An Enhanced Stacking Ensemble Method for Granule Moisture Prediction in Fluidized Bed Granulation
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Granulation Batches
2.3. Data Acquisition
3. Theoretical Aspects
3.1. Machine Learning Models
3.1.1. K-Nearest Neighbors Regression
3.1.2. Random Forests
3.1.3. Light Gradient Boosting Machine
3.1.4. Deep Neural Network
3.2. Stacking Ensemble Approach
4. Methods
4.1. Data Preprocessing
4.2. Feature Construction
4.3. Proposed Stacking Ensemble Method
4.3.1. Base-Level Learning Component
4.3.2. Meta-Level Combining Component
4.4. Performance Evaluation
5. Results and Discussion
5.1. Results of Hyperparameters Setting
5.2. Performance Comparison of Different Feature Sets
5.3. Performance Comparison of Different Fusion Methods
5.4. Performance Comparison of Different Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parikh, D.M. Handbook of Pharmaceutical Granulation Technology; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Arndt, O.R.; Baggio, R.; Adam, A.K.; Harting, J.; Franceschinis, E.; Kleinebudde, P. Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study. J. Pharm. Sci. 2018, 107, 3143–3152. [Google Scholar] [CrossRef]
- Iveson, S.M.; Litster, J.D.; Hapgood, K.; Ennis, B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 2001, 117, 3–39. [Google Scholar] [CrossRef]
- Esratun, J.; Abdullah Al, A.; Hasan, M.M.; Abdullah Bin, Z.; Harun Ar, R. Granulation techniques & its updated modules. Pharma Innov. 2016, 5, 134–141. [Google Scholar]
- Shanmugam, S. Granulation techniques and technologies: Recent progresses. Bioimpacts 2015, 5, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Buschmuller, C.; Wiedey, W.; Doscher, C.; Dressler, J.; Breitkreutz, J. In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology. Eur. J. Pharm. Biopharm. 2008, 69, 380–387. [Google Scholar] [CrossRef]
- Rossteuscher-Carl, K.; Fricke, S.; Hacker, M.C.; Schulz-Siegmund, M. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol. Int. J. Pharm. 2015, 496, 751–758. [Google Scholar] [CrossRef]
- Chablani, L.; Taylor, M.K.; Mehrotra, A.; Rameas, P.; Stagner, W.C. Inline real-time near-infrared granule moisture measurements of a continuous granulation-drying-milling process. AAPS PharmSciTech 2011, 12, 1050–1055. [Google Scholar] [CrossRef] [Green Version]
- Hartung, A.; Knoell, M.; Schmidt, U.; Langguth, P. Role of continuous moisture profile monitoring by inline NIR spectroscopy during fluid bed granulation of an Enalapril formulation. Drug Dev. Ind. Pharm. 2011, 37, 274–280. [Google Scholar] [CrossRef]
- Kona, R.; Qu, H.; Mattes, R.; Jancsik, B.; Fahmy, R.M.; Hoag, S.W. Application of in-line near infrared spectroscopy and multivariate batch modeling for process monitoring in fluid bed granulation. Int. J. Pharm. 2013, 452, 63–72. [Google Scholar] [CrossRef]
- Rantanen, J.; Rasanen, E.; Tenhunen, J.; Kansakoski, M.; Mannermaa, J.; Yliruusi, J. In-line moisture measurement during granulation with a four-wavelength near infrared sensor: An evaluation of particle size and binder effects. Eur. J. Pharm. Biopharm. 2000, 50, 271–276. [Google Scholar] [CrossRef]
- Hu, X.; Cunningham, J.; Winstead, D. Understanding and Predicting Bed humidity in Fluidized Bed Granulation. J. Pharm. Sci. 2008, 97, 1564–1577. [Google Scholar] [CrossRef]
- Amini, H.; He, X.; Tseng, Y.C.; Kucuk, G.; Schwabe, R.; Schultz, L.; Maus, M.; Schroder, D.; Rajniak, P.; Bilgili, E. A semi-theoretical model for simulating the temporal evolution of moisture-temperature during industrial fluidized bed granulation. Eur. J. Pharm. Biopharm. 2020, 151, 137–152. [Google Scholar] [CrossRef]
- Mendes-Moreira, J.; Soares, C.; Jorge, A.M.; Sousa, J.F.D. Ensemble approaches for regression: A survey. ACM Comput. Surv. 2012, 45, 1–40. [Google Scholar] [CrossRef]
- Guo, H.; Nguyen, H.; Bui, X.-N.; Armaghani, D.J. A new technique to predict fly-rock in bench blasting based on an ensemble of support vector regression and GLMNET. Eng. Comput. 2021, 37, 421–435. [Google Scholar] [CrossRef]
- Wen, L.; Hughes, M. Coastal Wetland Mapping Using Ensemble Learning Algorithms: A Comparative Study of Bagging, Boosting and Stacking Techniques. Remote Sens. 2020, 12, 1683. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; dos Santos Coelho, L. Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl. Soft Comput. 2020, 86, 105837. [Google Scholar] [CrossRef]
- Soares, E.; Costa, P.; Costa, B.; Leite, D. Ensemble of evolving data clouds and fuzzy models for weather time series prediction. Appl. Soft Comput. 2018, 64, 445–453. [Google Scholar] [CrossRef]
- Pinto, T.; Praça, I.; Vale, Z.; Silva, J. Ensemble learning for electricity consumption forecasting in office buildings. Neurocomputing 2021, 423, 747–755. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef]
- AlAlaween, W.H.; Mahfouf, M.; Salman, A.D. Predictive modelling of the granulation process using a systems-engineering approach. Powder Technol. 2016, 302, 265–274. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Nguyen, N.D.; Nguyen, V.T. Development of ANN structural optimization framework for data-driven prediction of local two-phase flow parameters. Prog. Nucl. Energ. 2022, 146, 104176. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, N.T.; Yang, J.Q.; Jin, Z.W.; Li, G.H.; Ding, R.W. Predicting gas-bearing distribution using DNN based on multi-component seismic data: Quality evaluation using structural and fracture factors. Pet. Sci. 2022. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 7–9 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Li, Z.; Zhang, C.; Liu, H.; Zhang, C.; Zhao, M.; Gong, Q.; Fu, G. Developing stacking ensemble models for multivariate contamination detection in water distribution systems. Sci. Total Environ. 2022, 828, 154284. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, D.H.; Kim, K.J. EWMA-PRIM: Process optimization based on time-series process operational data using the exponentially weighted moving average and patient rule induction method. Expert Syst. Appl. 2022, 195, 116606. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Pub. Co.: Boston, MA, USA, 1977; pp. 131–160. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kotsiantis, S.; Kanellopoulos, D. In Discretization Techniques: A recent survey. GESTS Int. Trans. Comput. Sci. Eng. 2006, 32, 47–58. [Google Scholar]
- Todorovski, L.; Džeroski, S. Combining Classifiers with Meta Decision Trees. Mach. Learn. 2003, 50, 223–249. [Google Scholar] [CrossRef]
- Schreiber-Gregory, D.N. Ridge Regression and multicollinearity: An in-depth review. Model Assist. Stat. Appl. 2018, 13, 359–365. [Google Scholar] [CrossRef] [Green Version]
Process Parameter | Operating Range | |
---|---|---|
Minimum | Maximum | |
Inlet air temperature (°C) | 50 | 70 |
Inlet airflow rate (m3·h−1) | 20 | 60 |
Spray pressure (bar) | 0.8 | 1.8 |
Binder spray rate (mL·min−1) | 3.75 | 14.25 |
Model | Optimum Value |
---|---|
KNN | n_neighbors = 12, weights = “distance”, p = 1 |
RF | max_depth = 15, n_estimators = 500, min_samples_split = 10 |
LightGBM | max_depth = 12, n_estimators = 1000, learning_rate = 0.02, num_leaves = 100 |
DNNs | activation = “relu”, optimizer = “adam”, learning_rate = 0.02, epochs = 2000 |
BR | max_samples = 0.5, n_estimators = 500 |
ETs | n_estimators = 500, min_samples_split = 14, min_samples_leaf = 1 |
GBDT | max_depth = 10, n_estimators = 500, learning_rate = 0.01 |
XGBoost | max_depth = 14, n_estimators = 500, learning_rate = 0.025, min_child_weight = 10 |
GRNN | std = 0.008 |
Synthetic Feature | Feature Cross | Synthetic Feature | Feature Cross |
---|---|---|---|
F7 | F1 * × F6 | F12 | F4 * × (F6)2 |
F8 | (F1 *)2 × F6 | F13 | F5 × F6 |
F9 | F1 * × (F6)2 | F14 | (F5 *)2 × F6 |
F10 | F4 * × F6 | F15 | F5 ×(F6)2 |
F11 | (F4 *)2 × F6 |
Method | MAE (%) | MAPE (%) | RMSE (%) | Adj. R2 |
---|---|---|---|---|
Lasso | 0.0597 | 1.5840 | 0.0845 | 0.99484 |
KNN | 0.0604 | 1.6022 | 0.0849 | 0.99478 |
SVR | 0.0607 | 1.6046 | 0.0849 | 0.99480 |
RR | 0.0596 | 1.5819 | 0.0844 | 0.99485 |
ETs | 0.0599 | 1.5892 | 0.0846 | 0.99483 |
GBDT | 0.0605 | 1.6032 | 0.0853 | 0.99474 |
XGBoost | 0.0605 | 1.6040 | 0.0852 | 0.99475 |
Average | 0.0597 | 1.5841 | 0.0845 | 0.99482 |
Model | MAE (%) | MAPE (%) | RMSE (%) | Adj. R2 |
---|---|---|---|---|
KNN | 0.0608 | 1.6157 | 0.0867 | 0.99457 |
BR | 0.0624 | 1.6586 | 0.0897 | 0.99418 |
ETs | 0.0604 | 1.6051 | 0.0857 | 0.99469 |
RF | 0.0625 | 1.6610 | 0.0899 | 0.99416 |
GBDT | 0.0654 | 1.7325 | 0.0935 | 0.99368 |
LightGBM | 0.0644 | 1.7104 | 0.0912 | 0.99399 |
XGBoost | 0.0636 | 1.6904 | 0.0904 | 0.99409 |
GRNN | 0.0635 | 1.6852 | 0.0908 | 0.99405 |
DNN4 | 0.0617 | 1.6347 | 0.0871 | 0.99452 |
DNN5 | 0.0613 | 1.6241 | 0.0865 | 0.99459 |
DNN6 | 0.0612 | 1.6212 | 0.0863 | 0.99461 |
Proposed stacking ensemble method | 0.0596 | 1.5819 | 0.0844 | 0.99485 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Huang, P.; Zhou, J.; Li, M. An Enhanced Stacking Ensemble Method for Granule Moisture Prediction in Fluidized Bed Granulation. Processes 2022, 10, 725. https://doi.org/10.3390/pr10040725
Chen B, Huang P, Zhou J, Li M. An Enhanced Stacking Ensemble Method for Granule Moisture Prediction in Fluidized Bed Granulation. Processes. 2022; 10(4):725. https://doi.org/10.3390/pr10040725
Chicago/Turabian StyleChen, Binbin, Panling Huang, Jun Zhou, and Mindong Li. 2022. "An Enhanced Stacking Ensemble Method for Granule Moisture Prediction in Fluidized Bed Granulation" Processes 10, no. 4: 725. https://doi.org/10.3390/pr10040725
APA StyleChen, B., Huang, P., Zhou, J., & Li, M. (2022). An Enhanced Stacking Ensemble Method for Granule Moisture Prediction in Fluidized Bed Granulation. Processes, 10(4), 725. https://doi.org/10.3390/pr10040725