How Soil Microbial Communities from Industrial and Natural Ecosystems Respond to Contamination by Polycyclic Aromatic Hydrocarbons
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pérez-Leblic, M.I.; Turmero, A.; Hernández, M.; Hernández, A.J.; Pastor, J.; Ball, A.S.; Rodríguez, J.; Arias, M.E. Influence of xenobiotic contaminants on landfill soil microbial activity and diversity. J. Environ. Manag. 2012, 95, S285–S290. [Google Scholar] [CrossRef]
- Zoppini, A.; Ademollo, N.; Amalfitano, S.; Capri, S.; Casella, P.; Fazi, S.; Marxsen, J.; Patrolecco, L. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights. Sci. Total Environ. 2016, 541, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, J.F.; Hassellöv, I.M.; Dahllöf, I. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability. Aquat. Toxicol. 2014, 146, 230–238. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monographs on the Evaluation of Carcinogenic Risks to Humans. Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 1–853. [Google Scholar]
- Sinsabaugh, R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Sutherland, J.B. Degradation of Polycyclic Aromatic Hydrocarbons by Fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2079–2110. [Google Scholar]
- Hofrichter, M. Review: Lignin conversion by manganese peroxidase (MnP). Enzym. Microb. Technol. 2002, 30, 454–466. [Google Scholar] [CrossRef]
- Li, X.; Lin, X.; Zhang, J.; Wu, Y.; Yin, R.; Feng, Y.; Wang, Y. Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr. Microbiol. 2010, 60, 336–342. [Google Scholar] [CrossRef]
- Leys, N.M.; Ryngaert, A.; Bastiaens, L.; Wattiau, P.; Top, E.M.; Verstraete, W.; Springael, D. Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 2005, 51, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Lorgeoux, C.; Faure, P.; Billet, D.; Cébron, A. Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. Int. Biodeterior. Biodegrad. 2016, 107, 1–9. [Google Scholar] [CrossRef]
- Wawra, A.; Friesl-Hanl, W.; Puschenreiter, M.; Soja, G.; Reichenauer, T.; Roithner, C.; Watzinger, A. Degradation of polycyclic aromatic hydrocarbons in a mixed contaminated soil supported by phytostabilisation, organic and inorganic soil additives. Sci. Total Environ. 2018, 628, 1287–1295. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Cots-Folch, R.; Martínez-Casasnovas, J.A. Sustainability of modern land terracing for vineyard plantation in a Mediterranean mountain environment—The case of the Priorat region (NE Spain). Geomorphology 2007, 86, 1–11. [Google Scholar] [CrossRef]
- Meli, P.; Benayas, J.M.R.; Balvanera, P.; Ramos, M.M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: A meta-analysis. PLoS ONE 2014, 9, e93507. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Visser, S.; Keesstra, S.; Maas, G.; de Cleen, M.; Molenaar, C. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [Google Scholar] [CrossRef]
- Kannenberg, S.A.; Schwalm, C.R.; Anderegg, W.R.L. Ghosts of the past: How drought legacy effects shape forest functioning and carbon cycling. Ecol. Lett. 2020, 23, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Nemergut, D.; Shade, A.; Violle, C. When, where and how does microbial community composition matter? Front. Microbiol. 2014, 5, 2012–2014. [Google Scholar] [CrossRef] [PubMed]
- Picariello, E.; Baldantoni, D.; Muniategui-Lorenzo, S.; Concha-Grana, E.; De Nicola, F. A synthetic quality index to evaluate the functional stability of soil microbial community after perturbations. Ecol. Indic. 2021, 128, 107844. [Google Scholar] [CrossRef]
- FAO. A Framework for Land Evaluation; Food and Agricultural Organization of the United Nations: Rome, Italy, 1976; ISBN 9251001111. [Google Scholar]
- De Nicola, F.; Concha-Graña, E.; Picariello, E.; Memoli, V.; Maisto, G.; López-Mahía, P.; Muniategui-Lorenzo, S. An environmentally friendly method for the determination of polycyclic aromatic hydrocarbons in different soil typologies. Environ. Chem. 2019, 16, 517–528. [Google Scholar] [CrossRef]
- Floch, C.; Alarcon-Gutiérrez, E.; Criquet, S. ABTS assay of phenol oxidase activity in soil. J. Microbiol. Methods 2007, 71, 319–324. [Google Scholar] [CrossRef]
- Jackson, E.F.; Echlin, H.L.; Jackson, C.R. Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol. Ecol. 2006, 58, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Bååth, E.; Frostegard, A.; Fritze, H. Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl. Environ. Microbiol. 1992, 58, 4026–4031. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.R.; Carrillo, Y.; Dijkstra, F.A. Drought-induced and seasonal variation in carbon use efficiency is associated with fungi:bacteria ratio and enzyme production in a grassland ecosystem. Soil Biol. Biochem. 2021, 155, 108159. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing, version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lors, C.; Ryngaert, A.; Périé, F.; Diels, L.; Damidot, D. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 2010, 81, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Sinkkonen, A.; Kauppi, S.; Pukkila, V.; Nan, H.; Płociniczak, T.; Kontro, M.; Strömmer, R.; Romantschuk, M. Previous exposure advances the degradation of an anthropogenic s-triazine regardless of soil origin. J. Soils Sediments 2013, 13, 1430–1438. [Google Scholar] [CrossRef]
- Picariello, E.; Baldantoni, D.; De Nicola, F. Investigating natural attenuation of PAHs by soil microbial communities: Insights by a machine learning approach. Restor. Ecol. 2022, 30, e13655. [Google Scholar] [CrossRef]
- Bellino, A.; Baldantoni, D.; Picariello, E.; Morelli, R.; Alfani, A.; De Nicola, F. Role of different microorganisms in remediating PAH-contaminated soils treated with compost or fungi. J. Environ. Manag. 2019, 252, 109675. [Google Scholar] [CrossRef]
- Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegrad. 2000, 45, 57–88. [Google Scholar] [CrossRef]
- Singleton, D.R.; Sangaiah, R.; Gold, A.; Ball, L.M.; Aitken, M.D. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ. Microbiol. 2006, 8, 1736–1745. [Google Scholar] [CrossRef]
- Sakshi; Haritash, A.K. A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch. Microbiol. 2020, 202, 2033–2058. [Google Scholar] [CrossRef]
- Li, X.; Song, Y.; Yao, S.; Bian, Y.; Gu, C.; Yang, X.; Wang, F.; Jiang, X. Can biochar and oxalic acid alleviate the toxicity stress caused by polycyclic aromatic hydrocarbons in soil microbial communities? Sci. Total Environ. 2019, 695, 133879. [Google Scholar] [CrossRef]
- Yan, B.; Li, J.; Xiao, N.; Qi, Y.; Fu, G.; Liu, G.; Qiao, M. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing. Sci. Rep. 2016, 6, 38811. [Google Scholar] [CrossRef]
- Ramirez, K.S.; Leff, J.W.; Barberán, A.; Bates, S.T.; Betley, J.; Crowther, T.W.; Kelly, E.F.; Oldfield, E.E.; Ashley Shaw, E.; Steenbock, C.; et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141988. [Google Scholar] [CrossRef]
- Spain, J.C.; Van Veld, P.A. Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure time, inoculum, and chemical structure. Appl. Environ. Microbiol. 1983, 45, 428–435. [Google Scholar] [CrossRef]
- Sawulski, P.; Clipson, N.; Doyle, E. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Biodegradation 2014, 25, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Baldantoni, D.; Morelli, R.; Bellino, A.; Prati, M.V.; Alfani, A.; De Nicola, F. Anthracene and benzo(a)pyrene degradation in soil is favoured by compost amendment: Perspectives for a bioremediation approach. J. Hazard. Mater. 2017, 339, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Aitken, M.D. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol. 1999, 33, 435–439. [Google Scholar] [CrossRef]
- Thorsen, W.A.; Cope, W.G.; Shea, D. Bioavailability of PAHs: Effects of Soot Carbon and PAH source. Environ. Sci. Technol. 2004, 38, 2029–2037. [Google Scholar] [CrossRef]
- Cornelissen, G.; Gustafsson, Ö.; Bucheli, T.D.; Jonker, M.T.O.; Koelmans, A.A.; Van Noort, P.C.M. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 2005, 39, 6881–6895. [Google Scholar] [CrossRef] [PubMed]
- Picariello, E.; Baldantoni, D.; Izzo, F.; Langella, A.; De Nicola, F. Soil organic matter stability and microbial community in relation to different plant cover: A focus on forests characterizing Mediterranean area. Appl. Soil Ecol. 2021, 162, 103897. [Google Scholar] [CrossRef]
- Bourceret, A.; Cébron, A.; Tisserant, E.; Poupin, P.; Bauda, P.; Beguiristain, T.; Leyval, C. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. Microb. Ecol. 2016, 71, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.H.; Xiong, A.S.; Xue, Y.; Fu, X.Y.; Gao, F.; Zhao, W.; Tian, Y.S.; Yao, Q.H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 2008, 32, 927–955. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Martiny, J.B.H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef]
- Verma, J.P.; Jaiswal, D.K. Book Review: Advances in Biodegradation and Bioremediation of Industrial Waste. Front. Microbiol. 2016, 6, 1555. [Google Scholar] [CrossRef]
- Van Dillewijn, P.; Nojiri, H.; Van Der Meer, J.R.; Wood, T.K. Bioremediation, a broad perspective. Microb. Biotechnol. 2009, 2, 125–127. [Google Scholar] [CrossRef]
Comparisons for Factor | LACCASE | PEROXIDASE | ||
---|---|---|---|---|
Comparison | q | Comparison | q | |
within Tb | N2 vs. I | 9.94 *** | N1 vs. I | 85.4 *** |
N1 vs. I | 6.16 ** | N1 vs. N2 | 16.4 *** | |
N2 vs. I | 69.0 *** | |||
within Ti | N2 vs. I | 9.88 *** | N2 vs. I | 90.9 *** |
N2 vs. N1 | 4.51 ** | N1 vs. I | 87.7 *** | |
N1 vs. I | 5.38 ** | |||
within Tf | I vs. N1 | 3.87 * | N1 vs. I | 78.1 *** |
N2 vs. I | 77.1 *** |
Time | Soil | Bacteria | Fungi | Mycorrhizae | Actinomycetes | Gram+ | Gram− | Total | F/B | G+/G− |
---|---|---|---|---|---|---|---|---|---|---|
N1 | 49 ± 0.60 | 3.1 ± 0.11 | 2.8 ± 0.14 | 3.5 ± 0.10 | 23 ± 1.0 | 18 ± 1.4 | 97 ± 25 | 0.03 ± 0.01 | 1.3 ± 0.05 | |
Tb | N2 | 42 ± 0.14 | 2.8 ± 0.10 | 2.8 ± 0.043 | 2.5 ± 0.18 | 24 ± 0.71 | 26 ± 0.73 | 148 ± 10 | 0.02 ± 0.01 | 0.91 ± 0.01 |
I | 29 ± 1.5 | 4.2 ± 0.83 | 4.0 ± 0.11 | 3.8 ± 0.24 | 14 ± 0.85 | 23 ± 0.75 | 59 ± 4.0 | 0.07 ± 0.02 | 0.63 ± 0.05 | |
N1 | 51± 1.4 | 2.1 ± 0.31 | 2.9 ± 0.13 | 3.1 ± 0.10 | 19 ± 0.55 | 22 ± 1.1 | 91 ± 28 | 0.02 ± 0.01 | 0.85 ± 0.01 | |
Ti | N2 | 45 ± 0.21 | 2.1 ± 0.14 | 2.1 ± 0.020 | 2.5 ± 0.10 | 22 ± 0.13 | 27 ± 0.20 | 151 ± 13 | 0.01 ± 0.01 | 0.82 ± 0.01 |
I | 32 ± 1.0 | 2.7 ± 1.0 | 3.5 ± 0.26 | 3.3 ± 0.55 | 17 ± 2.1 | 20 ± 1.1 | 61 ± 5.0 | 0.04 ± 0.01 | 0.86 ± 0.14 | |
N1 | 49± 0.41 | 2.4 ± 0.13 | 3.7 ± 0.10 | 2.8± 0.31 | 22 ± 0.71 | 21 ± 0.42 | 61 ± 2.0 | 0.04 ± 0.01 | 1.04 ± 0.01 | |
Tf | N2 | 45 ± 0.30 | 2.1 ± 0.30 | 2.2 ± 0.10 | 2.2± 0.34 | 21 ± 1.0 | 27 ± 1.2 | 84 ± 5.0 | 0.03 ± 0.01 | 0.78 ± 0.02 |
I | 28± 0.77 | 1.5 ± 0.13 | 2.5 ± 0.042 | 3.6 ± 0.14 | 15 ± 0.34 | 18 ± 0.53 | 46 ± 2.0 | 0.03 ± 0.01 | 0.83 ± 0.02 |
Functional Stability | N1 | N2 | I |
---|---|---|---|
Tb | 0.54 b | 1.14 a | 0.98 a |
Ti | 0.55 c | 3.25 a | 1.13 b |
Tf | 0.34 c | 1.58 a | 1.03 b |
Structural stability | |||
Tb | 1.25 | 1.26 | 1.25 |
Ti | 1.18 | 1.18 | 1.24 |
Tf | 1.22 | 1.22 | 1.13 |
N1 | N2 | I | |
---|---|---|---|
3-rings | |||
Ti | 0.98 | 5.0 | 13 |
Tf | 0.75 | 4.4 | 4.3 |
5-rings | |||
Ti | 32 | 95 | 87 |
Tf | 33 | 45 | 49 |
Comparisons for Factor | F/B | |
---|---|---|
Comparison | q | |
within Tb | N2 vs. I | 13.2 *** |
N1 vs. I | 10.4 *** | |
within Ti | N2 vs. I | 4.29 * |
N1 vs. I | 4.51 * | |
within Tf | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picariello, E.; Baldantoni, D.; De Nicola, F. How Soil Microbial Communities from Industrial and Natural Ecosystems Respond to Contamination by Polycyclic Aromatic Hydrocarbons. Processes 2023, 11, 130. https://doi.org/10.3390/pr11010130
Picariello E, Baldantoni D, De Nicola F. How Soil Microbial Communities from Industrial and Natural Ecosystems Respond to Contamination by Polycyclic Aromatic Hydrocarbons. Processes. 2023; 11(1):130. https://doi.org/10.3390/pr11010130
Chicago/Turabian StylePicariello, Enrica, Daniela Baldantoni, and Flavia De Nicola. 2023. "How Soil Microbial Communities from Industrial and Natural Ecosystems Respond to Contamination by Polycyclic Aromatic Hydrocarbons" Processes 11, no. 1: 130. https://doi.org/10.3390/pr11010130
APA StylePicariello, E., Baldantoni, D., & De Nicola, F. (2023). How Soil Microbial Communities from Industrial and Natural Ecosystems Respond to Contamination by Polycyclic Aromatic Hydrocarbons. Processes, 11(1), 130. https://doi.org/10.3390/pr11010130