High Efficiency and High Voltage Conversion Ratio Bidirectional Isolated DC–DC Converter for Energy Storage Systems
Abstract
:1. Introduction
2. Circuit Architecture and Operation Principle
- (1)
- The internal resistance and parasitic effects can be ignored.
- (2)
- The voltages of the capacitors and currents of the inductors increase and decrease linearly.
- (3)
- The capacitances of C1, C2, C3, and C4 are infinite.
- (4)
- All the magnetic components operate in the continuous-current mode (CCM).
- (5)
- The number of turns N1 = N2 < N3, and N2/N1 = N3/N1 = n.
2.1. Step-Up Mode
- (1)
- Mode 1 [t0–t1]
- (2)
- Mode 2 [t1–t2]
- (3)
- Mode 3 [t2–t3]
- (4)
- Mode 4 [t3–t4]
- (5)
- Mode 5 [t4–t5]
2.2. Step-Down Mode
- (1)
- Mode 1 [t0–t1]
- (2)
- Mode 2 [t1–t2]
- (3)
- Mode 3 [t2–t3]
- (4)
- Mode 4 [t3–t4]
- (5)
- Mode 5 [t4–t5]
- (1)
- Mode 6 [t5–t6]
- (2)
- Mode 7 [t6–t7]
3. Steady-State Analysis
- (1)
- All internal resistances and parasitic effects are ignored.
- (2)
- The currents of the inductors and voltages of the capacitors increase and decrease linearly.
- (3)
- N2/N1 = n.
- (4)
- All magnetic components are operated in the CCM.
- (5)
- The capacitances of C1, C2, C3, and C4 are infinite.
3.1. Step-Up Mode
- (1)
- Voltage Gain Analysis
- (2)
- Voltage Stress Analysis
3.2. Step-Down Mode
- (1)
- Voltage Gain Analysis
- (2)
- Voltage Stress Analysis
3.3. Magnetic Component Design
- (1)
- Step-Up Mode
- (2)
- Step-Down Mode
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elavarasan, R.M.; Shafiullah, G.; Padmanaban, S.; Kumar, N.M.; Annam, A.; Vetrichelvan, A.M.; Mihet-Popa, L.; Holm-Nielsen, J.B. A Comprehensive Review on Renewable Energy Development, Challenges, and Policies of Leading Indian States with an International Perspective. IEEE Access 2020, 8, 74432–74457. [Google Scholar] [CrossRef]
- Jia, K.; Wang, C.; Bi, T.; Feng, T.; Zhu, R. Transient Current Correlation Based Protection for DC Distribution System. IEEE Trans. Ind. Electron. 2020, 67, 9927–9936. [Google Scholar] [CrossRef]
- Lucas, K.E.; Pagano, D.J.; Vaca-Benavides, D.A.; García-Arcos, R.; Rocha, E.M.; Medeiros, R.L.P.; Ríos, S.J. Robust Control of Interconnected Power Electronic Converters to Enhance Performance in DC Distribution Systems: A Case of Study. IEEE Trans. Power Electron. 2021, 36, 4851–4863. [Google Scholar] [CrossRef]
- Tesaki, K.; Hagiwara, M. Control and Experimental Verification of a Bidirectional Non-isolated DC–DC Converter Based on Switched-Capacitor Converters. IEEE Trans. Power Electron. 2021, 36, 6501–6512. [Google Scholar] [CrossRef]
- Mousavinezhad, S.; Sabahi, M. New Expandable Switched-Capacitor/Switched-Inductor High-Voltage Conversion Ratio Bidirectional DC–DC Converter. IEEE Trans. Power Electron. 2020, 35, 2480–2487. [Google Scholar]
- Sun, J.; Fong, Y.C.; Cheng, K.W.E. Current Source Mode Bidirectional DC/DC Converter with Multiple-Level Output Conversion Ratios Based on the Hybrid PWM Control of the Switched-Capacitor Structure. IEEE J. Emerg. Selected Topics Power Electron. 2022, 10, 604–616. [Google Scholar] [CrossRef]
- Wu, H.; Sun, K.; Chen, L.; Zhu, L.; Xing, Y. High Step-Up/Step-Down Soft-Switching Bidirectional DC–DC Converter with Coupled-Inductor and Voltage Matching Control for Energy Storage Systems. IEEE Trans. Ind. Electron. 2016, 63, 2892–2903. [Google Scholar] [CrossRef]
- Ardi, H.; Ajami, A.; Kardan, F.; Avilagh, S.N. Analysis and Implementation of a Non-isolated Bidirectional DC–DC Converter with High Voltage Gain. IEEE Trans. Ind. Electron. 2016, 63, 4878–4888. [Google Scholar] [CrossRef]
- Xiong, S.; Tan, S. Cascaded High-Voltage-Gain Bidirectional Switched-Capacitor DC–DC Converters for Distributed Energy Resources Applications. IEEE Trans. Power Electron. 2017, 32, 1220–1231. [Google Scholar] [CrossRef]
- Dung, N.A.; Chiu, H.-J.; Liu, Y.-C.; Huang, P.J. Analysis and Implementation of a High Voltage Gain 1 MHz Bidirectional DC–DC Converter. IEEE Trans. Ind. Electron. 2020, 67, 1415–1424. [Google Scholar] [CrossRef]
- Wai, R.; Liaw, J. High-Efficiency-Isolated Single-Input Multiple-Output Bidirectional Converter. IEEE Trans. Power Electron. 2015, 30, 4914–4930. [Google Scholar] [CrossRef]
- Mukhtar, N.M.; Lu, D.D. A Bidirectional Two-Switch Flyback Converter with Cross-Coupled LCD Snubbers for Minimizing Circulating Current. IEEE Trans. Ind. Electron. 2019, 66, 5948–5957. [Google Scholar] [CrossRef]
- Bai, C.; Han, B.; Kwon, B.; Kim, M. Highly Efficient Bidirectional Series-Resonant DC/DC Converter Over Wide Range of Battery Voltages. IEEE Trans. Power Electron. 2019, 35, 3636–3650. [Google Scholar] [CrossRef]
- Shi, H.; Sun, K.; Wu, H.; Li, Y. A Unified State-Space Modeling Method for a Phase-Shift Controlled Bidirectional Dual-Active Half-Bridge Converter. IEEE Trans. Power Electron. 2020, 35, 3254–3265. [Google Scholar] [CrossRef]
- Haneda, R.; Akagi, H. Design and Performance of the 850-V 100-kW 16-kHz Bidirectional Isolated DC–DC Converter Using SiC-MOSFET/SBD H-Bridge Modules. IEEE Trans. Power Electron. 2020, 35, 10013–10025. [Google Scholar] [CrossRef]
- Waffler, S.; Kolar, J.W. A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters. IEEE Trans. Power Electron. 2009, 24, 1589–1599. [Google Scholar] [CrossRef]
- Jia, L.; Sun, X.; Zheng, Z.; Ma, X.; Dai, L. Multimode Smooth Switching Strategy for Eliminating the Operational Dead Zone in Noninverting Buck–Boost Converter. IEEE Trans. Power Electron. 2020, 35, 3106–3113. [Google Scholar] [CrossRef]
- Lee, H.-S.; Yun, J.-J. High-Efficiency Bidirectional Buck–Boost Converter for Photovoltaic and Energy Storage Systems in a Smart Grid. IEEE Trans. Power Electron. 2019, 34, 4316–4328. [Google Scholar] [CrossRef]
- Méndez-Díaz, F.; Pico, B.; Vidal-Idiarte, E.; Calvente, J.; Giral, R. HM/PWM Seamless Control of a Bidirectional Buck–Boost Converter for a Photovoltaic Application. IEEE Trans. Power Electron. 2019, 34, 2887–2899. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Gao, Y.; Li, J.; Sumner, M. Hybrid Switched-Capacitor/Switched-Quasi-Z-Source Bidirectional DC–DC Converter with a Wide Voltage Gain Range for Hybrid Energy Sources EVs. IEEE Trans. Ind. Electron. 2019, 66, 2680–2690. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Gao, F.; Gao, S.; Rogers, D.J. A Switched-Capacitor Interleaved Bidirectional Converter with Wide Voltage-Gain Range for Super Capacitors in EVs. IEEE Trans. Power Electron. 2020, 35, 1536–1547. [Google Scholar] [CrossRef]
- Santra, S.B.; Chatterjee, D.; Liang, T.-J. High Gain and High-Efficiency Bidirectional DC–DC Converter with Current Sharing Characteristics Using Coupled Inductor. IEEE Trans. Power Electron. 2021, 36, 12819–12833. [Google Scholar] [CrossRef]
- Akhormeh, A.R.N.; Abbaszadeh, K.; Moradzadeh, M.; Shahirinia, A. High-Gain Bidirectional Quadratic DC–DC Converter Based on Coupled Inductor with Current Ripple Reduction Capability. IEEE Trans. Ind. Electron. 2021, 68, 7826–7837. [Google Scholar] [CrossRef]
- Rezvanyvardom, M.; Mirzaei, A. Zero-Voltage Transition Non-isolated Bidirectional Buck–Boost DC–DC Converter with Coupled Inductors. IEEE J. Emerg. Sel. Topics Power Electron. 2021, 9, 3266–3275. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, Y. Novel Forward–Flyback Hybrid Bidirectional DC–DC Converter. IEEE Trans. Ind. Electron. 2009, 56, 1578–1584. [Google Scholar] [CrossRef]
- Zeng, J.; Yan, Z.; Liu, J.; Huang, Z. A High Voltage-Gain Bidirectional DC–DC Converter with Full-Range ZVS Using Decoupling Control Strategy. IEEE J. Emerg. Sel. Topics Power Electron. 2020, 8, 2775–2784. [Google Scholar] [CrossRef]
- Wu, Y.-E.; Ke, Y.-T. A Novel Bidirectional Isolated DC-DC Converter with High Voltage Gain and Wide Input Voltage. IEEE Trans. Power Electron. 2021, 36, 7973–7985. [Google Scholar] [CrossRef]
- PTomar, S.; Srivastava, M.; Verma, A.K. An Improved Current-Fed Bidirectional DC–DC Converter for Reconfigurable Split Battery in EVs. IEEE Trans. Appli. Electron. 2020, 56, 6957–6967. [Google Scholar]
- Lu, Y.; Wu, Q.; Wang, Q.; Liu, D.; Xiao, L. Analysis of a Novel Zero-Voltage-Switching Bidirectional DC/DC Converter for Energy Storage System. IEEE Trans. Power Electron. 2018, 33, 3169–3179. [Google Scholar] [CrossRef]
- Wu, Y.E.; Pan, B.H. High Efficiency and Voltage Conversion Ratio Bidirectional Isolated DC-DC Converter for Energy Storage System. IEEE Access 2022, 10, 55187–55199. [Google Scholar] [CrossRef]
Parameter | Specification |
---|---|
High-side power PH | 500 W |
Low-side power PL | 500 W |
High-side voltage VH | 400 V |
High-side current IH | 1.25 A |
Low-side voltage VL | 48 V |
Low-side current IL | 10.416 A |
Switching frequency fs | 40 kHz |
Power switches S1, S2 and S3 | IRFP4568 |
Power switches S4 and S5 | IXFH60N50P3 |
Magnetizing inductance Lm1 | 200 µH |
Leakage inductance Llk1 and Llk2 | 2 µH |
Capacitor C1, C2, C3 and C4 | 50 µF |
Turns ratio n | 4 |
Converter in [20] | Converter in [21] | Converter in [24] | Converter in [27] | Converter in [30] | Proposed Converter | |
---|---|---|---|---|---|---|
VL | 40–120 V | 30–100 V | 48 V | 24–48 V | 48 V | 48 V |
VH | 400 V | 400 V | 120 V | 400 V | 400 V | 400 V |
Switches | 5 | 8 | 4 | 6 | 4 | 5 |
Magnetic Components | 2 | 3 | 2 | 2 | 1 | 1 |
Capacitors | 6 | 6 | 0 | 3 | 4 | 4 |
Diodes | 0 | 0 | 1 | 0 | 0 | 0 |
Efficiency of step-up mode | 94.09% | 95.8% | 98% | 95.6% | 96.8% | 97.59% |
Efficiency of step-down mode | 94.41% | 95.9% | 97% | 94.2% | 95.2% | 96.5% |
Isolated | No | No | No | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-E.; Chen, K.-C. High Efficiency and High Voltage Conversion Ratio Bidirectional Isolated DC–DC Converter for Energy Storage Systems. Processes 2022, 10, 2711. https://doi.org/10.3390/pr10122711
Wu Y-E, Chen K-C. High Efficiency and High Voltage Conversion Ratio Bidirectional Isolated DC–DC Converter for Energy Storage Systems. Processes. 2022; 10(12):2711. https://doi.org/10.3390/pr10122711
Chicago/Turabian StyleWu, Yu-En, and Kuan-Chi Chen. 2022. "High Efficiency and High Voltage Conversion Ratio Bidirectional Isolated DC–DC Converter for Energy Storage Systems" Processes 10, no. 12: 2711. https://doi.org/10.3390/pr10122711
APA StyleWu, Y.-E., & Chen, K.-C. (2022). High Efficiency and High Voltage Conversion Ratio Bidirectional Isolated DC–DC Converter for Energy Storage Systems. Processes, 10(12), 2711. https://doi.org/10.3390/pr10122711