Parallel Reaction Monitoring Mode for Atenolol Quantification in Dried Plasma Spots by Liquid Chromatography Coupled with High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The LC–HRMS Method
2.3. Preparation of Calibration Standards and of Method Validation Samples
2.4. Sample Preparation and the Extraction Procedure
2.5. Linearity
2.6. Accuracy
2.7. The Recovery and Matrix Effect
2.8. Stability
2.9. Application of Method to Volunteer Spot Samples
3. Results and Discussion
3.1. The Extraction Procedure
3.2. The LC–HRMS Method
3.3. Linearity
3.4. Accuracy
3.5. The Recovery and Matrix Effect
3.6. Stability
3.7. Application of the Method
4. General Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.M.; Park, J.-H.; Long, N.P.; Kim, D.-D.; Kwon, S.W. Simultaneous determination of cardiovascular drugs in dried blood spot by liquid chromatography-tandem mass spectrometry. J. Food Drug Anal. 2019, 27, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Erina, A.M.; Rotar, O.P.; Solntsev, V.N.; Shalnova, S.A.; Deev, A.D.; Baranova, E.I.; Konradi, O.A.; Boytsov, S.A.; Shlyakhto, E.V. Epidemiology of Arterial Hypertension in Russian Federation—Importance of Choice of Criteria of Diagnosis. Kardiologiia 2019, 59, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Marcus, A.O. Safety of drugs commonly used to treat hypertension, dyslipidemia, and type 2 diabetes (the metabolic syndrome): Part 1. Diabetes Technol. Ther. 2000, 2, 101–110. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ram, C.V.S. Beta-blockers in hypertension. Am. J. Cardiol. 2010, 106, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Minamide, Y.; Osawa, Y.; Nishida, H.; Igarashi, H.; Kudoh, S. A highly sensitive LC-MS/MS method capable of simultaneously quantitating celiprolol and atenolol in human plasma for a cassette cold-microdosing study. J. Sep. Sci. 2011, 34, 1590–1598. [Google Scholar] [CrossRef]
- Phyo Lwin, E.M.; Gerber, C.; Song, Y.; Leggett, C.; Ritchie, U.; Turner, S.; Garg, S. A new LC-MS/MS bioanalytical method for atenolol in human plasma and milk. Bioanalysis 2017, 9, 517–530. [Google Scholar] [CrossRef]
- Zakaria, R.; Allen, K.J.; Koplin, J.J.; Roche, P.; Greaves, R.F. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process. EJIFCC 2016, 27, 288–317. [Google Scholar] [PubMed]
- Spooner, N.; Lad, R.; Barfield, M. Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: Considerations for the validation of a quantitative bioanalytical method. Anal. Chem. 2009, 81, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tse, F.L.S. Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed. Chromatogr. 2010, 24, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Dennis Bernieh, S.T. LC-HRMS Analysis of Dried Blood Spot Samples For Assessing Adherence to Cardiovascular Medications. J. Bioanal. Biomed. 2015, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Panchal, T.; Spooner, N.; Barfield, M. Ensuring the collection of high-quality dried blood spot samples across multisite clinical studies. Bioanalysis 2017, 9, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Vu, D.H.; Koster, R.A.; Alffenaar, J.W.C.; Brouwers, J.R.B.J.; Uges, D.R.A. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1063–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Rabie, P.; Denniff, P.; Spooner, N.; Brynjolffssen, J.; Galluzzo, P.; Sanders, G. Method of applying internal standard to dried matrix spot samples for use in quantitative bioanalysis. Anal. Chem. 2011, 83, 8779–8786. [Google Scholar] [CrossRef]
- Abu-Rabie, P.; Denniff, P.; Spooner, N.; Chowdhry, B.Z.; Pullen, F.S. Investigation of different approaches to incorporating internal standard in DBS quantitative bioanalytical workflows and their effect on nullifying hematocrit-based assay bias. Anal. Chem. 2015, 87, 4996–5003. [Google Scholar] [CrossRef]
- Biagini, D.; Antoni, S.; Ghimenti, S.; Bonini, A.; Vivaldi, F.; Angelucci, C.; Riparbelli, C.; Cuttano, A.; Fuoco, R.; Di Francesco, F.; et al. Methodological aspects of dried blood spot sampling for the determination of isoprostanoids and prostanoids. Microchem. J. 2022, 175, 107212. [Google Scholar] [CrossRef]
- Edelbroek, P.M.; van der Heijden, J.; Stolk, L.M.L. Dried blood spot methods in therapeutic drug monitoring: Methods, assays, and pitfalls. Ther. Drug Monit. 2009, 31, 327–336. [Google Scholar] [CrossRef]
- Rockwood, A.L.; Kushnir, M.M.; Clarke, N.J. Mass Spectrometry. In Principles and Applications of Clinical Mass Spectrometry: Small Molecules, Peptides, and Pathogens; Rifai, N., Horvath, A.R., Wittwer, C., Hoofnagle, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 33–65. ISBN 9780128160633. [Google Scholar]
- Lee, M.S.; Kerns, E.H. LC/MS applications in drug development. Mass Spectrom. Rev. 1999, 18, 187–279. [Google Scholar] [CrossRef]
- Hopfgartner, G.; Varesio, E.; Tschäppät, V.; Grivet, C.; Bourgogne, E.; Leuthold, L.A. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J. Mass Spectrom. 2004, 39, 845–855. [Google Scholar] [CrossRef]
- Stahl-Zeng, J.; Lange, V.; Ossola, R.; Eckhardt, K.; Krek, W.; Aebersold, R.; Domon, B. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell. Proteom. 2007, 6, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Rauniyar, N. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int. J. Mol. Sci. 2015, 16, 28566–28581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, A.C.; Russell, J.D.; Bailey, D.J.; Westphall, M.S.; Coon, J.J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 2012, 11, 1475–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, A.; Noble, W.S.; Wolf-Yadlin, A. Technical advances in proteomics: New developments in data-independent acquisition. F1000Research 2016, 5, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernieh, D.; Lawson, G.; Tanna, S. Quantitative LC-HRMS determination of selected cardiovascular drugs, in dried blood spots, as an indicator of adherence to medication. J. Pharm. Biomed. Anal. 2017, 142, 232–243. [Google Scholar] [CrossRef]
- Lawson, G.; Cocks, E.; Tanna, S. Quantitative determination of atenolol in dried blood spot samples by LC-HRMS: A potential method for assessing medication adherence. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 897, 72–79. [Google Scholar] [CrossRef]
- European Medicines Agency. Guidelines on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 11 May 2021).
- Chernonosov, A.A.; Koval, V.V. Extraction Procedure Optimization of Atenolol from Dried Plasma Spots. J. Pharm. Res. Int. 2019, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stock, N.L. Introducing Graduate Students to High-Resolution Mass Spectrometry (HRMS) Using a Hands-On Approach. J. Chem. Educ. 2017, 94, 1978–1982. [Google Scholar] [CrossRef]
- Kallem, R.R.; Inamadugu, J.K.; Ramesh, M.; Seshagirirao, J.V.L.N. Sensitive LC-MS/MS-ESI method for simultaneous determination of nifedipine and atenolol in human plasma and its application to a human pharmacokinetic study. Biomed. Chromatogr. 2013, 27, 349–355. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Francisco, D.T.; Naidong, W. Hydrophilic interaction liquid chromatographic tandem mass spectrometric determination of atenolol in human plasma. Biomed. Chromatogr. 2005, 19, 385–393. [Google Scholar] [CrossRef]
- Quaresma, A.V.; Sousa, B.A.; Silva, K.T.S.; Silva, S.Q.; Werle, A.A.; Afonso, R.J.C.F. Oxidative treatments for atenolol removal in water: Elucidation by mass spectrometry and toxicity evaluation of degradation products. Rapid Commun. Mass Spectrom. 2019, 33, 303–313. [Google Scholar] [CrossRef]
- Johnson, R.D.; Lewis, R.J. Quantitation of atenolol, metoprolol, and propranolol in postmortem human fluid and tissue specimens via LC/APCI-MS. Forensic Sci. Int. 2006, 156, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Kallem, R.R.; Mullangi, R.; Hotha, K.K.; Ravindranath, L.K.; Spoorthy, Y.N.; Seshagirirao, J.V.L.N. Simultaneous estimation of amlodipine and atenolol in human plasma: A sensitive LC-MS/MS method validation and its application to a clinical PK study. Bioanalysis 2013, 5, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Spanakis, M.; Niopas, I. Determination of atenolol in human plasma by HPLC with fluorescence detection: Validation and application in a pharmacokinetic study. J. Chromatogr. Sci. 2013, 51, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainero Rocca, L.; L’Episcopo, N.; Gordiani, A.; Vitali, M.; Staderini, A. A ‘Dilute and Shoot’ Liquid Chromatography-Mass Spectrometry Method for Multiclass Drug Analysis in Pre-Cut Dried Blood Spots. Int. J. Environ. Res. Public Health 2021, 18, 3068. [Google Scholar] [CrossRef] [PubMed]
- Tanna, S.; Alalaqi, A.; Bernieh, D.; Lawson, G. Volumetric absorptive microsampling (VAMS) coupled with high-resolution, accurate-mass (HRAM) mass spectrometry as a simplified alternative to dried blood spot (DBS) analysis for therapeutic drug monitoring of cardiovascular drugs. Clin. Mass Spectrom. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Moat, S.J.; Dibden, C.; Tetlow, L.; Griffith, C.; Chilcott, J.; George, R.; Hamilton, L.; Wu, T.H.; MacKenzie, F.; Hall, S.K. Effect of blood volume on analytical bias in dried blood spots prepared for newborn screening external quality assurance. Bioanalysis 2020, 12, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.M.; Flores, S.R.; de Jesús, V.R. Influence of Hematocrit and Total-Spot Volume on Performance Characteristics of Dried Blood Spots for Newborn Screening. Int. J. Neonatal Screen. 2015, 1, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Chernonosov, A. Quantification of Warfarin in Dried Rat Plasma Spots by High-Performance Liquid Chromatography with Tandem Mass Spectrometry. J. Pharm. (Cairo) 2016, 2016, 6053295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, A.A. Determination of Atenolol in Human Plasma by New HPLC Method with Fluorescence Detection for Pharmacokinetics Studies. Karbala J. Pharm. Sci. 2014, 5, 238–261. [Google Scholar]
Concentration, ng/mL | Interday | Intraday | ||
---|---|---|---|---|
%Bias | %RSD | %Bias | %RSD | |
5 | 16.6 | 13.8 | 12.9 | 11.0 |
80 | 14.4 | 13.5 | 8.5 | 7.5 |
400 | 4.3 | 5.8 | 6.0 | 6.9 |
800 | 8.0 | 6.1 | 6.3 | 8.9 |
Concentration, ng/mL | Recovery, % | Matrix Effect, % |
---|---|---|
80 | 81.0 | 79.4 |
400 | 62.9 | 71.0 |
800 | 66.5 | 65.4 |
Concentration, ng/mL | 1 Day | 7 Days | 30 Days | |||
---|---|---|---|---|---|---|
%Bias | %RSD | %Bias | %RSD | %Bias | %RSD | |
25 °C | ||||||
80 | 9.1 | 7.1 | 9.4 | 13.7 | 12.8 | 11.1 |
400 | 3.9 | 13.3 | 14.3 | 14.8 | 14.0 | 11.5 |
800 | 6.6 | 21.5 | 8.8 | 11.3 | 9.8 | 8.3 |
4 °C | ||||||
80 | 9.1 | 7.1 | 13.0 | 11.9 | 6.3 | 12.9 |
400 | 3.9 | 13.3 | 23.7 | 14.4 | 10.3 | 14.8 |
800 | 6.6 | 21.5 | 13.8 | 13.7 | 12.0 | 9.4 |
Spot Size | Blood Sample Volume Estimate, μL | LOQ, pg/μL | Aliquot for MS, μL | Final Solvent Volume, μL | Amount of Sample Analyzed as LOQ, pg | Linear Range, ng/mL | Reference |
---|---|---|---|---|---|---|---|
6 mm | 13 | 25 | 5 | 100 | 16.25 | 25–12,500 | [1] |
5 mm | 9 | 25 | 5 | 200 | 5.63 | 25–1500 | [26] |
8 mm | 23 | 10 | 20 | 150 | 30.67 | 10–1500 | [25] |
Pre-cut | 2 | 2.4 | 2 | 100 | 0.10 | 2.4–24 | [36] |
8 mm | 23 | 10 | 20 | 150 | 30.67 | 10–1500 | [37] |
3.2 mm | 1.6 * | 5 | 5 | 100 | 0.43 | 5–1000 | Current study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksenova, L.V.; Koval, V.V.; Chernonosov, A.A. Parallel Reaction Monitoring Mode for Atenolol Quantification in Dried Plasma Spots by Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Processes 2022, 10, 1240. https://doi.org/10.3390/pr10071240
Aksenova LV, Koval VV, Chernonosov AA. Parallel Reaction Monitoring Mode for Atenolol Quantification in Dried Plasma Spots by Liquid Chromatography Coupled with High-Resolution Mass Spectrometry. Processes. 2022; 10(7):1240. https://doi.org/10.3390/pr10071240
Chicago/Turabian StyleAksenova, Liliya V., Vladimir V. Koval, and Alexander A. Chernonosov. 2022. "Parallel Reaction Monitoring Mode for Atenolol Quantification in Dried Plasma Spots by Liquid Chromatography Coupled with High-Resolution Mass Spectrometry" Processes 10, no. 7: 1240. https://doi.org/10.3390/pr10071240