Exploring the Role of Initial Droplet Position in Coalescence-Induced Droplet Jumping: Lattice Boltzmann Simulations
Abstract
:1. Introduction
2. Methodology
3. Model Validation
4. Results and Discussion
4.1. Effects of Initial Droplet Position on Coalescence-Induced Jumping
4.2. Refined Structures for Enhanced Coalescence-Induced Jumping
4.3. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
a | constant in P-R equation of state |
b | constant in P-R equation of state |
c | lattice speed (m⋅s−1) |
cs | lattice sound speed (m⋅s−1) |
ei | lattice velocity vector (m⋅s−1) |
Ew | adhesion between solid and liquid (J) |
Eh | gravity potential energy (J) |
Ek | kinetic energy (J) |
Es | surface energy (J) |
ΔEvis | viscosity dissipation (J) |
F | force vector (N) |
f | density distribution function |
G | the interaction strength |
l0 | length scale (m⋅lu−1) |
m | distribution function in the moment space |
M | transformation matrix |
Oh | Ohnesorge number |
p | pressure (Pa) |
r | radius (m) |
R | constant in P-R equation of state |
s(x) | indicator function |
diagonal matrix | |
t | time (s) |
t0 | time scale (s⋅ts−1) |
ti | the merging time scale (s) |
T | temperature (K) |
u | velocity vector (m⋅s−1) |
ui | velocity of liquid lattice (m⋅s−1) |
ν0 | velocity scale |
wi | weighting coefficients in D2Q9 lattice |
x, y | coordinates (m) |
Greek symbol | |
β | weighting factor of the interaction force |
ω | acentric factor in P-R equation of state |
υ | kinetic viscosity (m2⋅s−1) |
ρ | density (kg⋅m−3) |
μ | dynamic viscosity (Pa⋅s) |
δt | time spacing (s) |
collision operator | |
ψ | interaction potential |
γlv | surface tension (N⋅m−1) |
Subscripts or Superscripts | |
b | bridge |
c | critical |
eq | equilibrium |
l | liquid |
s | solid |
v | vapor |
w | wall |
x, y | coordinates |
References
- Boreyko, J.B.; Chen, C.-H. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Phys. Rev. Lett. 2009, 103, 184501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.-L.; Song, F.; Wang, X.-L.; Wang, Y.-Z. Surface modification with hierarchical CuO arrays toward a flexible, durable superhydrophobic and s0065lf-cleaning material. Chem. Eng. J. 2017, 313, 1328–1334. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, G.; Liu, Y.; Wang, J.; Yang, G.; Li, D. Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes 2022, 10, 932. [Google Scholar] [CrossRef]
- Oktavianty, O.; Haruyama, S.; Ishii, Y. Enhancing Droplet Quality of Edible Ink in Single and Multi-Drop Methods by Optimization the Waveform Design of DoD Inkjet Printer. Processes 2022, 10, 91. [Google Scholar] [CrossRef]
- Fedorova, N.; Lindner, C.; Prado, L.H.; Jovicic, V.; Zbogar-Rasic, A.; Virtanen, S.; Delgado, A. Effect of Steam Flow Rate and Storage Period of Superhydrophobic-Coated Surfaces on Condensation Heat Flux and Wettability. Processes 2021, 9, 1958. [Google Scholar] [CrossRef]
- Wen, R.; Ma, X.; Lee, Y.-C.; Yang, R. Liquid-Vapor Phase-Change Heat Transfer on Functionalized Nanowired Surfaces and Beyond. Joule 2018, 2, 2307–2347. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Nazir, M.; Raiz, N.; Saleem, M.; Zengin, G.; Fazal, G.; Saleem, H.; Mukhtar, M.; Tousif, M.I.; Tareen, R.B.; et al. Phytochemical profiling, in vitro biological properties and in silico studies on Caragana ambigua stocks (Fabaceae): A comprehensive approach. Ind. Crops Prod. 2019, 131, 117–124. [Google Scholar] [CrossRef]
- Lu, I.-L.; Wong, V.-L.; Chin, J.-K.; Kushaari, K. Water Droplets Translocation and Fission in a 3D Bi-Planar Multifurcated T-Junction Microchannels. Processes 2020, 8, 510. [Google Scholar] [CrossRef]
- Chu, F.; Wu, X.; Zhu, B.; Zhang, X. Self-propelled droplet behavior during condensation on superhydrophobic surfaces. Appl. Phys. Lett. 2016, 108, 194103. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, L.; Sett, S.; Feng, L.; Zhao, C.; Huang, Z.; Vahabi, H.; Kota, A.K.; Chen, F.; Miljkovic, N. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. ACS Nano 2019, 13, 1309–1323. [Google Scholar] [CrossRef]
- Peng, Q.; Yan, X.; Li, J.; Li, L.; Cha, H.; Ding, Y.; Dang, C.; Jia, L.; Miljkovic, N. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. Langmuir 2020, 36, 9510–9522. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, S.; Zhu, J.; Xie, J.; Cai, C. Parameter Optimization and Experimental Study of Jet Mixing Device Based on CFD. Processes 2022, 10, 933. [Google Scholar] [CrossRef]
- Yin, B.; Xu, S.; Yang, S.; Dong, F. Shape Optimization of a Microhole Surface for Control of Droplet Wettability via the Lattice Boltzmann Method and Response Surface Methodology. Langmuir 2021, 37, 3620–3627. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xia, Y.; Zhang, L.; Zhang, X.; Fu, C.; Jiang, Y.; Li, H. Effects of stripy surfaces with intervals on the coalescence dynamics of nano-droplets: Insights from molecular dynamics simulations. Appl. Surf. Sci. 2019, 481, 951–959. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Li, H. Controllable Coalescence Dynamics of Nanodroplets on Textured Surfaces Decorated with Well-Designed Wrinkled Nanostructures: A Molecular Dynamics Study. Langmuir 2021, 37, 11414–11421. [Google Scholar] [CrossRef]
- Mulroe, M.D.; Srijanto, B.R.; Ahmadi, S.F.; Collier, C.P.; Boreyko, J.B. Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation. ACS Nano 2017, 11, 8499–8510. [Google Scholar] [CrossRef]
- Chen, X.; Weibel, J.A.; Garimella, S.V. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces. ACS Omega 2017, 2, 2883–2890. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liu, F.; Williams, A.J.; Qu, X.; Feng, J.J.; Chen, C.-H. Self-Propelled Droplet Removal from Hydrophobic Fiber-Based Coalescers. Phys. Rev. Lett. 2015, 115, 074502. [Google Scholar] [CrossRef] [Green Version]
- Vahabi, H.; Wang, W.; Mabry, J.M.; Kota, A.K. Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture. Sci. Adv. 2018, 4, eaau3488. [Google Scholar] [CrossRef] [Green Version]
- Cha, H.; Xu, C.; Sotelo, J.; Chun, J.M.; Yokoyama, Y.; Enright, R.; Miljkovic, N. Coalescence-induced nanodroplet jumping. Phys. Rev. Fluids 2016, 1, 064102. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, P.; Quan, X. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. Int. J. Heat Mass Transf. 2014, 73, 195–200. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, P. 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces. Int. Commun. Heat Mass Transf. 2015, 64, 7–13. [Google Scholar] [CrossRef]
- Tran, D.T.; Nguyen, N.-K.; Singha, P.; Nguyen, N.-T.; Ooi, C.H. Modelling Sessile Droplet Profile Using Asymmetrical Ellipses. Processes 2021, 9, 2081. [Google Scholar] [CrossRef]
- Shi, Y.; Tang, G.H.; Xia, H.H. Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins. Int. J. Heat Mass Transf. 2015, 88, 445–455. [Google Scholar] [CrossRef]
- Gao, S.; Liao, Q.; Liu, W.; Liu, Z. Coalescence-Induced Jumping of Nanodroplets on Textured Surfaces. J. Phys. Chem. Lett. 2018, 9, 13–18. [Google Scholar] [CrossRef]
- Li, S.; Chu, F.; Zhang, J.; Brutin, D.; Wen, D. Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity. Chem. Eng. Sci. 2020, 211, 115252. [Google Scholar] [CrossRef]
- Huang, J.-J.; Xiao, X.-B.; Li, Y.-J. Numerical Investigation of Coalescence-Induced Droplet Jumping from a Hydrophobic Fiber. Langmuir 2018, 34, 14186–14195. [Google Scholar] [CrossRef]
- Liao, M.-J.; Duan, L.-Q. Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces. Processes 2021, 9, 142. [Google Scholar] [CrossRef]
- Tembely, M.; Vadillo, D.; Soucemarianadin, A.; Dolatabadi, A. Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities. Processes 2019, 7, 798. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yu, X.; Tu, S.-T. Lattice Boltzmann Simulation on Droplet Flow through 3D Metal Foam. Processes 2019, 7, 877. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.-J.; Zhang, L.-Z.; Yi, M.-C.; Wang, X.; Gao, S.-R.; Yang, Y.-R.; Zheng, S.-F.; Wang, X.-D. Contact Time of Double-Droplet Impacting Superhydrophobic Surfaces with Different Macrotextures. Processes 2020, 8, 896. [Google Scholar] [CrossRef]
- Yu, K.; Yong, Y.; Yang, C. Numerical Study on Bubble Rising in Complex Channels Saturated with Liquid Using a Phase-Field Lattice-Boltzmann Method. Processes 2020, 8, 1608. [Google Scholar] [CrossRef]
- Abbassi, M.A.; Safaei, M.R.; Djebali, R.; Guedri, K.; Zeghmati, B.; Alrashed, A.A.A.A. LBM simulation of free convection in a nanofluid filled incinerator containing a hot block. Int. J. Mech. Sci. 2018, 144, 172–185. [Google Scholar] [CrossRef]
- Safaei, M.R.; Karimipour, A.; Abdollahi, A.; Nguyen, T.K. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys. A Stat. Mech. Its Appl. 2018, 509, 515–535. [Google Scholar] [CrossRef]
- Mozaffari, M.; D’Orazio, A.; Karimipour, A.; Abdollahi, A.; Safaei, M.R. Lattice Boltzmann method to simulate convection heat transfer in a microchannel under heat flux. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 3371–3398. [Google Scholar] [CrossRef]
- Karimipour, A.; Hemmat Esfe, M.; Safaei, M.R.; Toghraie Semiromi, D.; Jafari, S.; Kazi, S.N. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys. A Stat. Mech. Its Appl. 2014, 402, 150–168. [Google Scholar] [CrossRef]
- Zhang, L.-Z.; Yuan, W.-Z. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures. Appl. Surf. Sci. 2018, 436, 172–182. [Google Scholar] [CrossRef]
- Wang, X.; Xu, B.; Chen, Z.; Yang, Y.; Cao, Q. Lattice Boltzmann simulation of dropwise condensation on the microstructured surfaces with different wettability and morphologies. Int. J. Therm. Sci. 2021, 160, 106643. [Google Scholar] [CrossRef]
- Chen, X.; Lu, J.; Tryggvason, G. Numerical simulation of self-propelled non-equal sized droplets. Phys. Fluids 2019, 31, 052107. [Google Scholar]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1819. [Google Scholar] [CrossRef] [Green Version]
- D’Humieres, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Cheng, P. A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer. Int. J. Heat Mass Transf. 2012, 55, 4923–4927. [Google Scholar] [CrossRef]
- Gong, S.; Cheng, P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 2012, 53, 93–104. [Google Scholar] [CrossRef]
- Kupershtokh, A.L.; Medvedev, D.A.; Karpov, D.I. On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 2009, 58, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.-C.; Yang, F.; Zhao, Y.-P. Size effect on the coalescence-induced self-propelled droplet. Appl. Phys. Lett. 2011, 98, 053112. [Google Scholar] [CrossRef] [Green Version]
- Wisdom, K.M.; Watson, J.A.; Qu, X.; Liu, F.; Watson, G.S.; Chen, C.-H. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl. Acad. Sci. USA 2013, 110, 7992–7997. [Google Scholar] [CrossRef] [Green Version]
- Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C.T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yan, X.; Ma, L.; Liu, Z.; Liu, W. Exploring the Role of Initial Droplet Position in Coalescence-Induced Droplet Jumping: Lattice Boltzmann Simulations. Processes 2022, 10, 986. https://doi.org/10.3390/pr10050986
Zhu Y, Yan X, Ma L, Liu Z, Liu W. Exploring the Role of Initial Droplet Position in Coalescence-Induced Droplet Jumping: Lattice Boltzmann Simulations. Processes. 2022; 10(5):986. https://doi.org/10.3390/pr10050986
Chicago/Turabian StyleZhu, Yuhao, Xiao Yan, Lei Ma, Zhichun Liu, and Wei Liu. 2022. "Exploring the Role of Initial Droplet Position in Coalescence-Induced Droplet Jumping: Lattice Boltzmann Simulations" Processes 10, no. 5: 986. https://doi.org/10.3390/pr10050986
APA StyleZhu, Y., Yan, X., Ma, L., Liu, Z., & Liu, W. (2022). Exploring the Role of Initial Droplet Position in Coalescence-Induced Droplet Jumping: Lattice Boltzmann Simulations. Processes, 10(5), 986. https://doi.org/10.3390/pr10050986