The Trace Gas Monitoring Method Based on Diode Laser Wavelength-Modulation Spectroscopy Technology for the Detection of Clinical Blood Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle and Method of Measurement
2.2. Selection of CO2 Absorption Spectra
2.3. Design of Optical Detection System Based on DLWMS Technology
2.4. Design of Spectroscopic High Throughput Blood Culture Apparatus
3. Results and Discussion
3.1. Debugging and Performance Analysis of Optical Inspection System Based on DLWMS Technology
3.2. Preliminary Study of the Clinical Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christ, M.; Geier, F.; Bertsch, T.; Singler, K. Sepsis in emergency medicine. Dtsch. Med. Wochenschr. 2016, 141, 1074–1081. [Google Scholar] [PubMed]
- Alejandro, B.E.A.; Priscilla, H.; Teresa, P.M.; Giraldez, E.M.; Wilcox, S.R. Prehospital Sepsis Project (PSP): Knowledge and attitudes of United States advanced out-of hospital care providers. Prehosp. Disaster Med. 2013, 28, 1–106. [Google Scholar]
- Guerra, W.F.; Mayfield, T.R.; Meyers, M.S.; Clouatre, A.E.; Riccio, J.C. Early detection and treatment of patients with severe sepsis by prehospital personnel. J. Emerg. Med. 2013, 44, 1116–1125. [Google Scholar] [CrossRef]
- Casu, S.; Häske, D. Severe sepsis and septic shock in pre-hospital emergency medicine: Survey results of medical directors of emergency medical services concerning antibiotics, blood cultures and algorithms. Intern. Emerg. Med. 2016, 11, 571–576. [Google Scholar] [CrossRef]
- Jeon, H.J.; Choi, Y.K.; Eom, H.S.; Kang, G.H.; Kim, K.J.; Yang, Y.H.; Lee, S.H.; Kim, K.H.; Kim, S.J.; Kim, H.J. Comparison among dry cell weight, chlorophyll a concentration, and amperometric signal during a batch cultivation of Spirulina maxima. Sens. Actuators B Chem. 2014, 205, 9–11. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, D.J.; Qi, W.T.; Gao, S.J.; Xiu, Z.L.; Xu, P. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl. Microbiol. Biot. 2007, 29, 1281–1285. [Google Scholar] [CrossRef]
- Dalgaard, P.; Ross, T.; Kamperman, L.; Neumeyer, K.; Mcmeekin, T.A. Estimation of bacterial growth rates from turbidimetric and viable count data. Int. J. Food Microbiol. 1994, 23, 391. [Google Scholar] [CrossRef]
- Tempest, D.W.; Neijssel, O.M. Eco-Physiological Aspects of Microbial Growth in Aerobic Nutrient-Limited Environments. In Advances in Microbial Ecology; Alexander, M., Ed.; Springer: Boston, MA, USA, 1978; Volume 2. [Google Scholar]
- Kocincová, A.S.; Nagl, S.; Arain, S.; Krause, C.; Borisov, S.M.; Arnold, M.; Wolfbeis, O.S. Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol. Bioeng. 2008, 100, 430–438. [Google Scholar] [CrossRef]
- Lazcka, O.; del Campo, F.J.; MuñOz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef]
- Zhu, Q.D. Application value of automatic blood culture apparatus in bloodstream infection. Int. J. Lab. Med. 2010, 12, 1434–1436. [Google Scholar]
- Yin, Y.Y.; Wang, Q.; Chen, H.B.; Wang, Z.W.; Yan, W.; Zhang, F.F.; Liu, J.B.; Peng, Q.S.; Wang, H. retrospective study of BACTEC and BacT/Alert blood culture systems for the detection of clinical bacteremia specimens. Chin. J. Lab. Med. 2017, 40, 303–308. [Google Scholar]
- Gao, D.; Chen, H.; Liu, J. Evaluation of clinical application of Bact/Alert 3D automatic blood culture apparatus. Clin. Med. Eng. 2021, 27, 39–40. [Google Scholar]
- Starikovskiy, A.; Aleksandrov, N. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 2013, 39, 61–110. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, Y.; Noda, M.; Fukuda, Y.; Ichinose, Y.; Endo, Y.; Inada, M.; Abe, Y.; Iwasaki, S. Industrial applications of temperature and species concentration monitoring using laser diagnostics. J. Bacteriol. 2022, 190, 2637–2641. [Google Scholar] [CrossRef]
- Lackner, M. Tunable diode laser absorption spectroscopy (tdlas) in the process industries—a review. Rev. Chem. Eng. 2007, 23, 65–147. [Google Scholar] [CrossRef]
- Zheng, C.-T.; Ye, W.-L.; Huang, J.-Q.; Cao, T.-S.; Lv, M.; Dang, J.-M.; Wang, Y. Performance improvement of a near-infrared CH4 detection device using waveletdenoising-assisted wavelength modulation technique. Sens. Actuators B Chem. 2014, 190, 249–258. [Google Scholar] [CrossRef]
- Li, J.; Deng, H.; Sun, J.; Yu, B.; Fischer, H. Simultaneous atmospheric CO, N2O and H2O detection using a single quantum cascade laser sensor based on dual-spectroscopy techniques. Sens. Actuators B Chem. 2016, 231, 723–732. [Google Scholar] [CrossRef]
- Monkhouse, P. On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processes. Prog. Energy Combust. Sci. 2011, 37, 125–171. [Google Scholar] [CrossRef]
- Ballester, J.; García-Armingol, T. Diagnostic techniques for the monitoring and control of practical flames. Prog. Energy Combust. Sci. 2010, 36, 375–411. [Google Scholar] [CrossRef]
- Kiefer, J.; Ewart, P. Laser diagnostics and minor species detection in combustion using resonant four-wave mixing. Prog. Energy Combust. Sci. 2011, 37, 525–564. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Xiang, J.; Axner, O.; Ying, C. Wavelength-modulated tunable diode-laser absorption spectrometry for real-time monitoring of microbial growth. Appl. Opt. 2016, 55, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Neethu, S.; Verma, R.; Kamble, S.; Radhakrishnan, J.; Krishnapur, P.; Padaki, V. Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement. Sensors Actuators B Chem. 2014, 192, 70–76. [Google Scholar] [CrossRef]
- Cai, T.; Gao, G.; Wang, M.; Wang, G.; Liu, Y.; Gao, X. High-Pressure Measurements of Temperature and CO2 Concentration Using Tunable Diode Lasers at 2 μm. Appl. Spectrosc. 2016, 70, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Sun, L. Calibration-Free Handheld Sensor Based on Tunable Diode Laser Absorption Spectroscopy for Remote Detection of Methane. In Proceedings of the Light, Energy and the Environment 2015, Optical Society of America, Suzhou, China, 2–5 November 2015; p. ETu4A.2. [Google Scholar]
- Qu, Z.; Ghorbani, R.; Valiev, D.; Schmidt, F.M. Calibration-free scanned wavelength modulation spectroscopy—Application to H_2O and temperature sensing in flames. Opt. Express 2015, 23, 16492–16499. [Google Scholar] [CrossRef] [PubMed]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef]
- Salati, S.H.; Khorsandi, A. Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: Theory and experiment. Appl. Phys. B 2014, 116, 521–531. [Google Scholar] [CrossRef]
- Kluczynski, P.; Lindberg, A.M.; Axner, O. Background signals in wavelength-modulation spectrometry with frequency-doubled diode laser light. I. Theory. Appl. Opt. 2001, 40, 783–793. [Google Scholar] [CrossRef]
Strong Absorption | Weak Absorption | |||
---|---|---|---|---|
Wavelength μ/m | Wave number/cm−1 | Wavelength μ/m | Wave number/cm−1 | |
H2O | 1.4 1.9 2.7 6.3 13.0–100 | 7142 5263 3704 1595 | 0.9 1.1 | 11,111 9091 |
CO2 | 2.7 4.3 14.7 | 3704 2320 680 | 1.4 1.6 2.0 5.0 9.4 10.4 | 7142 6250 5000 2000 1064 962 |
O3 | 4.7 9.6 14.1 | 2128 1042 709 | 3.3 3.6 5.7 | 3030 2778 1754 |
CH4 | 3.3 3.8 7.7 | 3030 2632 1299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Song, Y.; Shi, D.; Wang, F.; Yang, Y.; Yao, P.; Song, B.; Yu, Y.; Jiang, C.; Cao, B. The Trace Gas Monitoring Method Based on Diode Laser Wavelength-Modulation Spectroscopy Technology for the Detection of Clinical Blood Infection. Processes 2022, 10, 1450. https://doi.org/10.3390/pr10081450
Sun J, Song Y, Shi D, Wang F, Yang Y, Yao P, Song B, Yu Y, Jiang C, Cao B. The Trace Gas Monitoring Method Based on Diode Laser Wavelength-Modulation Spectroscopy Technology for the Detection of Clinical Blood Infection. Processes. 2022; 10(8):1450. https://doi.org/10.3390/pr10081450
Chicago/Turabian StyleSun, Jing, Yuxiao Song, Dongxin Shi, Feifei Wang, Yong Yang, Pengyu Yao, Binghong Song, Yang Yu, Chenyu Jiang, and Bingqiang Cao. 2022. "The Trace Gas Monitoring Method Based on Diode Laser Wavelength-Modulation Spectroscopy Technology for the Detection of Clinical Blood Infection" Processes 10, no. 8: 1450. https://doi.org/10.3390/pr10081450
APA StyleSun, J., Song, Y., Shi, D., Wang, F., Yang, Y., Yao, P., Song, B., Yu, Y., Jiang, C., & Cao, B. (2022). The Trace Gas Monitoring Method Based on Diode Laser Wavelength-Modulation Spectroscopy Technology for the Detection of Clinical Blood Infection. Processes, 10(8), 1450. https://doi.org/10.3390/pr10081450