Physical and Chemical Macroscopic Processes in Wooden Construction Materials of Buildings during WUI Fires: Recent and Advanced Developments
Abstract
:1. Introduction
- (1)
- Landscape scale—in this case, the main threat is WUI forestry.
- (2)
- The scale of the settlement.
- (3)
- The scale of a single structure.
- (1)
- Predicting the impact of a forest fire front;
- (2)
- Processes of heat transfer in the building enclosures;
- (3)
- Drying of elements of the building enclosures;
- (4)
- Ignition of a wooden structure;
- (5)
- Wood combustion processes.
2. Summary
3. Prediction of Forest Fire Impact
- (1)
- Determine the speed and direction of the forest fire front.
- (2)
- Determine the thermal effect of flames from a forest fire front.
4. Heat Transfer in Enclosure Construction
- (1)
- Determination of possible scenarios of fire;
- (2)
- Determination of the boundary conditions and subsequent study of heat transfer from the flame to the structural element;
- (3)
- Calculation of the reaction of structural elements to thermal and mechanical stress.
5. Drying of Enclosure Construction Elements
- (1)
- Low temperature convective drying at atmospheric pressure.
- (2)
- High temperature drying at atmospheric pressure.
6. Ignition and Combustion of Enclosure Construction
7. Wooden Materials Properties
8. Discussion
9. Conclusions
- To simulate the impact of a forest fire, it is promising to develop analytical or parametric approaches to assessing the parameters of propagation and heat release from the forest fire front to wooden materials.
- The results of experimental studies of drying, pyrolysis and ignition of structural wooden materials can be used to verify new mathematical models of heat and mass transfer in building enclosures when exposed to a forest fire.
- Mathematical models of heat and mass transfer in structural wooden materials under the influence of a forest fire can be associated with a probabilistic criterion within the framework of the deterministic-probabilistic approach.
- Theoretical and experimental results can be used to train neural network models in assessing the thermal effect of a forest fire on structural wooden materials.
- The critical values of temperature and heat flux can be used as criteria for the ignition of wooden structural materials.
- BIM models can become the basis for the development of new information and computing systems for predicting fire safety in rural settlements and industrial facilities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzello, S.L.; Almand, K.; Guillaume, E.; Vallerent, S.; Hameury, S.; Hakkarainen, T. FORUM position paper: The growing global wildland urban interface (WUI) fire Dilemma: Priority needs for research. Fire Saf. J. 2018, 100, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Manzello, S.L.; Blanchi, R.; Gollner, M.J.; Gorham, D.; McAllister, S.; Pastor, E.; Planas, E.; Reszka, P.; Suzuki, S. Summary of workshop large outdoor fires and the built environment. Fire Saf. J. 2018, 100, 76–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koksal, K.; McLennan, J.; Every, D.; Bearman, C. Australian wildland-urban interface householders’ wildfire safety preparations: ‘Everyday life’ project priorities and perceptions of wildfire risk. Int. J. Disaster Risk Reduct. 2019, 33, 142–154. [Google Scholar] [CrossRef]
- Craig, C.A.; Allen, M.W.; Feng, S.; Spialek, M.L. Exploring the impact of resident proximity to wildfires in the northern Rocky Mountains: Perceptions of climate change risks, drought, and policy. Int. J. Disaster Risk Reduct. 2020, 44, 101420. [Google Scholar] [CrossRef]
- Monedero, S.; Ramirez, J.; Molina-Terrén, D.; Cardil, A. Simulating wildfires backwards in time from the final fire perimeter in point-functional fire models. Environ. Model. Softw. 2017, 92, 163–168. [Google Scholar] [CrossRef]
- Zárate, L.; Arnaldos, J.; Casal, J. Establishing safety distances for wildland fires. Fire Saf. J. 2008, 43, 565–575. [Google Scholar] [CrossRef]
- Vacca, P.; Caballero, D.; Pastor, E.; Planas, E. WUI fire risk mitigation in Europe: A performance-based design approach at home-owner level. J. Saf. Sci. Resil. 2020, 1, 97–105. [Google Scholar] [CrossRef]
- International Code Council. International Wildland-Urban Interface Code. 2018. Available online: https://codes.iccsafe.org/content/IWUIC2018P2\ (accessed on 25 November 2021).
- Baranovskiy, N.V. (Ed.) Forest Fire Danger Prediction Using Deterministic-Probabilistic Approach; IGI Global,: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Baranovskiy, N.V. Forest fire danger assessment using SPMD-model of computation for massive parallel system. Int. Rev. Model. Simul. 2017, 10, 193–201. [Google Scholar] [CrossRef]
- Baranovskiy, N.; Zharikova, M. A web-oriented geoinformation system application for forest fire danger prediction in typical forests of the Ukraine. Lect. Notes Geoinf. Cartogr. 2014, 13–22. [Google Scholar] [CrossRef]
- Baranovskiy, N.V.; Kuznetsov, G.V.; Nemova, T.N. Mathematical Computing of Coniferous Tree Ignition by the Cloud-to-Ground Lightning Discharge using Joule-Lenz’s Law. Int. J. Electr. Comput. Eng. 2017, 7, 1337–1346. [Google Scholar] [CrossRef] [Green Version]
- Baranovskiy, N.V. Mathematical modeling for the forest fuel layer ignition caused by focused solar radiation flux. In Proceedings of the 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russia, 22–26 June 2015; Volume 9680. [Google Scholar] [CrossRef]
- Kuznetsov, G.V.; Baranovskiy, N.V. Mathematical simulation of heat transfer at coniferous tree ignition by cloud-to-ground lightning discharge. EPJ Web Conf. 2014, 76, 01028. [Google Scholar] [CrossRef] [Green Version]
- Grishin, A.M.; Baranovskii, N.V. Comparative Analysis of Simple Models of Drying of the Layer of Forest Combustibles, Including the Data of Experiments and Natural Observations. J. Eng. Phys. 2003, 76, 1154–1159. [Google Scholar] [CrossRef]
- Baranovskii, N.V. Probabilistic Criterion of Fire Safety of Oil and Gas Industry Facilities Exposed to Effect of Forest Fires. Chem. Pet. Eng. 2015, 51, 212–217. [Google Scholar] [CrossRef]
- Macauley, K.A.P.; McLoughlin, N.; Beverly, J.L. Modelling fire perimeter formation in the Canadian Rocky Mountains. For. Ecol. Manag. 2022, 506, 119958. [Google Scholar] [CrossRef]
- Allaire, F.; Mallet, V.; Filippi, J.-B. Emulation of wildland fire spread simulation using deep learning. Neural Netw. 2021, 141, 184–198. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, W.; Li, S.; Zeng, Y. Forest fire spread simulating model using cellular automaton with extreme learning machine. Ecol. Model. 2017, 348, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Chetehouna, K.; El Tabach, E.; Bouazaoui, L.; Gascoin, N. Predicting the flame characteristics and rate of spread in fires propagating in a bed of Pinus pinaster using Artificial Neural Networks. Process Saf. Environ. Prot. 2015, 98, 50–56. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Z.; Zhou, Y.; Fan, C. Heat map visualisation of fire incidents based on transformed sigmoid risk model. Fire Saf. J. 2019, 109, 102863. [Google Scholar] [CrossRef]
- Li, P.; Zhao, W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020, 19, 100625. [Google Scholar] [CrossRef]
- Guede-Fernández, F.; Martins, L.; de Almeida, R.V.; Gamboa, H.; Vieira, P. A Deep Learning Based Object Identification System for Forest Fire Detection. Fire 2021, 4, 75. [Google Scholar] [CrossRef]
- Butler, B.; Cohen, J. Field Verification of a Firefighter Safety Zone Model; Proceedings of the 2000 International Wildfire Safety Summit (Edmonton, Alberta Canada, 10–12 October 2000); International Association of Wildland Fire: Missoula, MT, USA, 2000. [Google Scholar]
- Mueller, E.V.; Skowronski, N.S.; Clark, K.L.; Gallagher, M.R.; Mell, W.E.; Simeoni, A.; Hadden, R.M. Detailed physical modeling of wildland fire dynamics at field scale—An experimentally informed evaluation. Fire Saf. J. 2021, 120, 103051. [Google Scholar] [CrossRef]
- Grishin, A.M. Mathematical Modeling of Forest Fires and New Methods of Fighting Them; Publishing House of the Tomsk State University: Tomsk, Russia, 1997; 390p, ISBN 575110840X. [Google Scholar]
- Mueller, E.V.; Skowronski, N.; Thomas, J.C.; Clark, K.; Gallagher, M.R.; Hadden, R.; Mell, W.; Simeoni, A. Local measurements of wildland fire dynamics in a field-scale experiment. Combust. Flame 2018, 194, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Valendik, E.N.; Kosov, I.V. Effect of thermal radiation of forest fire on the environment. Contemp. Probl. Ecol. 2008, 1, 399–403. [Google Scholar] [CrossRef]
- Baranovskiy, N.; Malinin, A. Mathematical Simulation of Forest Fire Impact on Industrial Facilities and Wood-Based Buildings. Sustainability 2020, 12, 5475. [Google Scholar] [CrossRef]
- Steel Construction Institute. Investigation of Broadgate Phase 8 Fire. Structural Fire Engineering; Steel Construction Institute: Berkshire, UK, 1991. [Google Scholar]
- Seręga, S. A New Simplified Method for Determining Fire Resistance of Reinforced Concrete Sections. In Proceedings of the 6th International Conference Analytical Models and New Concepts in Concrete and Masonry Structures, Łódź, Poland, 9–11 June 2008. [Google Scholar]
- Franssen, J.-M.; Schleich, J.-B.; Cajot, L.-G.; Azpiazu, W. A simple model for the fire resistance of axially loaded members—comparison with experimental results. J. Constr. Steel Res. 1996, 37, 175–204. [Google Scholar] [CrossRef]
- Cai, B.; Tao, Y.; Fu, F. Residual Stress-Strain Relationship of Scoria Aggregate Concrete with the Addition of PP Fiber after Fire Exposure. Fire 2021, 4, 91. [Google Scholar] [CrossRef]
- Alisawi, A.T.; Collins, P.E.F.; Cashell, K.A. Nonlinear Analysis of a Steel Frame Structure Exposed to Post-Earthquake Fire. Fire 2021, 4, 73. [Google Scholar] [CrossRef]
- Ahmadpour, F.; Zeinoddini, M.; Rashnooie, R.; Mo’Tamedi, M.; Zandi, A. Out-of-plane bending fire response of steel tubular T-joints: A sequentially coupled thermal-stress modelling. Thin-Walled Struct. 2022, 171, 108665. [Google Scholar] [CrossRef]
- Ding, R.; Fan, S.; Wu, M.; Li, Y. Numerical study on fire resistance of rectangular section stainless steel-concrete composite beam. Fire Saf. J. 2021, 125, 103436. [Google Scholar] [CrossRef]
- Ma, Z.; Yao, P.; Yang, D.; Shen, J. Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete. J. Mater. Res. Technol. 2021, 15, 1030–1045. [Google Scholar] [CrossRef]
- Hua, N.; Khorasani, N.E.; Tessari, A.; Ranade, R. Experimental study of fire damage to reinforced concrete tunnel slabs. Fire Saf. J. 2021, 127, 103504. [Google Scholar] [CrossRef]
- Bakas, I.; Kontoleon, K.J. Performance Evaluation of Artificial Neural Networks (ANN) Predicting Heat Transfer through Masonry Walls Exposed to Fire. Appl. Sci. 2021, 11, 11435. [Google Scholar] [CrossRef]
- Lei, X.; Ouyang, J.; Wang, Y.; Wang, X.; Zhang, X.; Chen, F.; Xia, C.; Liu, Z.; Zhou, C. Thermal–Mechanical Coupling Evaluation of the Panel Performance of a Prefabricated Cabin-Type Substation Based on Machine Learning. Fire 2021, 4, 93. [Google Scholar] [CrossRef]
- Edalati-Nejad, A.; Ghodrat, M.; Simeoni, A. Numerical Investigation of the Effect of Sloped Terrain on Wind-Driven Surface Fire and Its Impact on Idealized Structures. Fire 2021, 4, 94. [Google Scholar] [CrossRef]
- Abadi, S.T.S.; Tokmehdash, N.M.; Hosny, A.; Nik-Bakht, M. BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning. Fire 2021, 4, 67. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Feng, W.; Yang, R. Fire risk assessment for building operation and maintenance based on BIM technology. Build. Environ. 2021, 205, 108188. [Google Scholar] [CrossRef]
- Hosseini, O.; Maghrebi, M. Risk of fire emergency evacuation in complex construction sites: Integration of 4D-BIM, social force modeling, and fire quantitative risk assessment. Adv. Eng. Inform. 2021, 50, 101378. [Google Scholar] [CrossRef]
- Lotfi, N.; Behnam, B.; Peyman, F. A BIM-based framework for evacuation assessment of high-rise buildings under post-earthquake fires. J. Build. Eng. 2021, 43, 102559. [Google Scholar] [CrossRef]
- Sun, Q.; Turkan, Y. A BIM-based simulation framework for fire safety management and investigation of the critical factors affecting human evacuation performance. Adv. Eng. Inform. 2020, 44, 101093. [Google Scholar] [CrossRef]
- Law, M. Basis for the Design of fire Protection of Building Structures; The Institution of Structural Engineers: London, UK, ISSN 14665123. Available online: https://www.istructe.org/journal/volumes/volume-61-(published-in-1983)/issue-1/a-basis-for-the-design-of-fire-protection-of-build/ (accessed on 25 November 2021).
- Usmani, A.; Rotter, J.; Lamont, S.; Sanad, A.; Gillie, M. Fundamental principles of structural behaviour under thermal effects. Fire Saf. J. 2001, 36, 721–744. [Google Scholar] [CrossRef]
- Torero, J.L. Fire-induced structural failure: The World Trade Center, New York. Proc. Inst. Civ. Eng.-Forensic Eng. 2011, 164, 69–77. [Google Scholar] [CrossRef] [Green Version]
- SFPE. The SFPE Guide to Performance-Based Fire Safety Design; SFPE: Gaithersburg, MA, USA, 2015; Volume 203, ISBN 978-3-319-94696-2. [Google Scholar]
- Maluk, C.; Bisby, L.; Krajcovic, M.; Torero, J. A Heat-Transfer Rate Inducing System (H-TRIS) Test Method. Fire Saf. J. 2019, 105, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Terrasi, G.P.; Bisby, L.; Barbezat, M.; Affolter, C.; Hugi, E. Fire Behavior of Thin CFRP Pretensioned High-Strength Concrete Slabs. J. Compos. Constr. 2012, 16, 381–394. [Google Scholar] [CrossRef]
- Robertson, A.F. Development of an improved radiant heat source for fire testing. Fire Mater. 1982, 6, 68–71. [Google Scholar] [CrossRef]
- Frankman, D.J. Radiation and Convection Heat Transfer in Wildland Fire Environments. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2009; Volume 1813. Available online: https://scholarsarchive.byu.edu/etd/1813 (accessed on 25 November 2021).
- Baranovskiy, N.V.; Malinin, A.O. Mathematical Simulation of Heat Transfer in the Structures of a Passenger Carriage Under the Influence of Forest Fires. Int. Rev. Model. Simul. IREMOS 2021, 14, 231. [Google Scholar] [CrossRef]
- Baranovskiy, N.V.; Malinin, A. Mathematical simulation of forest fire front influence on wood-based building using one-dimensional model of heat transfer. E3S Web Conf. 2020, 200, 03007. [Google Scholar] [CrossRef]
- Sazhin, S.; Sazhina, E.; Faltsi-Saravelou, O.; Wild, P. The P-1 model for thermal radiation transfer: Advantages and limitations. Fuel 1996, 75, 289–294. [Google Scholar] [CrossRef]
- Cintolesi, C.; Nilsson, H.; Petronio, A.; Armenio, V. Numerical simulation of conjugate heat transfer and surface radiative heat transfer using the P1 thermal radiation model: Parametric study in benchmark cases. Int. J. Heat Mass Transf. 2017, 107, 956–971. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, G.; Rawat, R.; Smith, P. Parallelization of the P-1 Radiation Model. Numer. Heat Transfer Part B Fundam. 2006, 49, 1–17. [Google Scholar] [CrossRef]
- Krishnamoorthy, G. A computationally efficient P1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods. Appl. Therm. Eng. 2017, 119, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer; Mathematical Modelling; Wiley: Chichester, UK, 1995; Volume 1, 418p. [Google Scholar]
- Samarskii, A.A.; Vabishchevich, P.N. Computational Heat Transfer; The Finite Difference Method; Wiley: Chichester, UK, 1995; Volume 2, 432p. [Google Scholar]
- Hegedűs, F.; Krähling, P.; Lauterborn, W.; Mettin, R.; Parlitz, U. High-performance GPU computations in nonlinear dynamics: An efficient tool for new discoveries. Meccanica 2020, 55, 2493–2504. [Google Scholar] [CrossRef] [Green Version]
- Pandya, S.B.; Patel, R.H.; Pandya, A.S. Evaluation of power consumption of entry-level and mid-range multi-core mobile processor. In Proceedings of the 4th International Conference on Electronics, Communications and Control Engineering, Seoul, Korea, 9–11 April 2021; pp. 32–39. [Google Scholar]
- Ma, Z.; Hong, K.; Gu, L. Volume: Enable large-scale in-memory computation on commodity clusters. In Proceedings of the 2013, IEEE 5th International Conference on Cloud Computing Technology and Science, Bristol, UK, 2–5 December 2013; pp. 56–63. [Google Scholar]
- Niklewski, J.; Brischke, C.; Hansson, E.F.; Meyer-Veltrup, L. Moisture behavior of weathered wood surfaces during cyclic wetting: Measurements and modeling. Wood Sci. Technol. 2018, 52, 1431–1450. [Google Scholar] [CrossRef] [Green Version]
- Luikov, A. Heat and Mass Transfer in Capillary-Porous Bodies. In Advances in Heat Transfer; Irvine, T.F., Hartnett, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1964; pp. 123–184. ISBN 9780120200016. ISSN 0065-2717. [Google Scholar] [CrossRef]
- Pang, S. Mathematical Modeling of Kiln Drying of Softwood Timber: Model Development, Validation, and Practical Application. Dry. Technol. 2007, 25, 421–431. [Google Scholar] [CrossRef]
- Ferguson, W. The control volume finite element numerical solution technique applied to creep in softwoods. Int. J. Solids Struct. 1998, 35, 1325–1338. [Google Scholar] [CrossRef]
- Liu, J.Y.; Shun, C. Solutions of Luikov equations of heat and mass transfer in capillary-porous bodies. Int. J. Heat Mass Transf. 1991, 34, 1747–1754. [Google Scholar] [CrossRef]
- Pang, S. Modelling of stress development during drying and relief during steaming in Pinus radiata lumber. Dry. Technol. 2000, 18, 1677–1696. [Google Scholar] [CrossRef]
- Whitaker, S. Simultaneous Heat, Mass, and Momentum Transfer in Porous Media: A Theory of Drying. In Advances in Heat Transfer; Irvine, T.F., Hartnett, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 119–203. ISBN 9780120200139. ISSN 0065-2717. [Google Scholar] [CrossRef]
- Perre, P.; Moser, M.; Martin, M. Advances in transport phenomena during convective drying with superheated steam and moist air. Int. J. Heat Mass Transf. 1993, 36, 2725–2746. [Google Scholar] [CrossRef]
- Turner, I.; Ferguson, W. An unstructured mesh cell-centered control volume method for simulating heat and mass transfer in porous media: Application to softwood drying, part I: The isotropic model. Appl. Math. Model. 1995, 19, 654–667. [Google Scholar] [CrossRef]
- Turner, I.; Ferguson, W. An unstructured mesh cell-centered control volume method for simulating heat and mass transfer in porous media: Application to softwood drying—Part II: The anisotropic model. Appl. Math. Model. 1995, 19, 668–674. [Google Scholar] [CrossRef]
- Resende, R.T.; Carneiro, A.D.C.O.; Ferreira, R.A.D.; Kuki, K.N.; Teixeira, R.U.; Zaidan, Ú.R.; Santos, R.D.; Leite, H.G.; Resende, M.D.V. Air-drying of eucalypts logs: Genetic variations along time and stem profile. Ind. Crop. Prod. 2018, 124, 316–324. [Google Scholar] [CrossRef]
- Hofmann, N.; Mendel, T.; Schulmeyer, F.; Kuptz, D.; Borchert, H.; Hartmann, H. Drying effects and dry matter losses during seasonal storage of spruce wood chips under practical conditions. Biomass Bioenergy 2018, 111, 196–205. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, Z.; He, Z.; Yi, S. Development of schedule to steaming prior to drying and its effects on Eucalyptus grandis × E. urophylla wood. Eur. J. Wood Prod. 2018, 76, 591–600. [Google Scholar] [CrossRef]
- Hansson, L.; Antti, A. The effect of microwave drying on Norway spruce woods strength: A comparison with conventional drying. J. Mater. Process. Technol. 2003, 141, 41–50. [Google Scholar] [CrossRef]
- Hasan, M.; Langrish, T.A.G. Time-valued net energy analysis of solar kilns for wood drying: A solar thermal application. Energy 2016, 96, 415–426. [Google Scholar] [CrossRef]
- He, Z.; Yang, F.; Peng, Y.; Yi, S. Effects of ultrasound on wood vacuum drying characteristics. Pro Ligno Sci. J. Field Wood Eng. 2013, 9, 693–699. [Google Scholar]
- Perre, P.; Keey, R. 36 Drying of Wood: Principles and Practices. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Simpson, W.T. Equilibrium Moisture Content of Wood in Outdoor Locations in the United States and Worldwide; (Research Note FPL; RN-0268); US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1998; 11p. [Google Scholar]
- Abadie, M.O.; Mendonça, K.C. Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept. Build. Environ. 2009, 44, 388–401. [Google Scholar] [CrossRef]
- Potter, M.; Leonard, J. Spray System Design for Ember Attack—Research Findings and Discussion Paper; Report no. D.06.10, CSIRO—Sustainable Ecosystems; Bushfire CRC: Melbourne, Australia, 2010. [Google Scholar]
- Leonard, J.; Bowditch, P. Findings of Studies of Houses Damaged by Bushfire in Australia. In Proceedings of the 3rd International Wildland Fire Conference, Sydney, Australia, 3–6 October 2003. [Google Scholar]
- Victorian Bushfires Royal Commission. Priorities for Building in Bushfire Prone Areas; Victorian Bushfires Royal Commission; Parliament of Victoria: Melbourne, Australia, 2009; ISBN 978-0-9807408-0-6. [Google Scholar]
- Mikkola, E.; Wichman, I.S. On the thermal ignition of combustible materials. Fire Mater. 1989, 14, 87–96. [Google Scholar] [CrossRef]
- Kuznetsov, V.T.; Fil’Kov, A.I. Ignition of various wood species by radiant energy. Combust. Explos. Shock Waves 2011, 47, 65–69. [Google Scholar] [CrossRef]
- Tureková, I.; Marková, I.; Ivanovičová, M.; Harangózo, J. Experimental Study of Oriented Strand Board Ignition by Radiant Heat Fluxes. Polymers 2021, 13, 709. [Google Scholar] [CrossRef] [PubMed]
- El Gazi, M.; Sonnier, R.; Giraud, S.; Batistella, M.; Basak, S.; Dumazert, L.; Hajj, R.; El Hage, R. Fire Behavior of Thermally Thin Materials in Cone Calorimeter. Polymers 2021, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Babrauskas, V. Ignition of Wood: A Review of the State of the Art. J. Fire Prot. Eng. 2002, 12, 163–189. [Google Scholar] [CrossRef] [Green Version]
- Jaskółowski, W.; Ogrodnik, P.; Łukaszek-Chmielewska, A. The study of time to ignition of woods under external heat flux by piloted ignition and autoignition. For. Wood Technol. 2014, 86, 133–137. [Google Scholar]
- Shi, L.; Chew, M.Y.L. Experimental study of woods under external heat flux by autoignition. J. Therm. Anal. 2012, 111, 1399–1407. [Google Scholar] [CrossRef]
- Kasymov, D.; Agafontsev, M.; Perminov, V.; Martynov, P.; Reyno, V.; Loboda, E. Experimental Investigation of the Effect of Heat Flux on the Fire Behavior of Engineered Wood Samples. Fire 2020, 3, 61. [Google Scholar] [CrossRef]
- de Vries, J.A.A.P.; Xin, Y.I.B.I.N.G.; Meredith, K.V. An Experimental Study of Fire Suppression Physics for Sprinkler Protection. Fire Saf. Sci. 2011, 10, 429–442. [Google Scholar] [CrossRef]
- Richter, F.; Rein, G. A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combust. Flame 2020, 216, 316–325. [Google Scholar] [CrossRef]
- Rinta-Paavola, A.; Hostikka, S. A model for the pyrolysis of two Nordic structural timbers. Fire Mater. 2021, 46, 55–68. [Google Scholar] [CrossRef]
- Assoumani, N.; Simo-Tagne, M.; Kifani-Sahban, F.; Tagne, A.T.; El Marouani, M.; Akong, M.B.O.; Rogaume, Y.; Girods, P.; Zoulalian, A. Numerical Study of Cylindrical Tropical Woods Pyrolysis Using Python Tool. Sustainability 2021, 13, 13892. [Google Scholar] [CrossRef]
- Pozzobon, V.; Salvador, S.; Bezian, J.J.; El-Hafi, M.; Le Maoult, Y.; Flamant, G. Radiative pyrolysis of wet wood under intermediate heat flux: Experiments and modelling. Fuel Process. Technol. 2014, 128, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Chaos, M.; Khan, M.M.; Dorofeev, S.B. Pyrolysis of corrugated cardboard in inert and oxidative environments. Proc. Combust. Inst. 2013, 34, 2583–2590. [Google Scholar] [CrossRef]
- McKinnon, M.; Stoliarov, S.I.; Witkowski, A. Development of a pyrolysis model for corrugated cardboard. Combust. Flame 2013, 160, 2595–2607. [Google Scholar] [CrossRef]
- Lautenberger, C.; Fernandez-Pello, C. Generalized pyrolysis model for combustible solids. Fire Saf. J. 2009, 44, 819–839. [Google Scholar] [CrossRef] [Green Version]
- Chaos, M.; Khan, M.M.; Krishnamoorthy, N.; de Ris, J.L.; Dorofeev, S.B. Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc. Combust. Inst. 2011, 33, 2599–2606. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Stoliarov, S.I. Gasification experiments for pyrolysis model parameterization and validation. Int. J. Heat Mass Transf. 2014, 77, 738–744. [Google Scholar] [CrossRef]
- Maraveas, C.; Miamis, K.; Matthaiou, C.E. Performance of Timber Connections Exposed to Fire: A Review. Fire Technol. 2013, 51, 1401–1432. [Google Scholar] [CrossRef]
- Palma, P. Fire Behaviour of Timber Connections. PhD Thesis, Institute of Structural Engineering, London, UK, 2016. [Google Scholar] [CrossRef]
- De Abreu Neto, R.; De Assis, A.A.; Ballarin, A.W.; Hein, P.R.G. Effect of final temperature on charcoal stiffness and its correlation with wood density and hardness. SN Appl. Sci. 2020, 2, 1020. [Google Scholar] [CrossRef]
- Zawadzki, J.; Radomski, A.; Gawron, J. The effect of thermal modification on selected physical properties of wood of scots pine (Pinus sylvestris L.). Wood Res. 2013, 58, 243–250. [Google Scholar]
- Suleiman, B.M.; Larfeldt, J.; Leckner, B.; Gustavsson, M. Thermal conductivity and diffusivity of wood. Wood Sci. Technol. 1999, 33, 465–473. [Google Scholar] [CrossRef]
- Li, R.; Huang, R.; Chang, J. Effect of hot pressing temperature on the density profile of compressed solid wood. BioResources 2019, 14, 1482–1493. [Google Scholar] [CrossRef]
- Bartlett, A.I.; Hadden, R.M.; Bisby, L.A. A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technol. 2019, 55, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Kencanawati, N.N.; Anshari, B.; Fajrin, J.; Hariyadi, H.; Beriman, A. Experimental study of local solid wood post-fire behaviour. UKaRsT 2020, 4, 207–221. [Google Scholar] [CrossRef]
- Lizhong, Y.; Yupeng, Z.; Yafei, W.; Zaifu, G. Predicting charring rate of woods exposed to time-increasing and constant heat fluxes. J. Anal. Appl. Pyrolysis 2008, 81, 1–6. [Google Scholar] [CrossRef]
- Yang, T.-H.; Wang, S.-Y.; Tsai, M.-J.; Lin, C.-Y. The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Build. Environ. 2009, 44, 231–236. [Google Scholar] [CrossRef]
- Cachim, P.B.; Franssen, J.-M. Comparison between the charring rate model and the conductive model of Eurocode 5. Fire Mater. 2009, 33, 129–143. [Google Scholar] [CrossRef]
- Njankouo, J.M.; Dotreppe, J.-C.; Franssen, J.-M. Fire resistance of timbers from tropical countries and comparison of experimental charring rates with various models. Constr. Build. Mater. 2005, 19, 376–386. [Google Scholar] [CrossRef]
- Babrauskas, V. Charring rate of wood as a tool for fire investigations. Fire Saf. J. 2005, 40, 528–554. [Google Scholar] [CrossRef]
- Tran, H.C.; White, R.H. Burning rate of solid wood measured in a heat release rate calorimeter. Fire Mater. 1992, 16, 197–206. [Google Scholar] [CrossRef]
- Hao, H.; Chow, C.L.; Lau, D. Effect of heat flux on combustion of different wood species. Fuel 2020, 278, 118325. [Google Scholar] [CrossRef]
N | Approach | Parameters | Reference |
---|---|---|---|
1 | Numerical study | Radiant Heat Flux (RHF) | [17] |
2 | Neural network | MAE (mean absolute error), SMSE (Standard mean square error), MAPE (mean absolute percentage error), Bias | [18] |
3 | Neural network | Relative Operating Characteristic (ROC) | [19] |
4 | Neural network | Hf, αf | [20] |
5 | Neural network | Generalized fire risk (F) | [21] |
6 | Neural network | Detection speed (FPS) | [22] |
7 | Neural network | Detection rate (DTR) | [23] |
8 | Experimental study | RHF | [24,28] |
9 | Experimental, numerical study | RHF | [25] |
10 | Experimental study | RHF, temperature | [27] |
11 | Numerical study | RHF, temperature | [29] |
N | Study | Element | Parameters | Reference |
---|---|---|---|---|
1 | Numerical study | Structure | Temperature | [30] |
2 | Numerical study | Concrete section | Euler buckling force (NB) | [31] |
3 | Numerical study | Axially loaded members | Buckling coefficient | [32] |
4 | Experimental study | Scoria aggregate concrete (SAC) | Stress–strain parameters | [33] |
5 | Numerical study | Steel bulk construction | Temperature, displacement | [34] |
6 | Numerical study | Steel tubular T-joints | Temperature, joint rotation | [35] |
7 | Numerical study | Stainless steel composite beam | Mid-span vertical deformation, temperature | [36] |
8 | Numerical study | Concrete | Stress–strain parameters | [37] |
9 | Experimental study | Concrete tunnel slabs | Temperature, displacement | [38] |
10 | Neural network | Wall section | Temperature | [39,40] |
11 | Numerical study | Idealized object | Temperature | [41] |
12 | Numerical study | Composite steel framed structure | Temperature, Axial Force | [48,49] |
13 | Experimental study | Concrete specimen | Temperature | [51] |
14 | Experimental study | High-strength concrete slabs | Temperature | [52] |
15 | Numerical study | Softwood cylindrical particle | Heat flux, temperature | [54] |
16 | Numerical study | Passenger carriage | Heat flux, temperature | [55] |
17 | Numerical study | Wall | Heat flux, temperature | [56] |
18 | Numerical study | Specimen | Temperature | [57,58] |
19 | Numerical study | RHF | [59,60] |
Species | q, kW/m2 | Time to Autoignition, s | Time to Piloted Ignition, s | Tign, K | Reference |
---|---|---|---|---|---|
Beech | 20 | 865 | 624 | [93] | |
30 | 194 | 64 | [93] | ||
50 | 46 | 29 39 | 370.6 | [93] [93] | |
75 | 18 | 378.9 | [93] | ||
Oak | 20 | 621 | 451 | [93] | |
30 | 240 | 81 | [93] | ||
50 | 40 | 36 57 | 488.6 | [93] [94] | |
75 | 23 | 398.6 | [94] | ||
Pine | 20 | 509 | 302 | [93] | |
30 | 59 | 50 | [93] | ||
50 | 20 | 25 27 | 433.1 | [93] [94] | |
75 | 12 | 314.0 | [94] | ||
438 | Less 2 | 84817 | [89] | ||
745 | Less 2 | 861 | [89] | ||
1420 | Less 2 | 894 | [89] | ||
Birch | 438 | Less 2 | 811 | [89] | |
745 | Less 2 | 848 | [89] | ||
1420 | Less 2 | 872 | [89] | ||
OSB | 44 | 142 | 287 | [90] | |
46 | 70 | 358 | [90] | ||
48 | 64 | 252 | [90] | ||
50 | 58 | 319 | [90] | ||
Plywood | 37.5 | 23±6 | [95] | ||
Chipboard | 37.5 | 24±2.1 | [95] | ||
Cardboard | 10 30 60 | 118 20 10 | [96] [96] [96] |
Material | Process | Parameter | Reference |
---|---|---|---|
Plasterboard | Combustion | Density, Heat capacity | [106] |
Wood | Combustion | Density, Conductivity, Heat capacity | [107] |
Pinewood | Combustion | Density | [109] |
Hardwood | Combustion | Density | [110] |
Pinewood | Drying | Density | [111] |
Jati putin, Bajur, Rajumas | Combustion | Pyrolysis zone, Depth of Char and Pyrolysis | [113] |
Paulownia, Toon, Elm | Combustion | Rate of Charring | [114] |
China fir, Japanese cedar, Douglas fir, Southern pine | Combustion | Rate of Charring | [115] |
Softwood, hardwood | Combustion | Rate of Charring | [116,117] |
Western hemlock, Western red cedar, Podo, Douglas fir, Larch, Abura, Ash and other | Combustion | Rate of Charring | [118] |
Redwood, Southern pine, Red oak, Basswood | Combustion | Rate of Charring | [119] |
Oak, Larch, Red cedar | Combustion | Rate of Charring | [120] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranovskiy, N.V.; Malinin, A.O. Physical and Chemical Macroscopic Processes in Wooden Construction Materials of Buildings during WUI Fires: Recent and Advanced Developments. Processes 2022, 10, 263. https://doi.org/10.3390/pr10020263
Baranovskiy NV, Malinin AO. Physical and Chemical Macroscopic Processes in Wooden Construction Materials of Buildings during WUI Fires: Recent and Advanced Developments. Processes. 2022; 10(2):263. https://doi.org/10.3390/pr10020263
Chicago/Turabian StyleBaranovskiy, Nikolay Viktorovich, and Aleksey Olegovich Malinin. 2022. "Physical and Chemical Macroscopic Processes in Wooden Construction Materials of Buildings during WUI Fires: Recent and Advanced Developments" Processes 10, no. 2: 263. https://doi.org/10.3390/pr10020263
APA StyleBaranovskiy, N. V., & Malinin, A. O. (2022). Physical and Chemical Macroscopic Processes in Wooden Construction Materials of Buildings during WUI Fires: Recent and Advanced Developments. Processes, 10(2), 263. https://doi.org/10.3390/pr10020263