Biocompatibility Study of a Cu-Al-Ni Rod Obtained by Continuous Casting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of the Cu-Al-Ni Rod
Samples’ Preparation
2.2. Chemical Composition Determination and Microstructure Observation
2.3. Immersion Testing in Artificial Saliva
2.4. Biocompatibility Evaluation on Fibroblasts and Dental Pulp Cells
2.4.1. MTT Assay
2.4.2. LDH Assay
2.5. Preparation of the Samples for SEM Observations
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition and Microstructure Observations of the Discs
3.2. Immersion Testing in Artificial Saliva
3.3. Biocompatibility Results
3.3.1. MTT Assay
3.3.2. LDH Assay
3.4. Scanning Electron Microscopy
4. Discussion
5. Conclusions
- Continuous casting enables the primary fabrication of Cu-Al-Ni rods with a fully martensitic structure.
- The behaviour of the Cu-Al-Ni alloy obtained by continuous casting, when in pH-neutral artificial saliva, did not result in significant metal ion release. On the other hand, poor corrosion resistance in the acidic environment remains a concern, as thesolution’s acidity increases the release of Al and Ni ions. For further investigations in the context of better corrosion resistance in an acidic environment, surface modifications and/or different alloying procedures should be used.
- Taking into consideration the all-encompassing results of the biocompatibility tests, it was shown that Cu at low concentrations had a strong stimulatory effect on cell proliferation, especially on fibroblasts. After 7 days of exposure to 6.33 μg Cu/mL, cell proliferation increased to 367%.
- The LDH assay confirmed the results of the MTT, i.e., the examined Cu-Al-Ni disc did not elicit cytotoxicity against FBs and DPCs after indirect treatment with the Cu-enriched medium.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Perkins, J. Shape Memory Behavior and Thermoelastic Martensitic Transformations. Mater. Sci. Eng. 1981, 51, 181–192. [Google Scholar] [CrossRef]
- Wadood, A. Brief Overview on Nitinol as Biomaterial. Adv. Mater. Sci. Eng. 2016, 2016, 4173138. [Google Scholar] [CrossRef] [Green Version]
- Biscarini, A.; Mazzolai, G.; Tuissi, A. Enhanced Nitinol Properties for Biomedical Applications. Recent Pat. Biomed. Eng. 2008, 1, 180–196. [Google Scholar] [CrossRef]
- Balasubramanian, A. Minerals and Their Uses-Native Elements. 2015. Available online: https://www.researchgate.net/publication/309784486_ (accessed on 16 June 2022).
- Łuszczek, K.; Krzesińska, A.M. Copper in Ordinary Chondrites: Proxies for Resource Potential of Asteroids and Constraints for Minimum-Invasive and Economically Efficient Exploitation. Planet. Space Sci. 2020, 194, 105092. [Google Scholar] [CrossRef]
- How Titanium Is Made by the Kroll Process—ASM International. Available online: https://www.asminternational.org/news/-/journal_content/56/10192/26934275/VIDEO (accessed on 5 July 2022).
- A Review on Machining of NiTi Shape Memory Alloys: The Process and Post Process Perspective|Request PDF. Available online: https://www.researchgate.net/publication/328266683_A_review_on_machining_of_NiTi_shape_memory_alloys_the_process_and_post_process_perspective (accessed on 5 July 2022).
- Lojen, G.; Stambolić, A.; Batič, B.Š.; Rudolf, R. Experimental Continuous Casting of Nitinol. Metals 2020, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Abolhasani, D.; Han, S.W.; VanTyne, C.J.; Kang, N.; Moon, Y.H. Enhancing the Shape Memory Effect of Cu–Al–Ni Alloys via Partial Reinforcement by Alumina through Selective Laser Melting. J. Mater. Res. Technol. 2021, 15, 4032–4047. [Google Scholar] [CrossRef]
- Mazzer, E.M.; da Silva, M.R.; Gargarella, P. Revisiting Cu-Based Shape Memory Alloys: Recent Developments and New Perspectives. J. Mater. Res. 2022, 37, 162–182. [Google Scholar] [CrossRef]
- Dasgupta, R. A Look into Cu-Based Shape Memory Alloys: Present Scenario and Future Prospects. J. Mater. Res. 2014, 29, 1681–1698. [Google Scholar] [CrossRef]
- Ghazali, F.; Hasan, M.; Rehman, T.; Nafea, M.; Ali, M.S.M.; Takahata, K. MEMS Actuators for Biomedical Applications: A Review. J. MicroMech. Microeng. 2020, 30, 073001. [Google Scholar] [CrossRef]
- Wierenga, M. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy; Loma Linda University ProQuest Dissertations Publishing: Loma Linda, CA, USA, 2014. [Google Scholar]
- Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties|IntechOpen. Available online: https://www.intechopen.com/chapters/67075 (accessed on 5 July 2022).
- Vora, S.B. Evaporation and Condensation of Zinc. Master’s Thesis, University of Missouri, Columbia, SC, USA, 1971. Available online: https://scholarsmine.mst.edu/masters_theses/5106/ (accessed on 16 June 2022).
- Stern, B.R. Essentiality and Toxicity in Copper Health Risk Assessment: Overview, Update and Regulatory Considerations. J. Toxicol. Environ. Health A 2010, 73, 114–127. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, Y.; Xu, K.; Zhong, H.; Yang, Y.; Jin, S.; Yang, K.; Qi, X. Biological Applications of Copper-Containing Materials. Bioact. Mater. 2020, 6, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Pavelková, M.; Vysloužil, J.; Kubová, K.; Vetchý, D. Biological Role of Copper as an Essential Trace Element in the Human Organism. CeskaSlov Farm 2018, 67, 143–153. [Google Scholar]
- Ewald, A.; Käppel, C.; Vorndran, E.; Moseke, C.; Gelinsky, M.; Gbureck, U. The Effect of Cu(II)-Loaded Brushite Scaffolds on Growth and Activity of Osteoblastic Cells. J. Biomed. Mater. Res. A 2012, 100A, 2392–2400. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Ríos, S.; González, M. Modulation of the Proliferation and Differentiation of Human Mesenchymal Stem Cells by Copper. J. Cell. Biochem. 2002, 85, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Kang, Y.J. Role of Copper in Angiogenesis and Its Medicinal Implications. Curr. Med. Chem. 2009, 16, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Klevay, L.M. Cardiovascular Disease from Copper Deficiency—A History. J. Nutr. 2000, 130, 489S–492S. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, C.M.K. Wayman-Shape Memory Materials-Cambridge University Press (1998)|PDF|Shape Memory Alloy|Crystal Structure. Available online: https://www.scribd.com/document/368059783/K-Otsuka-C-M-Wayman-Shape-Memory-Materials-Cambridge-University-Press-1998 (accessed on 18 June 2022).
- Lojen, G.; Anžel, I.; Kneissl, A.; Križman, A.; Unterweger, E.; Kosec, B.; Bizjak, M. Microstructure of Rapidly Solidified Cu–Al–Ni Shape Memory Alloy Ribbons. J. Mater. Process. Technol. 2005, 162–163, 220–229. [Google Scholar] [CrossRef]
- Lazić, M.M.; Majerič, P.; Lazić, V.; Milašin, J.; Jakšić, M.; Trišić, D.; Radović, K. Experimental Investigation of the Biofunctional Properties of Nickel–Titanium Alloys Depending on the Type of Production. Molecules 2022, 27, 1960. [Google Scholar] [CrossRef]
- Katić, V.; Ćurković, L.; Ujević-Bošnjak, M.; Špalj, S. Determination of Corrosion Rate of Orthodontic Wires Based on Nickel-titanium Alloy in Artificial Saliva. Materialwiss. Werkst. 2014, 45, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Mlinaric, M.R.; Durgo, K.; Katic, V.; Spalj, S. Cytotoxicity and Oxidative Stress Induced by Nickel and Titanium Ions from Dental Alloys on Cells of Gastrointestinal Tract. Toxicol. Appl. Pharmacol. 2019, 383, 114784. [Google Scholar] [CrossRef]
- Simonović, J.; Toljić, B.; Rašković, B.; Jovanović, V.; Lazarević, M.; Milošević, M.; Nikolić, N.; Panajotović, R.; Milašin, J. Raman Microspectroscopy: Toward a Better Distinction and Profiling of Different Populations of Dental Stem Cells. Croat. Med. J. 2019, 60, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrsalović, L.; Gudić, S.; Terzić, L.; Ivanić, I.; Kožuh, S.; Gojić, M.; Oguzie, E. Intergranular Corrosion of CuAlNi Alloy in 0.5 Mol Dm-3 H2SO4 Solution. Kem. Ind. 2020, 63, 457–464. [Google Scholar] [CrossRef]
- Ivošević, Š.; Kovač, N.; Vastag, G.; Majerič, P.; Rudolf, R. A Probabilistic Method for Estimating the Influence of Corrosion on the CuAlNi Shape Memory Alloy in Different Marine Environments. Crystals 2021, 11, 274. [Google Scholar] [CrossRef]
- Močnik, P.; Kosec, T.; Kovač, J.; Bizjak, M. The Effect of PH, Fluoride and Tribocorrosion on the Surface Properties of Dental Archwires. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Willhite, C.C.; Karyakina, N.A.; Yokel, R.A.; Yenugadhati, N.; Wisniewski, T.M.; Arnold, I.M.F.; Momoli, F.; Krewski, D. Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts. Crit. Rev. Toxicol. 2014, 44, 1–80. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Amiri, R.J.; Pirzadeh, M.; Moghadamnia, A.A. Aluminum Poisoning with Emphasis on Its Mechanism and Treatment of Intoxication. Emerg. Med. Int. 2022, 2022, e1480553. [Google Scholar] [CrossRef]
- Rudolf, R.; Stambolić, A.; Kocijan, A. Atomic Layer Deposition of ATiO2 Layer on Nitinol and Its Corrosion Resistance in a Simulated Body Fluid. Metals 2021, 11, 659. [Google Scholar] [CrossRef]
- Zare, M.; Ketabchi, M. Effect of Chromium Element on Transformation, Mechanical and Corrosion Behavior of Thermomechanically Induced Cu–Al–Ni Shape-Memory Alloys. J. Therm. Anal. Calorim. 2016, 127, 138974742. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L. Improvement of Corrosion Resistance of Cu-Based Bulk Metallic Glasses by the Microalloying of Mo. Intermetallics 2007, 15, 679–682. [Google Scholar] [CrossRef]
- Eze, A.A.; Jamiru, T.; Sadiku, E.R.; Durowoju, M.; Kupolati, W.K.; Ibrahim, I.D.; Obadele, B.A.; Olubambi, P.A.; Diouf, S. Effect of Titanium Addition on the Microstructure, Electrical Conductivity and Mechanical Properties of Copper by Using SPS for the Preparation of Cu-Ti Alloys. J. Alloys Compd. 2018, 736, 163–171. [Google Scholar] [CrossRef]
- Li, W.; Mao, M.; Hu, N.; Wang, J.; Huang, J.; Zhang, W.; Gu, S. A Graphene Oxide-Copper Nanocomposite for the Regeneration of the Dentin-Pulp Complex: An Odontogenic and Neurovascularization-Inducing Material. Chem. Eng. J. 2021, 417, 129299. [Google Scholar] [CrossRef]
- Čolić, M.; Rudolf, R.; Stamenković, D.; Anžel, I.; Vučević, D.; Jenko, M.; Lazić, V.; Lojen, G. Relationship between Microstructure, Cytotoxicity and Corrosion Properties of a Cu–Al–Ni Shape Memory Alloy. Acta Biomater. 2010, 6, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.E.A.; Carvalho, A.A.V.F.; Azevedo, A.L.M.; Cruz, C.B.B.V.; Maia, A.W.C. Odontologic Use of Copper/Aluminum Alloys: Mitochondrial Respiration as Sensitive Parameter of Biocompatibility. Braz. Dent. J. 2003, 14, 32–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, M.J.; Kumar, S.; Alhadlaq, H.A.; Alrokayan, S.A.; Abu-Salah, K.M.; Ahamed, M. Dose-Dependent Genotoxicity of Copper Oxide Nanoparticles Stimulated by Reactive Oxygen Species in Human Lung Epithelial Cells. Toxicol. Ind. Health 2016, 32, 809–821. [Google Scholar] [CrossRef]
- Knazicka, Z.; Tvrda, E.; Bardos, L.; Lukac, N. Dose- and Time-Dependent Effect of Copper Ions on the Viability of Bull Spermatozoa in Different Media. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 1294–1300. [Google Scholar] [CrossRef]
- Liu, H.; Pan, C.; Zhou, S.; Li, J.; Huang, N.; Dong, L. Improving Hemocompatibility and Accelerating Endothelialization of Vascular Stents by a Copper-Titanium Film. Mater. Sci. Eng. C 2016, 69, 1175–1182. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Newsome, C.; Williams, J.; Glass, K. Copper-Induced Cytotoxicity and Transcriptional Activation of Stress Genes in Human Liver Carcinoma (HepG2) Cells. Met. Ions Biol. Med. 2008, 10, 285–290. [Google Scholar]
- Matos, L.; Gouveia, A.; Almeida, H. Copper Ability to Induce Premature Senescence in Human Fibroblasts. Age Dordr. Neth. 2012, 34, 783–794. [Google Scholar] [CrossRef] [Green Version]
Al | Ni | Cu |
---|---|---|
12.0 | 3.9 | rest |
11.9 | 4.0 | rest |
12.0 | 3.9 | rest |
12.1 | 3.9 | rest |
11.9 | 4.0 | rest |
12.0 | 4.0 | rest |
Mean | ||
11.98 | 3.95 | 84.07 |
Std. Deviation | ||
0.07 | 0.05 | 0.05 |
Spectrum | In Stats. | Al | Ni | Cu | Total |
---|---|---|---|---|---|
Spectrum 1 | Yes | 12.06 | 2.94 | 85.00 | 100.00 |
Spectrum 2 | Yes | 11.25 | 4.04 | 84.71 | 100.00 |
Spectrum 3 | Yes | 13.16 | 3.37 | 83.47 | 100.00 |
Spectrum 4 | Yes | 11.56 | 3.96 | 84.48 | 100.00 |
Mean | 12.01 | 3.58 | 84.42 | 100.00 | |
Std. Deviation | 0.84 | 0.52 | 0.67 | ||
Max. | 13.16 | 4.04 | 85.00 | ||
Min. | 11.25 | 2.94 | 83.47 |
pH = 6.5 | pH = 4.5 | |||||
---|---|---|---|---|---|---|
Al | Cu | Ni | Al | Cu | Ni | |
Blank solution | 0.06 | 0.08 | <0.01 | 0.02 | 0.17 | <0.01 |
Cu-Al-Ni disc | 0.02 | 0.11 | 0.02 | 1.9 | 0.14 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazić, M.; Lazić, M.M.; Karišik, M.J.; Lazarević, M.; Jug, A.; Anžel, I.; Milašin, J. Biocompatibility Study of a Cu-Al-Ni Rod Obtained by Continuous Casting. Processes 2022, 10, 1507. https://doi.org/10.3390/pr10081507
Lazić M, Lazić MM, Karišik MJ, Lazarević M, Jug A, Anžel I, Milašin J. Biocompatibility Study of a Cu-Al-Ni Rod Obtained by Continuous Casting. Processes. 2022; 10(8):1507. https://doi.org/10.3390/pr10081507
Chicago/Turabian StyleLazić, Marko, Minja Miličić Lazić, Milica Jakšić Karišik, Miloš Lazarević, Andraž Jug, Ivan Anžel, and Jelena Milašin. 2022. "Biocompatibility Study of a Cu-Al-Ni Rod Obtained by Continuous Casting" Processes 10, no. 8: 1507. https://doi.org/10.3390/pr10081507
APA StyleLazić, M., Lazić, M. M., Karišik, M. J., Lazarević, M., Jug, A., Anžel, I., & Milašin, J. (2022). Biocompatibility Study of a Cu-Al-Ni Rod Obtained by Continuous Casting. Processes, 10(8), 1507. https://doi.org/10.3390/pr10081507