Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile
Abstract
1. Introduction
2. Materials and Methods
3. Results
Subjects and Baseline Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mercury and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 16 June 2022).
- Sakamoto, M.; Nakamura, M.; Murata, K. Mercury as a Global Pollutant and Mercury Exposure Assessment and Health Effects. Nippon. Eiseigaku Zasshi Jpn. J. Hyg. 2018, 73, 258–264. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe. Air Quality Guidelines, 2nd ed.; Chapter 6.9; WHO Regional Office for Europe: Copenhagen, Denmark, 2000; Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/123079/AQG2ndEd_6_9Mercury.PDF (accessed on 16 June 2022).
- Boerleider, R.Z.; Roeleveld, N.; Scheepers, P.T. Human biological monitoring of mercury for exposure assessment. AIMS Environ. Sci. 2017, 4, 251–276. [Google Scholar] [CrossRef]
- Mercury Factsheet|National Biomonitoring Program|CDC. Published 2 September 2021. Available online: https://www.cdc.gov/biomonitoring/Mercury_FactSheet.html (accessed on 16 June 2022).
- Choi, H.; Park, S.-K.; Kim, M.-H. Risk Assessment of Mercury through Food Intake for Korean Population. Korean J. Food Sci. Technol. 2012, 44, 106–113. [Google Scholar] [CrossRef]
- Ye, B.-J.; Kim, B.-G.; Jeon, M.-J.; Kim, S.-Y.; Kim, H.-C.; Jang, T.-W.; Chae, H.-J.; Choi, W.-J.; Ha, M.-N.; Hong, Y.-S. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef]
- Posin, S.L.; Kong, E.L.; Sharma, S. Mercury Toxicity; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK499935/ (accessed on 16 June 2022).
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Lund, B.-O.; Miller, D.M.; Woods, J.S. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol. 1993, 45, 2017–2024. [Google Scholar] [CrossRef]
- Younus, H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018, 12, 88–93. [Google Scholar]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef]
- Linšak, Ž.; Linšak, D.T.; Špirić, Z.; Srebočan, E.; Glad, M.; Milin, Č. Effects of mercury on glutathione and glutathione-dependent enzymes in hares (Lepus europaeus Pallas). J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1325–1332. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Agarwal, R.; Behari, J.R. Effect of Selenium Pretreatment in Chronic Mercury Intoxication in Rats. Bull. Environ. Contam. Toxicol. 2007, 79, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Silva-Filho, R.; Santos, N.; Santos, M.C.; Nunes, Á.; Pinto, R.; Marinho, C.; Lima, T.; Fernandes, M.P.; Santos, J.C.C.; Leite, A.C.R. Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió—Alagoas (AL), Brazil. Ecotoxicol. Environ. Saf. 2021, 219, 112337. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Soliman, K.F.A. The Role of Intracellular Glutathione in Inorganic Mercury-Induced Toxicity in Neuroblastoma Cells. Neurochem. Res. 2009, 34, 1677–1684. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions between Nutrients and Toxicants in Clinical Medicine. Sci. World J. 2015, 2015, 318595. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Parnia, A.; Chakravartty, D.; Archbold, J.; Copes, R.; Cole, D. Total, methyl and inorganic mercury concentrations in blood and environmental exposure sources in newcomer women in Toronto, Canada. Environ. Res. 2018, 169, 261–271. [Google Scholar] [CrossRef]
- Rambousková, J.; Krsková, A.; Slavíková, M.; Čejchanová, M.; Černá, M. Blood levels of lead, cadmium, and mercury in the elderly living in institutionalized care in the Czech Republic. Exp. Gerontol. 2014, 58, 8–13. [Google Scholar] [CrossRef]
- Chen, C.; Qu, L.; Li, B.; Xing, L.; Jia, G.; Wang, T.; Gao, Y.; Zhang, P.; Li, M.; Chen, W.; et al. Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2′-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clin. Chem. 2005, 51, 759–767. [Google Scholar] [CrossRef]
- Lemire, M.; Fillion, M.; Frenette, B.; Mayer, A.; Philibert, A.; Passos, C.J.S.; Guimaraes, J.R.D.; Barbosa, F.; Mergler, N. Selenium and Mercury in the Brazilian Amazon: Opposing Influences on Age-Related Cataracts. Environ. Health. Perspect. 2010, 118, 1584–1589. [Google Scholar] [CrossRef]
- Siblerud, R.; Mutter, J.; Moore, E.; Naumann, J.; Walach, H. A Hypothesis and Evidence That Mercury May be an Etiological Factor in Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 5152. [Google Scholar] [CrossRef]
- Alexander, J.; Thomassen, Y.; Aaseth, J. Increased urinary excretion of selenium among workers exposed to elemental mercury vapor. J. Appl. Toxicol. 1983, 3, 143–145. [Google Scholar] [CrossRef]
- Lopes, A.C.B.A.; Urbano, M.; de Souza-Nogueira, A.; Oliveira-Paula, G.H.; Michelin, A.P.; Carvalho, M.D.F.H.; Camargo, A.E.I.; Peixe, T.S.; Cabrera, M.A.S.; Paoliello, M.M.B. Association of lead, cadmium and mercury with paraoxonase 1 activity and malondialdehyde in a general population in Southern Brazil. Environ. Res. 2017, 156, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Branco, V.; Canário, J.; Lu, J.; Holmgren, A.; Carvalho, C. Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radic. Biol. Med. 2011, 52, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawie, H.F.; Umran, A.; Hyader, N.H. Oxidative Stress, Antioxidant Status and DNA Damage in a Mercury Exposure Workers. Br. J. Pharmacol. Toxicol. 2013, 4, 80–88. [Google Scholar] [CrossRef]
- Shenker, B.J.; Pankoski, L.; Zekavat, A.; Shapiro, I.M. Mercury-Induced Apoptosis in Human Lymphocytes: Caspase Activation Is Linked to Redox Status. Antioxid. Redox Signal. 2002, 4, 379–389. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n, %) | Males (n, %) | Females (n, %) | p |
---|---|---|---|---|
Total (n, %) | 67 | 38 (56.71) | 29 (43.38) | NS |
Area | ||||
Urban | 59 (88.05) | 34 (89.47) | 25 (82.20) | NS |
Rural | 8 (11.94) | 4 (10.52) | 4 (13.79) | NS |
Age (years) | ||||
19–39 | 11 (16.41) | 5 (13.15) | 6 (20.68) | NS |
39–59 | 23 (34.32) | 12 (31.57) | 11 (37.93) | NS |
60–69 | 16 (23.88) | 9 (23.68) | 7 (24.13) | NS |
≥70 | 17 (25.37) | 12 (17.91) | 5 (17.24) | <0.005 |
Education | ||||
less than high school | 19 (28.35) | 9 (23.68) | 10 (34.48) | NS |
high school diploma | 21 (31.34) | 16 (42.13) | 5 (17.24) | NS |
college graduate | 27 (40.29) | 13 (34.21) | 14 (48.27) | NS |
Smoking | ||||
past smoker | 22 (32.83) | 15 (39.47) | 7 (24.13) | NS |
never smoker | 11 (16.41) | 2 (5.26) | 9 (31.03) | NS |
current smoker | 34 (50.74) | 21 (55.26) | 13 (44.82) | NS |
Alcohol | ||||
Yes | 38 (56.71) | 32 (84.21) | 6 (20.68) | <0.005 |
No | 29 (43.28) | 6 (15.78) | 23 (79.31) | <0.005 |
Age (years) | HgBL (mcg) | SOD (U/gHg) | GPx (U/I) | MLD (Micromol/L) | GSH-ly (mfi) | Se (mcg/L) | Vitamin D (ng/mL) | |
---|---|---|---|---|---|---|---|---|
Median | 46 | 12 | 2331 | 12,649 | 1.3 | 320 | 125 | 28 |
Minimum | 37 | 1 | 1820 | 6347 | 0.3 | 202 | 43 | 19 |
Maximum | 66 | 25 | 2590 | 16,899 | 2.2 | 389 | 146 | 35 |
95% CI of median lower limit | 44 | 11 | 2267 | 11,270 | 1.2 | 300 | 122 | 27 |
95% CI of median upper limit | 48 | 13 | 2360 | 13,502 | 1.4 | 334 | 132 | 29 |
Coefficient of variation | 15.7% | 40.17% | 10.5% | 30.55% | 46.57% | 20.79% | 31.83% | 16.35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tincu, R.C.; Cobilinschi, C.; Florea, I.A.; Cotae, A.-M.; Băetu, A.E.; Isac, S.; Ungureanu, R.; Droc, G.; Grintescu, I.M.; Mirea, L. Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile. Processes 2022, 10, 2388. https://doi.org/10.3390/pr10112388
Tincu RC, Cobilinschi C, Florea IA, Cotae A-M, Băetu AE, Isac S, Ungureanu R, Droc G, Grintescu IM, Mirea L. Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile. Processes. 2022; 10(11):2388. https://doi.org/10.3390/pr10112388
Chicago/Turabian StyleTincu, Radu Ciprian, Cristian Cobilinschi, Iulia Alexandra Florea, Ana-Maria Cotae, Alexandru Emil Băetu, Sebastian Isac, Raluca Ungureanu, Gabriela Droc, Ioana Marina Grintescu, and Liliana Mirea. 2022. "Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile" Processes 10, no. 11: 2388. https://doi.org/10.3390/pr10112388
APA StyleTincu, R. C., Cobilinschi, C., Florea, I. A., Cotae, A.-M., Băetu, A. E., Isac, S., Ungureanu, R., Droc, G., Grintescu, I. M., & Mirea, L. (2022). Effects of Low-Level Organic Mercury Exposure on Oxidative Stress Profile. Processes, 10(11), 2388. https://doi.org/10.3390/pr10112388