Development and Research Application of Optical Waveguide Microstructure Component Manufacturing Process for Triangle Roller Imprinting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basis for Equipment Design for Triangle Roller Manufacturing Process
2.1.1. Distortion Energy Theory to Estimate Roller Design
2.1.2. Constructing an Adjustable Thermal Cavity Tensile Test System to Precisely Calculate the Minimum Roller Diameter to Prevent Micro-Distortion
2.2. Gas-Assisted Continuous Pressure Theory and Design Plan
2.2.1. Gas-Assisted Continuous Pressure Theory
2.2.2. Analysis of Gas Molecule Pressuring System and Design Selection
2.3. Equipment Development and Construction of the Manufacturing Process: Construction and Material Selection for the Microstructure Mold
2.4. Exploration Examining the Mechanical Properties of the Compound Ring Belt Microstructure Mold
2.5. Procedure and Mechanism of Triangle Roller Imprinting and Reversal Imprinting Processes
3. Results and Discussion
3.1. Analytical Exploration of the Distribution of Ring Belt Pressure
3.2. The Inference of Triangle Roller Imprinting Mode on Forming Rate of Roll Imprinting
3.3. The Inference of Triangle Roller Imprinting on the Roll Imprinting Forming of the Ring Belt and Substrate with an in-between Angle
3.4. Measurement of Optical Waveguide and Light Loss of Triangle Roller Imprinting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitsumoto, T. Relationship between cardiovascular risk factors and hemorheology assessed by microchannel method in patients with type 2 diabetes mellitus. Diabetol. Int. 2017, 8, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Takeishi, N.; Ito, H.; Kaneko, M.; Wada, S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. Micromachines 2019, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Kim, J.; Cho, H.; Han, K.-H. Evaluation of Positive and Negative Methods for Isolation of Circulating Tumor Cells by Lateral Magnetophoresis. Micromachines 2019, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Merlo, S.; Crisà, E.; Giusti, D.; Ferrera, M.; Soldo, M. Characterization of Tunable Micro-Lenses with a Versatile Optical Measuring System. Sensors 2018, 18, 4396. [Google Scholar] [CrossRef]
- Yang, F.; Yan, W.; Tian, P.; Li, F.; Peng, F. Electro-Optical Imaging Technology Based on Microlens Array and Fiber Interferometer. Appl. Sci. 2019, 9, 1331. [Google Scholar] [CrossRef]
- Xie, S.; Wan, X.; Yang, B.; Zhang, W.; Wei, X.; Zhuang, S. Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures. Nanomaterials 2019, 9, 747. [Google Scholar] [CrossRef]
- Li, K.; Xu, G.; Huang, X.; Xie, Z.; Gong, F. Manufacturing of Micro-Lens Array Using Contactless Micro-Embossing with an EDM-Mold. Appl. Sci. 2019, 9, 85. [Google Scholar] [CrossRef]
- Nagato, K.; Yajima, Y.; Nakao, M. Laser-Assisted Thermal Imprinting of Microlens Arrays—Effects of Pressing Pressure and Pattern Size. Materials 2019, 12, 675. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, Q.; Hu, Y.; Li, H.; Wang, F.; Peng, Z.; Lan, H. Flexible biconvex microlens array fabrication using combined inkjet-printing and imprint-lithography method. Opt. Laser Technol. 2019, 115, 118–124. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Z.; Qu, D.; Wu, Y.; Xue, J.; Li, D.; Wang, B. Experimental Investigation on Form Error for Slow Tool Servo Diamond Turning of Micro Lens Arrays on the Roller Mold. Materials 2018, 11, 1816. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Bian, J.; Du, J.; Li, B.; Fan, B. A Novel Fabricating Method of Micro Lens-on-Lens Arrays with Two Focal Lengths. Micromachines 2021, 12, 1372. [Google Scholar] [CrossRef] [PubMed]
- Steblov, G.M.; Kogan, M.G.; King, R.W.; Scholz, C.H.; Bürgmann, R.; Frolov, D.I. Imprint of the North American plate in Siberia revealed by GPS. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Becker, H.; Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys. 2000, 83, 130–135. [Google Scholar] [CrossRef]
- Ahn, S.H.; Guo, L.J. Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting. ACS Nano 2009, 3, 2304–2310. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, L.; Lai, X. Investigation on the roll-to-plate microforming of riblet features with the consideration of grain size effect. Int. J. Adv. Manuf. Technol. 2020, 109, 2055–2064. [Google Scholar] [CrossRef]
- Guembe, M.; Martín-Rabadán, P.; Cruces, R.; Granda, M.J.P.; Bouza, E. Roll-Plate Alone Does Not Demonstrate Colonization In Silicone Neonatal Catheters. Pediatr. Infect. Dis. J. 2016, 35, 351–353. [Google Scholar] [CrossRef]
- Tahir, U.; Kamran, M.A.; Jeong, M.Y. Numerical Study on the Optimization of Roll-to-Roll Ultraviolet Imprint Lithography. Coatings 2019, 9, 573. [Google Scholar] [CrossRef]
- Donie, Y.J.; Yuan, Y.; Allegro, I.; Schackmar, F.; Hossain, I.M.; Huber, R.; Roger, J.; Paetzold, U.W.; Gomard, G.; Lemmer, U. A Self-Assembly Method for Tunable and Scalable Nano-Stamps: A Versatile Approach for Imprinting Nanostructures. Adv. Mater. Technol. 2022, 7, 2101008. [Google Scholar] [CrossRef]
- Kooy, N.; Mohamed, K.; Pin, L.T.; Guan, O.S. A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 2014, 9, 1–3. [Google Scholar] [CrossRef]
- Xu, J.; Liu, C.; Hsu, P.-C.; Liu, K.; Zhang, R.; Liu, Y.; Cui, Y. Roll-to-Roll Transfer of Electrospun Nanofiber Film for High-Efficiency Transparent Air Filter. Nano Lett. 2016, 16, 1270–1275. [Google Scholar] [CrossRef]
- Arrif, T.; Benchabane, A.; Guermoui, M.; Gama, A.; Merarda, H. Optical performance study of different shapes of solar cavity receivers used in central receiver system plant. Int. J. Ambient. Energy 2018, 42, 81–95. [Google Scholar] [CrossRef]
- Kim, J.; Hassinen, T.; Lee, W.H.; Ko, S. Fully solution-processed organic thin-film transistors by consecutive roll-to-roll gravure printing. Org. Electron. 2017, 42, 361–366. [Google Scholar] [CrossRef]
- Tahir, U.; Kim, J.I.; Javeed, S.; Khaliq, A.; Kim, J.-H.; Kim, D.-I.; Jeong, M.Y. Process Optimization for Manufacturing Functional Nanosurfaces by Roll-to-Roll Nanoimprint Lithography. Nanomaterials 2022, 12, 480. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Hsu, P.C.; Chen, G.C.; Chandrashekar, B.N.; Liao, L.; Ayitimuda, Z.; Wu, J.X.; Guo, Y.F.; Lin, L.; Zhou, Y.; et al. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett. 2015, 15, 4206–4213. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Lee, S.-J.; Chen, C.-H.; Yang, L.-J.; Wang, X.-W.; Lin, J.-T.; Chao, P.-Y.; Chen, S.-Y. Application of Monitoring Module Three-in-One Microsensor to Real-Time Microscopic Monitoring of Polarizer Sheet in Roll-to-Roll Process. Processes 2022, 10, 900. [Google Scholar] [CrossRef]
- Jo, M.; Noh, J.; Cho, G.; Lee, T.M.; Oh, B.; Nam, S.; Lee, C. Strain Optimization of Tensioned Web through Computational Fluid Dynamics in the Roll-to-Roll Drying Process. Polymers 2022, 14, 2515. [Google Scholar] [CrossRef]
- Jo, M.; Lee, J.; Kim, S.; Cho, G.; Lee, T.-M.; Lee, C. Web Unevenness Due to Thermal Deformation in the Roll-to-Roll Manufacturing Process. Appl. Sci. 2020, 10, 8636. [Google Scholar] [CrossRef]
- Krebs, F.C.; Gevorgyan, S.A.; Alstrup, J. A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J. Mater. Chem. 2009, 19, 5442–5451. [Google Scholar] [CrossRef]
- Palavesam, N.; Marin, S.; Hemmetzberger, D.; Landesberger, C.; Bock, K.; Kutter, C. Roll-to-roll processing of film substrates for hybrid integrated flexible electronics. Flex. Print. Electron. 2018, 3, 014002. [Google Scholar] [CrossRef]
- Park, H.J.; Kang, M.-G.; Ahn, S.H.; Guo, L.J. A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performances. Adv. Mater. 2010, 22, E247–E253. [Google Scholar] [CrossRef]
Test (Times) | Young’s Modulus (MPa) |
---|---|
1 | 1123.36 |
2 | 1102.34 |
3 | 1202.31 |
4 | 1104.56 |
5 | 1187.38 |
6 | 1202.39 |
7 | 1178.15 |
Average | 1157.21 |
Test (Times) | Nanoindentation Elastic Modulus (MPa) | ||
---|---|---|---|
1 | 4.82 | ||
2 | 4.58 | ||
3 | 5.04 | ||
4 | 5.31 | ||
5 | 5.33 | ||
Average | 5.016 | ||
Temperature (°C) | Test (Times) | Nanoindentation elastic modulus (MPa) | |
Data | Average | ||
30 | 1 | 4.89 | 4.91 |
2 | 4.93 | ||
40 | 1 | 4.95 | 4.985 |
2 | 5.02 | ||
50 | 1 | 5.01 | 5.07 |
2 | 5.13 | ||
60 | 1 | 4.95 | 5.08 |
2 | 5.21 | ||
70 | 1 | 5.23 | 5.33 |
2 | 5.43 |
Model | Replication Forming Rate | Average (Replication Forming Rate) | ||||
---|---|---|---|---|---|---|
Test (Times) | ||||||
1 | 2 | 3 | 4 | 5 | ||
A | 96.8% | 95.3% | 96.2% | 94.7% | 95.3% | 95.66% |
B | 97.0% | 95.7% | 96.2% | 97.4% | 95.8% | 96.42% |
C | 98.5% | 99.3% | 99.1% | 99.5% | 99.3% | 99.14% |
Model | Replication Forming Rate | Average (Replication Forming Rate) | ||||
---|---|---|---|---|---|---|
Test (Times) | ||||||
1 | 2 | 3 | 4 | 5 | ||
A | 78.82% | 80.83% | 83.21% | 80.45% | 79.88% | 80.638% |
B | 83.73% | 85.75% | 87.44% | 83.53% | 85.35% | 85.56% |
C | 94.73% | 97.37% | 96.32% | 96.75% | 96.97% | 96.428% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Y.-J.; Tsai, M.-K.; Chen, J.-Z. Development and Research Application of Optical Waveguide Microstructure Component Manufacturing Process for Triangle Roller Imprinting. Processes 2023, 11, 2888. https://doi.org/10.3390/pr11102888
Weng Y-J, Tsai M-K, Chen J-Z. Development and Research Application of Optical Waveguide Microstructure Component Manufacturing Process for Triangle Roller Imprinting. Processes. 2023; 11(10):2888. https://doi.org/10.3390/pr11102888
Chicago/Turabian StyleWeng, Yung-Jin, Min-Ko Tsai, and Jian-Zhi Chen. 2023. "Development and Research Application of Optical Waveguide Microstructure Component Manufacturing Process for Triangle Roller Imprinting" Processes 11, no. 10: 2888. https://doi.org/10.3390/pr11102888
APA StyleWeng, Y.-J., Tsai, M.-K., & Chen, J.-Z. (2023). Development and Research Application of Optical Waveguide Microstructure Component Manufacturing Process for Triangle Roller Imprinting. Processes, 11(10), 2888. https://doi.org/10.3390/pr11102888