbines with Steam Injection: Effects on Performance, Combustion and Pollutants Formation. Appl. Energy 2017, 206, 697–707. [Google Scholar] [CrossRef]
- Corrêa, P.S.P.; Zhang, J.; Lora, E.E.S.; Andrade, R.V.; de Mello e Pinto, L.R.; Ratner, A. Experimental Study on Applying Biomass-Derived Syngas in a Microturbine. Appl. Therm. Eng. 2019, 146, 328–337. [Google Scholar] [CrossRef]
- Aghaalikhani, A.; Schmid, J.C.; Borello, D.; Fuchs, J.; Benedikt, F.; Rispoli, F.; Henriksen, U.B.; Sárossy, Z.; Cedola, L. Detailed Modelling of Biomass Steam Gasification in a Dual Fluidized Bed Gasifier with Temperature Variation. Renew. Energy 2019, 143, 703–718. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design and Theory, 2nd ed.; Basu, P., Ed.; Elsevier Inc.: San Diego, CA, USA, 2013; ISBN 978-0-12-396488-5. [Google Scholar]
- Belaissaoui, B.; le Moullec, Y.; Hagi, H.; Favre, E. Energy Efficiency of Oxygen Enriched Air Production Technologies: Cryogeny vs Membranes. Sep. Purif. Technol. 2014, 125, 142–150. [Google Scholar] [CrossRef]
- Zainal, Z.A.; Ali, R.; Lean, C.H.; Seetharamu, K.N. Prediction of Performance of a Downdraft Gasifier Using Equilibrium Modeling for Different Biomass Materials. Energy Convers. Manag. 2001, 42, 1499–1515. [Google Scholar] [CrossRef]
- Han, J.; Liang, Y.; Hu, J.; Qin, L.; Street, J.; Lu, Y.; Yu, F. Modeling Downdraft Biomass Gasification Process by Restricting Chemical Reaction Equilibrium with Aspen Plus. Energy Convers. Manag. 2017, 153, 641–648. [Google Scholar] [CrossRef]
- Capstone. Capstone MicroTurbine® Fuel Requirements Technical Reference; Capstone: Chatsworth, CA, USA, 2014. [Google Scholar]
- Capstone. Capstone C200 Microturbine Technical Reference; Capstone: Los Angeles, CA, USA, 2009. [Google Scholar]
- Gagliano, A.; Nocera, F.; Bruno, M.; Cardillo, G. Development of an Equilibrium-Based Model of Gasification of Biomass by Aspen Plus. Energy Procedia 2017, 111, 1010–1019. [Google Scholar] [CrossRef]
- Turner, M.J.; Pinkerton, L.L. Quality Guidelines for Energy System Studies: Capital Cost Scaling Methodology; National Energy Technology Laboratory (NETL): Pittsburgh, PA, USA, 2013.
- Holmgren, K.M. Investment Cost Estimates for Gasificationbased Biofuel Production Systems; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Food and Agriculture Organization (FAO). Bioenergy and Food Security Rapid Appraisal: User Manual; FAO: Rome, Italy, 2014. [Google Scholar]
- Watson, J.; Zhang, Y.; Si, B.; Chen, W.-T.; de Souza, R. Gasification of Biowaste: A Critical Review and Outlooks. Renew. Sustain. Energy Rev. 2018, 83, 1–17. [Google Scholar] [CrossRef]
- Davidson, K.; Hite, R.; Jones, D.; Howley, A. A Comprehensive Assessment of Small Combined Heat and Power Technical and Market Potential in California; California Energy Commission: Sacramento, CA, USA, 2019.
- Ferrara, M.; Chiang, Y.-M.; Deutch, J.M. Demonstrating Near-Carbon-Free Electricity Generation from Renewables and Storage. Joule 2019, 3, 2585–2588. [Google Scholar] [CrossRef]
- Craig, K.R.; Mann, M.K. Cost and Performance Analysis of Biomass-Based Integrated Gasification Combined-Cycle (BIGCC) Power Systems; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 1996.
- Oveisi, E.; Sokhansanj, S.; Lau, A.; Lim, J.; Bi, X.; Preto, F.; Mui, C. Characterization of Recycled Wood Chips, Syngas Yield, and Tar Formation in an Industrial Updraft Gasifier. Environments 2018, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Kook, J.W.; Choi, H.M.; Kim, B.H.; Ra, H.W.; Yoon, S.J.; Mun, T.Y.; Kim, J.H.; Kim, Y.K.; Lee, J.G.; Seo, M.W. Gasification and Tar Removal Characteristics of Rice Husk in a Bubbling Fluidized Bed Reactor. Fuel 2016, 181, 942–950. [Google Scholar] [CrossRef]
- Pandey, A.; Bhaskar, T.; Stöcker, M.; Sukumaran, R.K.B.T. Recent Advances in Thermochemical Conversion of Biomass; Elsevier: Boston, MA, USA, 2015; ISBN 978-0-444-63289-0. [Google Scholar]
- Upadhyay, D.S.; Sakhiya, A.K.; Panchal, K.; Patel, A.H.; Patel, R.N. Effect of Equivalence Ratio on the Performance of the Downdraft Gasifier—An Experimental and Modelling Approach. Energy 2019, 168, 833–846. [Google Scholar] [CrossRef]
- Mun, T.-Y.; Kim, J.-O.; Kim, J.-W.; Kim, J.-S. Influence of Operation Conditions and Additives on the Development of Producer Gas and Tar Reduction in Air Gasification of Construction Woody Wastes Using a Two-Stage Gasifier. Bioresour. Technol. 2011, 102, 7196–7203. [Google Scholar] [CrossRef] [PubMed]
- Martínez González, A.; Lesme Jaén, R.; Silva Lora, E.E. Thermodynamic Assessment of the Integrated Gasification-Power Plant Operating in the Sawmill Industry: An Energy and Exergy Analysis. Renew. Energy 2020, 147, 1151–1163. [Google Scholar] [CrossRef]
- Martínez González, A.; Silva Lora, E.E.; Escobar Palacio, J.C.; Almazán del Olmo, O.A. Hydrogen Production from Oil Sludge Gasification/Biomass Mixtures and Potential Use in Hydrotreatment Processes. Int. J. Hydrogen Energy 2018, 43, 7808–7822. [Google Scholar] [CrossRef]
- Lan, W.; Chen, G.; Zhu, X.; Wang, X.; Wang, X.; Xu, B. Research on the Characteristics of Biomass Gasification in a Fluidized Bed. J. Energy Inst. 2019, 92, 613–620. [Google Scholar] [CrossRef]
- Bizkarra, K.; Barrio, V.L.; Arias, P.L.; Cambra, J.F. Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil. In Hydrogen Production Technologies; Sankir, M., Sankiri, N.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 305–362. ISBN 9781119283676. [Google Scholar]
- Sharma, T.; Maya, D.M.Y.; Nascimento, F.R.M.; Shi, Y.; Ratner, A.; Silva Lora, E.E.; Neto, L.J.M.; Palacios, J.C.E.; Andrade, R.V. An Experimental and Theoretical Study of the Gasification of Miscanthus Briquettes in a Double-Stage Downdraft Gasifier: Syngas, Tar, and Biochar Characterization. Energies 2018, 11, 3225. [Google Scholar] [CrossRef] [Green Version]
- Khosasaeng, T.; Suntivarakorn, R. Effect of Equivalence Ratio on an Efficiency of Single Throat Downdraft Gasifier Using RDF from Municipal Solid Waste. Energy Procedia 2017, 138, 784–788. [Google Scholar] [CrossRef]
- Kuo, P.C.; Wu, W.; Chen, W.H. Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis. Fuel 2014, 117, 1231–1241. [Google Scholar] [CrossRef]
- Sharma, P.; Gupta, B.; Pandey, M.; Singh Bisen, K.; Baredar, P. Downdraft Biomass Gasification: A Review on Concepts, Designs Analysis, Modelling and Recent Advances. Mater. Today Proc. 2021, 46, 5333–5341. [Google Scholar] [CrossRef]
- Castillo Santiago, Y.; Pérez, J.F.; Sphaier, L.A. Reaction-Front and Char Characterization from a Palm Kernel Shell—Oil Sludge Mixture under Oxygen Lean Regimes in a Fixed-Bed Gasifier. Fuel 2023, 333, 126402. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, C.; Cai, L.; Long, X. Steady State Modelling of Steam-Gasification of Biomass for H2-Rich Syngas Production. Energy 2022, 238, 121616. [Google Scholar] [CrossRef]
- Jaffar, M.M.; Nahil, M.A.; Williams, P.T. Synthetic Natural Gas Production from the Three Stage (i) Pyrolysis (Ii) Catalytic Steam Reforming (Iii) Catalytic Hydrogenation of Waste Biomass. Fuel Process. Technol. 2020, 208, 106515. [Google Scholar] [CrossRef]
Ultimate Analysis | Proximate Analysis | ||
---|---|---|---|
Component | Content [%] | Component | Content [%] |
Carbon | 50.70 | Volatiles (Dry Basis) | 85.40 |
Hydrogen | 5.90 | Fixed Carbon (Dry Basis) | 14.40 |
Oxygen | 43.00 | Ash (Dry Basis) | 0.20 |
Nitrogen | 0.19 | Moisture (Wet Basis) | 7.20 |
Sulfur | 5 × 10−3 | ||
Chlorine | 5 × 10−3 | ||
Ash | 0.20 |
Code | Chemical Reaction | Reaction Name | Reaction Heat (kJ/mol) | Zone |
---|---|---|---|---|
R1 | Biomass → volatiles + char | Biomass pyrolysis | - | PYZON |
R2 | H2+ 1/2O2 → H2O | Hydrogen oxidation | −242 | COMBUZON |
R3 | CO + 1/2O2 → CO2 | Monoxide carbon oxidation | −238 | COMBUZON |
R4 | C + 1/2O2 → CO | Partial oxidation of char | −111 | COMBUZON |
R5 | C + O2 → CO2 | Total oxidation of char | −394 | COMBUZON |
R6 | C + CO2 ←→ 2CO | Boudouard reaction | +172 | REDUZON |
R7 | CO + H2O ←→ CO2 + H2 | Shift reaction | −41 | REDUZON |
R8 | C + H2O ←→ CO + H2 | Char gasification | +131 | REDUZON |
R9 | C + 2H2 ←→ CH4 | Char hydrogenation | −75 | REDUZON |
R10 | CH4 + H2O ←→ CO + 3H2 | Steam methane reforming | +206 | REDUZON |
Oxygen Volumetric Concentration in AGENT Flow [%] | Nitrogen Volumetric Concentration in AGENT Flow [%] | Removed Nitrogen Flow [kg/h] | Removed Nitrogen Split Fraction at ASU Block [-] |
---|---|---|---|
21 | 79 | 0 | 0 |
25 | 75 | 25.26 | 0.2025 |
30 | 70 | 47.37 | 0.3797 |
35 | 65 | 63.16 | 0.5063 |
40 | 60 | 75.01 | 0.6013 |
Parameter | Units | Values | |||
---|---|---|---|---|---|
Average gasification zone temperature | °C | 850 | 850 | 800 | 800 |
Equivalence ratio | [-] | 0.36 | 0.36 | 0.27 | 0.27 |
Biomass | N/A | Wood chip | Wood Chip | Wood Pellets | Wood Pellets |
Low heating value | MJ/Nm3 | 4.85 | 4.70 | 5.14 | 5.52 |
Composition | |||||
H2 | % | 15.23 | 16.39 | 18.32 | 21.37 |
CO | % | 23.04 | 20.91 | 20.93 | 19.29 |
CO2 | % | 16.42 | 17.16 | 12.87 | 11.72 |
CH4 | % | 1.58 | 0.8 | 3.09 | 2.2 |
N2 | % | 42.31 | 44.54 | 44.79 | 45.42 |
Other species | % | 1.42 | 0.2 | - | - |
Source | N/A | [32] | This model | [33] | This model |
RMS | N/A | - | 1.49 | - | 1.55 |
Parameter | Value |
---|---|
Rating | 200 kW |
Electrical Efficiency | 33% |
Net Heat Rate LHV | 10.9 MJ/kWh |
Exhaust Gas Flow | 1.3 kg/s |
Compression ratio | 4.0 |
Feature/Item | Unit of Measure | Magnitude |
---|---|---|
Electric power | kW | 81.35 |
Availability factor [42] | % | 95 |
Annual energy | kWh/Year | 676,994.70 |
Investment | ||
Gas microturbine | USD | 347,600.00 |
Downdraft gasifier (Includes installation) | USD | 92,939.61 |
Air separation unit | USD | 8640.00 |
Canvas gasometer | USD | 5001.00 |
Balance of plant (BOP) [43] | USD | 88,107.92 |
Import taxes | USD | 166,303.70 |
Total | USD | 708,592.24 |
Tax | Magnitude |
---|---|
TEC Mercosur | 0.00% |
IPI | 8.00% |
PIS | 2.10% |
COFINS | 9.65% |
ICMS (Minas Gerais) | 18.00% |
Total | 37.75% |
Parameter | Unit | Magnitude |
---|---|---|
Electricity price (before tax) | USD/kWh | 0.1614 |
Electricity taxes (Resolution 2550/2019) | % | 25.00 |
Electricity price (After tax) | USD/kWh | 0.2017 |
Annual revenue | USD/Year | 136,583.68 |
Annual Expenses | Unit | Magnitude |
---|---|---|
Gas microturbine operation and maintenance (O&M) | USD | 12,725.57 |
Downdraft gasifier operation and maintenance (O&M) | USD | 4275.22 |
Wood pellets | USD | 102,956.65 |
Total | USD | 119,957.44 |
Parameter | Unit | Magnitude |
---|---|---|
Service life | Years | 15.00 |
Brazilian Real/United States Dollar exchange rate | BRL/USD | 5.72 |
Income tax 1 | % | 0.00 |
Depreciation | % APY | 10.00 |
MARR | % APY | 10.32 |
Wood pellets price | USD/ton | 126.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderon Henao, N.; Venturini, O.J.; Castillo Santiago, Y.; Silva Lora, E.E.; Yepes Maya, D.M.; Pamplona, E.d.O.; Navarro Hoyos, J.S.; Ando Junior, O.H. Energy and Economic Assessment of a System Integrated by a Biomass Downdraft Gasifier and a Gas Microturbine. Processes 2022, 10, 2377. https://doi.org/10.3390/pr10112377
Calderon Henao N, Venturini OJ, Castillo Santiago Y, Silva Lora EE, Yepes Maya DM, Pamplona EdO, Navarro Hoyos JS, Ando Junior OH. Energy and Economic Assessment of a System Integrated by a Biomass Downdraft Gasifier and a Gas Microturbine. Processes. 2022; 10(11):2377. https://doi.org/10.3390/pr10112377
Chicago/Turabian StyleCalderon Henao, Nelson, Osvaldo José Venturini, York Castillo Santiago, Electo Eduardo Silva Lora, Diego Mauricio Yepes Maya, Edson de Oliveira Pamplona, Jhon Steven Navarro Hoyos, and Oswaldo Hideo Ando Junior. 2022. "Energy and Economic Assessment of a System Integrated by a Biomass Downdraft Gasifier and a Gas Microturbine" Processes 10, no. 11: 2377. https://doi.org/10.3390/pr10112377
APA StyleCalderon Henao, N., Venturini, O. J., Castillo Santiago, Y., Silva Lora, E. E., Yepes Maya, D. M., Pamplona, E. d. O., Navarro Hoyos, J. S., & Ando Junior, O. H. (2022). Energy and Economic Assessment of a System Integrated by a Biomass Downdraft Gasifier and a Gas Microturbine. Processes, 10(11), 2377. https://doi.org/10.3390/pr10112377