Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Microalgal Culture
(R2 = 0.9902, Limit of detection = 0.02 gDW L−1, Limit of quantification = 0.07 gDW L−1).
2.1.2. Flocculants
2.2. Methods
2.2.1. Chemical Flocculation Assays
2.2.2. Zetag 8185 Optimization Assays
3. Results and Discussion
3.1. Minimum Dosage Determination
3.2. Dosage Optimization
3.3. Zetag 8185 Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Benner, P.; Meier, L.; Pfeffer, A.; Krüger, K.; Oropeza Vargas, J.E.; Weuster-Botz, D. Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess Biosyst. Eng. 2022, 45, 791–813. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.I.; Esteves, A.F.; Pires, J.C.; Gonçalves, A.L. Microalgal Biorefineries: Key Processes and Main Challenges. In Microalgal Biotechnology: Recent Advances, Market Potencial, and Sustainability; Shekh, A., Schenk, P., Sarada, R., Eds.; Royal Society of Chemistry: London, UK, 2021; pp. 36–76. [Google Scholar]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.S.; Park, J.M. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnol. Bioeng. 2003, 83, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.M.; Ji, X.W.; He, Y.J.; Li, Z.F.; Wang, M.Z.; Chen, B.L.; Huang, J. Simultaneous fixation of carbon dioxide and purification of undiluted swine slurry by culturing Chlorella vulgaris MBFJNU-1. Algal Res. 2020, 47. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef]
- Roselet, F.; Vandamme, D.; Muylaert, K.; Abreu, P.C. Harvesting of microalgae for biomass production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Alam, M., Wang, Z., Eds.; Springer: Singapore, 2019; pp. 211–243. [Google Scholar]
- Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of microalgae by flocculation. Fermentation 2018, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, D.; Ferreira, A.; Quelhas, P.; Schulze, P.S.; Gouveia, L. Nannochloropsis oceanica harvested using electrocoagulation with alternative electrodes—An innovative approach on potential biomass applications. Bioresour. Technol. 2022, 344, 126222. [Google Scholar] [CrossRef]
- Gutierrez, R.; Ferrer, I.; Uggetti, E.; Arnabat, C.; Salvado, H.; Garcia, J. Settling velocity distribution of microalgal biomass from urban wastewater treatment high rate algal ponds. Algal Res. 2016, 16, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Gough, R.; Holliman, P.J.; Cooke, G.M.; Freeman, C. Characterisation of algogenic organic matter during an algal bloom and its implications for trihalomethane formation. Sustain. Water Qual. Ecol. 2015, 6, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.-C.; Lai, C.-H.; Wang, G.-S.; Lin, T.-F.; Huang, C. Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1803–1834. [Google Scholar] [CrossRef]
- Gonzalez-Camejo, J.; Pachés, M.; Marín, A.; Jiménez-Benítez, A.; Seco, A.; Barat, R. Production of microalgal external organic matter in a Chlorella-dominated culture: Influence of temperature and stress factors. Environ. Sci. Water Res. Technol. 2020, 6, 1828–1841. [Google Scholar] [CrossRef]
- Roselet, F.; Burkert, J.; Abreu, P.C. Flocculation of Nannochloropsis oculata using a tannin-based polymer: Bench scale optimization and pilot scale reproducibility. Biomass Bioenergy 2016, 87, 55–60. [Google Scholar] [CrossRef]
- Davis, M.L. Coagulation and Flocculation. In Water and Wastewater Engineering: Design Principles and Practice; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Machado, G.; Dos Santos, C.A.; Gomes, J.; Faria, D.; Santos, F.; Lourega, R. Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant. Sci. Total Environ. 2020, 745, 140875. [Google Scholar] [CrossRef] [PubMed]
- Sanyano, N.; Chetpattananondh, P.; Chongkhong, S. Coagulation–flocculation of marine Chlorella sp. for biodiesel production. Bioresour. Technol. 2013, 147, 471–476. [Google Scholar] [CrossRef]
- Schmitt, F.O.; Rodrigues, R.T.; Oliveira, C. Efficacy of two natural tannins-based polymers in contrast to aluminum sulfate for drinking water production. Clean. Eng. Technol. 2021, 3, 100099. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Hiltunen, E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 2018, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Lee, K.; Lee, J.; Lee, Y.-H.; Han, J.-I.; Park, J.-Y.; Oh, Y.-K. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresour. Technol. 2017, 239, 190–196. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W. State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Rossi, S.; Visigalli, S.; Cascino, F.C.; Mantovani, M.; Mezzanotte, V.; Parati, K.; Canziani, R.; Turolla, A.; Ficara, E. Metal-based flocculation to harvest microalgae: A look beyond separation efficiency. Sci. Total Environ. 2021, 799, 149395. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Chen, Z.; Krishnamurti, G.; Naidu, R.; Megharaj, M. Toxicity and bioaccumulation of iron in soil microalgae. J. Appl. Phycol. 2016, 28, 2767–2776. [Google Scholar] [CrossRef] [Green Version]
- Kandimalla, R.; Vallamkondu, J.; Corgiat, E.B.; Gill, K.D. Understanding aspects of Aluminum exposure in a lzheimer’s disease development. Brain Pathol. 2016, 26, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Mold, M.; Linhart, C.; Gómez-Ramírez, J.; Villegas-Lanau, A.; Exley, C. Aluminum and amyloid-β in familial Alzheimer’s disease. J. Alzheimer’s Dis. 2020, 73, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Kirnev, P.; de Carvalho, J.; Miyaoka, J.; Cartas, L.; Vandenberghe, L.; Soccol, C. Harvesting Neochloris oleoabundans using commercial organic flocculants. J. Appl. Phycol. 2018, 30, 2317–2324. [Google Scholar] [CrossRef]
- Japar, A.S.; Takriff, M.S.; Mohd Yasin, N.H.; Mahmod, S.S. Optimization of Chlorella biomass harvesting by flocculation and its potential for biofuel production. J. Appl. Phycol. 2021, 33, 1621–1629. [Google Scholar] [CrossRef]
- Divakaran, R.; Pillai, V.S. Flocculation of algae using chitosan. J. Appl. Phycol. 2002, 14, 419–422. [Google Scholar] [CrossRef]
- Gani, P.; Mohamed Sunar, N.; Matias-Peralta, H.; Abdul Latiff, A.A. Effect of pH and alum dosage on the efficiency of microalgae harvesting via flocculation technique. Int. J. Green Energy 2017, 14, 395–399. [Google Scholar] [CrossRef]
- Min, K.H.; Kim, D.H.; Ki, M.-R.; Pack, S.P. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresour. Technol. 2022, 344, 126404. [Google Scholar] [CrossRef]
- Xu, Y.; Purton, S.; Baganz, F. Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour. Technol. 2013, 129, 296–301. [Google Scholar] [CrossRef]
- Niemi, C.; Gentili, F.G. The use of natural organic flocculants for harvesting microalgae grown in municipal wastewater at different culture densities. Physiol. Plant. 2021, 173, 536–542. [Google Scholar] [CrossRef] [PubMed]
Run | Dosage (mg L−1) | Settling Time (min) | RM Time (min) | SM Time (min) |
---|---|---|---|---|
1 | −1 (10) | −1 (5) | −1 (0) | −1 (0) |
2 | +1 (100) | −1 (5) | −1 (0) | −1 (0) |
3 | −1 (10) | +1 (15) | −1 (0) | −1 (0) |
4 | +1 (100) | +1 (15) | −1 (0) | −1 (0) |
5 | −1(10) | −1 (5) | +1 (3) | −1 (0) |
6 | +1 (100) | −1 (5) | +1 (3) | −1 (0) |
7 | −1(10) | +1 (15) | +1 (3) | −1 (0) |
8 | +1 (100) | +1 (15) | +1 (3) | −1 (0) |
9 | −1(10) | −1 (5) | −1 (0) | +1 (15) |
10 | +1 (100) | −1 (5) | −1 (0) | +1 (15) |
11 | −1(10) | +1 (15) | −1 (0) | +1 (15) |
12 | +1 (100) | +1 (15) | −1 (0) | +1 (15) |
13 | −1(10) | −1 (5) | +1 (3) | +1 (15) |
14 | +1 (100) | −1 (5) | +1 (3) | +1 (15) |
15 | −1(10) | +1 (15) | +1 (3) | +1 (15) |
16 | +1 (100) | +1 (15) | +1 (3) | +1 (15) |
Flocculants | Optimal pH | Initial Biomass Concentration (mgDW L−1) | Minimum Dosage (mg L−1) | Minimum Dosage (mg gDW−1) |
---|---|---|---|---|
Aluminum sulfate | 9 | 342 ± 9 | 60.0 ± 0.0 | 175 ± 0 |
Ferric sulfate | 9 | 342 ± 9 | 9.6 ± 0.0 | 28 ± 0 |
Ferric chloride | 9 | 342 ± 9 | 9.2 ± 0.0 | 27 ± 0 |
Chitosan | 5 | 349 ± 5 | 12.0 ± 0.0 | 34 ± 0 |
Zetag 8185 | 6 | 356 ± 9 | 4.0 ± 0.0 | 11 ± 0 |
Tanfloc SG | 9 | 356 ± 0 | 8.0 ± 0.0 | 22 ± 0 |
Flocculant | pH | Biomass Concentration (mgDW L−1) | Dosage (mg L−1) | Final Biomass Concentration (mgDW L−1) |
---|---|---|---|---|
Zetag 8185 | 6 | 344 ± 4 | 10 | 239 ± 27 |
50 | 4 ± 1 | |||
100 | 7 ± 1 | |||
150 | 16 ± 2 | |||
200 | 12 ± 1 | |||
Tanfloc SG | 9 | 346 ± 2 | 10 | 313 ± 13 |
50 | 321 ± 10 | |||
100 | 314 ± 5 | |||
150 | 291 ± 6 | |||
200 | 262 ± 5 | |||
Ferric chloride | 9 | 343 ± 7 | 10 | 338 ± 5 |
50 | 332 ± 6 | |||
100 | 311 ± 8 | |||
150 | 316 ± 12 | |||
200 | 353 ± 6 |
Run | Dosage (mg L−1) | Settling Time (min) | RM Time (min) | SM Time (min) | Harvesting Efficiency (%) |
---|---|---|---|---|---|
1 | 10 | 5 | 0 | 0 | 0.0 ± 0.0 |
2 | 100 | 5 | 0 | 0 | 0.0 ± 0.0 |
3 | 10 | 15 | 0 | 0 | 0.0 ± 0.0 |
4 | 100 | 15 | 0 | 0 | 0.0 ± 0.0 |
5 | 10 | 5 | 3 | 0 | 26.4 ± 1.6 |
6 | 100 | 5 | 3 | 0 | 99.8 ± 0.2 |
7 | 10 | 15 | 3 | 0 | 27.0 ± 1.5 |
8 | 100 | 15 | 3 | 0 | 99.7 ± 0.0 |
9 | 10 | 5 | 0 | 15 | 28.7 ± 1.3 |
10 | 100 | 5 | 0 | 15 | 99.3 ± 0.2 |
11 | 10 | 15 | 0 | 15 | 27.5 ± 1.5 |
12 | 100 | 15 | 0 | 15 | 99.5 ± 0.1 |
13 | 10 | 5 | 3 | 15 | 19.9 ± 1.5 |
14 | 100 | 5 | 3 | 15 | 99.0 ± 0.5 |
15 | 10 | 15 | 3 | 15 | 19.9 ± 2.7 |
16 | 100 | 15 | 3 | 15 | 99.1 ± 0.1 |
Factor | Effects | p-Value |
---|---|---|
Dosage (A) | 57.006 | 0.000 |
Settling time (B) | −0.156 | 0.776 |
RM time (C) | 28.844 | 0.000 |
SM time (D) | 29.431 | 0.000 |
A × B | 0.331 | 0.548 |
A × C | 20.706 | 0.000 |
A × D | 19.744 | 0.000 |
B × C | 0.144 | 0.793 |
B × D | −0.319 | 0.563 |
C × D | −33.544 | 0.000 |
A × B × C | −0.094 | 0.864 |
A × B × D | 0.494 | 0.374 |
A × C × D | −16.556 | 0.000 |
B × C × D | −0.019 | 0.973 |
A × B × C × D | 0.069 | 0.900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, C.A.; Esteves, A.F.; Pires, J.C.M. Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments. Processes 2022, 10, 1124. https://doi.org/10.3390/pr10061124
Machado CA, Esteves AF, Pires JCM. Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments. Processes. 2022; 10(6):1124. https://doi.org/10.3390/pr10061124
Chicago/Turabian StyleMachado, Cláudia A., Ana F. Esteves, and José C. M. Pires. 2022. "Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments" Processes 10, no. 6: 1124. https://doi.org/10.3390/pr10061124
APA StyleMachado, C. A., Esteves, A. F., & Pires, J. C. M. (2022). Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments. Processes, 10(6), 1124. https://doi.org/10.3390/pr10061124