Flow Characteristics and Anti-Vortex in a Pump Station with Laterally Asymmetric Inflow
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Computational Domains
2.2. Governing Equations
2.3. Boundary Condition
2.4. Mesh Preparation and Independence Analysis
3. Analysis Sections and Parameters
3.1. Analysis Sections
3.2. Analysis Parameters
- (a)
- Axial velocity uniformity and axial velocity weighted average angle [32].
- (b) Recirculation coefficient
- (c) Q Criterion
4. Anti-Vortex and Rectification Schemes
5. Result Analysis
5.1. Anti-Vortex Effect in the Forebay
5.1.1. Flow Pattern Improvement
5.1.2. Vortex Distribution
5.1.3. Hydraulic Loss Performance
5.2. Rectification Efficiency in Sump
5.2.1. Axial Velocity Uniformity
5.2.2. Outflow Discharge Balance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasr, A.; Yang, F.; Zhang, Y.; Wang, T.; Hassan, M. Analysis of the Flow Pattern and Flow Rectification Measures of the Side-Intake Forebay in a Multi-Unit Pumping Station. Water 2021, 13, 2025. [Google Scholar] [CrossRef]
- Song, W.; Pang, Y.; Shi, X.; Xu, Q. Study on the rectification of forebay in pumping station. Math. Probl. Eng. 2018, 2018, 2876980. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, F.; Liu, C.; Chen, S.; He, J. Numerical simulation of side-intake flow for fluid meliorating of pumping stations. Water Resour. Hydropower Eng. 2017, 48, 79–84. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, H.; Jamil, M.T.; Yu, Y. Improvement of the Flow Pattern of a Forebay with a Side-Intake Pumping Station by Diversion Piers Based on Orthogonal Test Method. Water 2022, 14, 2663. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, M.; Wang, C.; Gao, Z. Optimal Design of Diversion Piers of Lateral Intake Pumping Station Based on Orthogonal Test. Shock Vib. 2021, 2021, 6616456. [Google Scholar] [CrossRef]
- Xi, W.; Lu, W.G. Formation Mechanism of an Adherent Vortex in the Side Pump Sump of a Pumping Station. Int. J. Simul. Model. 2021, 20, 327–338. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Liu, C.; Wang, T.; Jiang, D.; Jin, Y. Numerical and Experimental Investigations of Flow Pattern and Anti-Vortex Measures of Forebay in a Multi-Unit Pumping Station. Water 2021, 13, 935. [Google Scholar] [CrossRef]
- Luo, C.; Liu, C. Numerical simulation and improvement of side-intake characteristics of multi-unit pumping station. J. Hydroelectr. Eng. 2015, 34, 207–214. [Google Scholar] [CrossRef]
- Luo, C.; Qian, J.; Liu, C.; Chen, F.; Zhou, Q. Numerical simulation and test verification on diversion pier rectifying flow in forebay of pumping station for asymmetric combined sluice-pump station project. Trans. Chin. Soc. Agric. Eng. 2015, 31, 100–108. [Google Scholar] [CrossRef]
- Choi, J.; Choi, Y.; Kim, C.; Lee, Y. Flow uniformity in a multi-intake pump sump model. J. Mech. Sci. Technol. 2010, 24, 1389–1400. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, S.; Chen, Y.; Liu, X.; Fu, X. Numerical Simulation of Rectification Measures for Side-direction Forebay in Pump Station. China Rural Water Hydropower 2016, 5, 117–120. [Google Scholar] [CrossRef]
- Zhou, J.; Zhong, S.; Liang, J.; Shi, X. Three-dimensional Numerical Simulation of Side-intake Forebay of Pumping Station. J. Irrig. Drain. 2015, 34, 52–55+80. [Google Scholar] [CrossRef]
- Kadam, P.; Chavan, D. CFD analysis of flow in pump sump to check suitability for better performance of pump. Int. J. Mech. Eng. Robot. 2013, 1, 59–65. [Google Scholar]
- Xia, C.; Cheng, L.; Zhao, G.; Yu, L.; Wu, M.; Xu, W. Numerical simulation of flow pattern in forebay of pump station with single row of square columns. Adv. Sci. Technol. Water Resour. 2017, 37, 53–58. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C. Hydraulic performance of pump sumps based on CFD approach. J. Hohai Univ. Nat. Sci. 2009, 37, 52–56. [Google Scholar]
- Constantinescu, G.; Patel, V. Role of turbulence model in prediction of pump-bay vortices. J. Hydraul. Eng. 2000, 126, 387–391. [Google Scholar] [CrossRef]
- Xu, C.; Wang, R.; Liu, H.; Zhang, R.; Wang, M.; Wang, Y. Flow pattern and anti-silt measures of straight-edge forebay in large pump stations. Int. J. Heat Technol. 2018, 36, 1130–1139. [Google Scholar] [CrossRef]
- Ying, J.; Yu, X.; He, W.; Zhang, J. Volume of fluid model-based flow pattern in forebay of pump station and combined rectification Scheme. J. Irrig. Drain. Eng. 2020, 38, 476–480. [Google Scholar] [CrossRef]
- Wu, X.; Pen, Z.; Fu, Q.; Zhong, S.; Song, Y. Study on lmprovement Measures of Flow Pattern in Inlet Water Pumping Station. J. Irrig. Drain. 2019, 38, 96–100. [Google Scholar] [CrossRef]
- Zi, D.; Wang, F.; Yao, Z.; Hou, Y.; Xiao, R.; He, C.; Yang, E. Effects analysis on rectifying intake flow field for large scale pumping station with combined diversion piers. Trans. Chin. Soc. Agric. Eng. 2015, 31, 71–77. [Google Scholar] [CrossRef]
- Yu, Y.; Cheng, B. CFD simulation and optimization on inflow pattern of diversion and intake pumping stations with side-inlet. Water Resour. Hydropower Eng. 2012, 43, 72–75+89. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, W.; Jiao, H.; Tang, F.; Wang, L.; Sun, D.; Shi, W. Numerical simulation and experimental study on the comparison of the hydraulic characteristics of an axial-flow pump and a full tubular pump. Renew. Energy 2020, 153, 1455–1464. [Google Scholar] [CrossRef]
- Luo, C.; Du, K.; Qi, W.; Cheng, L.; Huang, X.; Lu, J. Investigation on the effect of the shaft transition form on the inflow pattern and hydrodynamic characteristics of the pre-shaft tubular pump device. Front. Energy Res. 2022, 10, 955492. [Google Scholar] [CrossRef]
- Yang, F.; Li, Z.; Yuan, Y.; Lin, Z.; Zhou, G.; Ji, Q. Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine. Renew. Energy 2022, 196, 856–869. [Google Scholar] [CrossRef]
- Shi, L.; Zhu, J.; Tang, F.; Wang, C. Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model. Energies 2020, 13, 779. [Google Scholar] [CrossRef] [Green Version]
- Kan, K.; Zhang, Q.; Xu, Z.; Chen, H.; Zheng, Y.; Zhou, D.; Binama, M. Study on a horizontal axial flow pump during runaway process with bidirectional operating conditions. Sci. Rep. 2021, 11, 21834. [Google Scholar] [CrossRef]
- Shi, L.; Yuan, Y.; Jiao, H.; Tang, F.; Cheng, L.; Yang, F.; Jin, Y.; Zhu, J. Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump. Renew. Energy 2021, 163, 987–1000. [Google Scholar] [CrossRef]
- Zi, D.; Wang, F.; He, C.; Xue, S. Influences of start-up pump units on the sediment concentration for the intake system of a pumping station. Trans. Chin. Soc. Agric. Eng. 2022, 38, 59–68. [Google Scholar]
- Siemens A&D Groups. NX 12 Help. 2017. Available online: https://docs.plm.automation.siemens.com/tdoc/nx/12/nx_help (accessed on 10 October 2022).
- GB 50265-2022; Standard for Pumping Station Design. Ministry of Housing and Urban Rural Development of the People’s Republic of China: Beijing, China, 2022.
- Xu, B.; Liu, J.; Lu, W. Optimization Design of Y-Shaped Settling Diversion Wall Based on Orthogonal Test. Machines 2022, 10, 91. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, L.; Tang, F.; Duan, X.; Liu, H.; Sun, Z. Analysis of inlet flow passage conditions and their influence on the performance of an axial-flow pump. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 235, 733–746. [Google Scholar] [CrossRef]
- Hunt, J.; Wray, A.; Moin, P. Eddies, streams, and convergence zones in turbulent flows. Cent. Turbul. Res. Proc. Summer Program. 1988, 1, 193–208. [Google Scholar]
Scheme | Anti-Vortex Measure | Dimension |
---|---|---|
— | Original Scheme | |
1 | Straight diversion piers and curved wing wall | |
2 | V-shaped diversion pier | |
3 | symmetrical 川-shaped diversion pier | |
4 | Circular Column |
Scheme | Rectification Measure | Dimension | |
---|---|---|---|
— | Original scheme | ||
5 | Three- sectional diversion pier | ||
6 | Triangle column | ||
7 | Straight back baffle |
Original Scheme | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | |
---|---|---|---|---|---|
Recirculation volume ratio | 0.396 | 0.261 | 0.352 | 0.263 | 0.263 |
Recirculation velocity ratio | 0.875 | 0.893 | 0.583 | 0.766 | 0.735 |
Recirculation coefficient | 0.347 | 0.233 | 0.206 | 0.202 | 0.193 |
Scheme | 1# | 2# | 3# | 4# | ||||
---|---|---|---|---|---|---|---|---|
Vau/% | θa/( °) | Vau/% | θa/( °) | Vau/% | θa/( °) | Vau/% | θa/( °) | |
Original scheme | 37.89 | 61.17 | 56.94 | 42.34 | 47.05 | 36.90 | 48.29 | 33.49 |
Scheme 6 | 81.61 | 86.51 | 84.31 | 83.60 | 81.87 | 80.67 | 81.88 | 60.66 |
Scheme 7 | 81.61 | 86.51 | 84.33 | 83.61 | 81.86 | 80.75 | 81.98 | 60.88 |
Scheme 8 | 81.64 | 86.48 | 84.31 | 83.61 | 81.95 | 80.93 | 81.68 | 61.15 |
Scheme | 1# | 2# | 3# | 4# | ||||
---|---|---|---|---|---|---|---|---|
Vau/% | θa/( °) | Vau/% | θa/( °) | Vau/% | θa/( °) | Vau/% | θa/( °) | |
Original scheme | 76.51 | 59.90 | 40.83 | 74.20 | 42.12 | 73.89 | 16.74 | 79.85 |
Scheme 5 | 80.12 | 84.93 | 79.56 | 84.41 | 75.33 | 85.06 | 54.44 | 84.26 |
Scheme 6 | 80.32 | 85.01 | 79.62 | 84.58 | 75.72 | 85.56 | 65.87 | 84.72 |
Scheme 7 | 80.38 | 85.01 | 79.73 | 84.71 | 75.75 | 85.56 | 70.79 | 84.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; He, Y.; Shang, Y.; Cong, X.; Ding, C.; Cheng, L.; Lei, S. Flow Characteristics and Anti-Vortex in a Pump Station with Laterally Asymmetric Inflow. Processes 2022, 10, 2398. https://doi.org/10.3390/pr10112398
Luo C, He Y, Shang Y, Cong X, Ding C, Cheng L, Lei S. Flow Characteristics and Anti-Vortex in a Pump Station with Laterally Asymmetric Inflow. Processes. 2022; 10(11):2398. https://doi.org/10.3390/pr10112398
Chicago/Turabian StyleLuo, Can, Yufan He, Yinan Shang, Xiao Cong, Chao Ding, Li Cheng, and Shuaihao Lei. 2022. "Flow Characteristics and Anti-Vortex in a Pump Station with Laterally Asymmetric Inflow" Processes 10, no. 11: 2398. https://doi.org/10.3390/pr10112398
APA StyleLuo, C., He, Y., Shang, Y., Cong, X., Ding, C., Cheng, L., & Lei, S. (2022). Flow Characteristics and Anti-Vortex in a Pump Station with Laterally Asymmetric Inflow. Processes, 10(11), 2398. https://doi.org/10.3390/pr10112398