Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- British Petroleum. BP Statistical Review of World Energy Report; BP: London, UK, 2019. [Google Scholar]
- Sebestyén, V. Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renew. Sustain. Energy Rev. 2021, 151, 111626. [Google Scholar] [CrossRef]
- Abdelsalam, I.M.; Elshobary, M.; Eladawy, M.M.; Nagah, M. Utilization of multitasking non-edible plants for phytoremediation and bioenergy source-a review. Phyton (B Aires) 2019, 88, 69–90. [Google Scholar] [CrossRef]
- Abomohra, A.E.; Elshobary, M. Biodiesel, bioethanol, and biobutanol pro- duction from microalgae. In Microalgae Biotechnol dev Biofuel Wastewater Treat; Springer: Singapore, 2019; pp. 293–321. [Google Scholar] [CrossRef]
- Shahbaz, A.; Hussain, N.; Saleem, M.Z.; Saeed, M.U.; Bilal, M.; Iqbal, H.M. Nanoparticles as stimulants for efcient generation of biofuels and renewables. Fuel 2022, 319, 123724. [Google Scholar] [CrossRef]
- Phanduang, O.; Lunprom, S.; Salakkam, A.; Reungsang, A. Anaerobic solid-state fermentation of bio-hydrogen from microalgal Chlorella sp. biomass. Int. J. Hydrogen Energy 2017, 42, 9650–9659. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Elshobary, M.; Abdullah, E.; Abdel-Basset, R.; Metwally, M. Application of a novel biological-nanoparticle pretreatment to Oscillatoria acuminata biomass and coculture dark fermentation for improving hydrogen production. Microb. Cell Factories 2023, 22, 34. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, Y.; Liu, W.; Zhao, X.; Xu, J.; Yuan, Z. Research progress of hydrogen energy and metal hydrogen storage materials. Sustain. Energy Technol. Assess. 2023, 55, 102974. [Google Scholar] [CrossRef]
- Singh, V.; Das, D. Potential of hydrogen production from biomass. In Science and Engineering of Hydrogenbased Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–164. [Google Scholar] [CrossRef]
- Morales, T.C.; Oliva, V.R.; Velázquez, L.F. Hydrogen from Renewable Energy in Cuba. Energy Procedia 2014, 57, 867–876. [Google Scholar] [CrossRef]
- Lunprom, S.; Phanduang, O.; Salakkam, A.; Liao, Q.; Reungsang, A. A sequential process of anaerobic solid-state fermentation followed by dark fermentation for bio-hydrogen production from Chlorella sp. Int. J. Hydrogen Energy 2019, 44, 3306–3316. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, D.; Wang, C.; Fang, D.; Cao, L.; Gong, C. Genetic engineering for biohydrogen production from microalgae. iScience 2023, 26, 107255. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Shafiq, I.; Hussain, M.; Lam, S.S.; Rhee, G.H.; Park, Y.K. A review on integrated thermochemical hydrogen production from water. Int. J. Hydrogen Energy 2022, 47, 4346–4356. [Google Scholar] [CrossRef]
- Dou, B.; Zhang, H.; Song, Y.; Zhao, L.; Jiang, B.; He, M.; Ruan, C.; Chen, H.; Xu, Y. Hydrogen production from the thermochemical conversion of biomass: Issues and challenges. Sustain. Energy Fuels 2019, 3, 314–342. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Rangasamy, G. A Short Review on Current Status and Obstacles in the Sustainable Production of Biohydrogen from Microalgal Species. Mol. Biotechnol. 2023. Available online: https://link.springer.com/article/10.1007/s12033-023-00840-w (accessed on 10 October 2023). [CrossRef]
- Mahidhara, G.; Burrow, H.; Sasikala, C.; Ramana, C.V. Biological hydrogen production: Molecular and electrolytic perspectives. World J. Microbiol. Biotechnol. 2019, 35, 116–213. [Google Scholar] [CrossRef] [PubMed]
- O-Thong, S. Microbial population optimization for control and improvement of dark hydrogen fermentation. In Fermentation Processes; Jozala, A.F., Ed.; InTech: Rijeka, Croatia, 2017; pp. 119–144. [Google Scholar]
- Yang, G.; Wang, J. Changes in microbial community structure during dark fermentative hydrogen production. Int. J. Hydrogen Energy 2019, 44, 25542–25550. [Google Scholar] [CrossRef]
- Brar, K.K.; Cortez, A.A.; Pellegrini, V.O.; Amulya, K.; Polikarpov, I.; Magdouli, S.; Kumar, M.; Yang, Y.-H.; Bhatia, S.K.; Brar, S.K. An overview on progress, advances, and future outlook for biohydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 37264–37281. [Google Scholar] [CrossRef]
- Aziz, M.; Zaini, I.N. Zaini Production of hydrogen from algae: Integrated gasification and chemical looping. Energy Procedia 2017, 142, 210–215. [Google Scholar] [CrossRef]
- Yuan, S.; Lei, W.; Liu, Q.; Liu, R.; Liu, J.; Fu, J.; Han, Y. Distribution and environmental impact of microalgae production potential under the carbon-neutral target. Energy 2022, 263, 125584. [Google Scholar] [CrossRef]
- Sallam, E.R.; Khairy, H.M.; Elshobary, M.; Fetouh, H.A. Application of algae for hydrogen generation and utilization. In Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment; El-Sheekh, M.M., Abdullah, N., Ahmad, I., Eds.; IGI Global: Hershey, PA, USA, 2022; pp. 354–378. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Lu, C.; Wang, J.; Wang, K.; Guo, S.; Zhang, Q. Efects of enzymatic hydrolysis and alkalization pretreatment on biohydrogen production by chlorella photosynthesis. Bioresour. Technol. 2022, 349, 126859. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.K.; Roy, S.; Das, D. Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. Int. J. Hydrogen Energy 2014, 39, 7553–7560. [Google Scholar] [CrossRef]
- Nagarajan, D.; Dong, C.; Chen, C.; Lee, D.; Chang, J.-S. Biohydrogen production from microalgae—Major bottlenecks and future research perspectives. Biotechnol. J. 2020, 16, e2000124. [Google Scholar] [CrossRef]
- Sitthikitpanya, S.; Reungsang, A.; Prasertsan, P.; Khanal, S.K. Two-stage thermophilic bio-hydrogen and methane production from oil palm trunk hydrolysate using Thermoanaerobacterium thermosaccharolyticum KKU19. Int. J. Hydrogen Energy 2017, 42, 28222–28232. [Google Scholar] [CrossRef]
- Show, K.-Y.; Yan, Y.; Zong, C.; Guo, N.; Chang, J.-S.; Lee, D.-J. State of the Art and Challenges of Biohydrogen from Microalgae. Bioresour. Technol. 2019, 289, 121747. [Google Scholar] [CrossRef]
- Benemann, J.R. Hydrogen and methane production through microbial photosynthesis. In Living Systems as Energy Converters; Elsevier/North-Holland Biomedical Press: Amsterdam, The Netherlands, 1977; pp. 285–298. [Google Scholar] [CrossRef]
- Huesemann, M.H.; Benemann, J.R. Biofuels from Microalgae: Review of Products, Processes and Potential, with Special Focus on Dunaliella sp. In The Alga Dunaliella; CRC Press: London, UK, 2009; pp. 445–474. [Google Scholar]
- Benemann, J. Hydrogen biotechnology: Progress and prospects. Nat. Biotechnol. 1996, 14, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Benemann, J.R. Hydrogen production by microalgae. J. Appl. Phycol. 2000, 12, 291–300. [Google Scholar] [CrossRef]
- Nath, K.; Das, D. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 2004, 65, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Satheesh, S.; Pugazhendi, A.; Al-Mur, B.A.; Balasubramani, R. Biohydrogen production coupled with wastewater treatment using selected microalgae. Chemosphere 2023, 334, 138932. [Google Scholar] [CrossRef]
- Birg, A.; Ritz, N.; Barton, L.L.; Lin, H.C. Hydrogen Availability Is Dependent on the Actions of Both Hydrogen-Producing and Hydrogen-Consuming Microbes. Dig. Dis. Sci. 2022, 68, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Lin, H.C.; McSweeney, C.S.; Mackie, R.I.; Gaskins, H.R. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu. Rev. Food Sci. Technol. 2010, 1, 363–395. [Google Scholar] [CrossRef]
- Levitt, M.D. Volume and composition of human intestinal gas determined by means of an intestinal washout technic. N. Engl. J. Med. 1971, 284, 1394–1398. [Google Scholar] [CrossRef]
- Roy, A.; Gogoi, N.; Yasmin, F.; Farooq, M. The use of algae for environmental sustainability: Trends and future prospects. Environ. Sci. Pollut. Res. 2022, 29, 40373–40383. [Google Scholar] [CrossRef]
- Martínez, V.L.; Salierno, G.L.; García, R.E.; Lavorante, M.J.; Galvagno, M.A.; Cassanello, M.C. Biological Hydrogen Production by Dark Fermentation in a Stirred Tank Reactor and Its Correlation with the pH Time Evolution. Catalysts 2022, 12, 1366. [Google Scholar] [CrossRef]
- Ubando, A.T.; Chen, W.-H.; Hurt, D.A.; Conversion, A.; Rajendran, S.; Lin, S.-L. Biohydrogen in a circular bioeconomy: A critical review. Bioresour. Technol. 2022, 366, 128168. [Google Scholar] [CrossRef] [PubMed]
- Sillero, L.; Sganzerla, W.G.; Forster-Carneiro, T.; Solera, R.; Perez, M. A bibliometric analysis of the hydrogen production from dark fermentation. Int. J. Hydrogen Energy 2022, 47, 27397–27420. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, X.; Zhu, M.; Tan, W. Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15. Bioresour. Technol. 2013, 137, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S.; Rangasamy, G.; Rajendran, S. A critical review on Biohydrogen generation from biomass. Int. J. Hydrogen Energy 2022. Available online: https://www.sciencedirect.com/science/article/pii/S0360319922049321?via%3Dihub (accessed on 10 October 2023).
- Wang, J.; Yin, Y. Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb. Cell Factories 2018, 17, 22. [Google Scholar] [CrossRef]
- Karishma, S.; Saravanan, A.; Kumar, P.S.; Rangasamy, G. Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges. Bioresour. Technol. 2022, 366, 128187. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Devi, M.K.; Kumar, P.S.; Rangasamy, G.; Rajendran, S.; Xiao, L. A review on pretreatment methods, photobioreactor design and metabolic engineering approaches of algal biomass for enhanced biohydrogen production, International Journal of Hydrogen Energy. Int. J. Hydrogen Energy 2023, 48, 21110–21127. [Google Scholar] [CrossRef]
- Nguyen, T.-A.D.; Kim, K.-R.; Nguyen, M.-T.; Kim, M.S.; Kim, D.; Sim, S.J. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods. Int. J. Hydrogen Energy 2010, 35, 13035–13040. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, C.Y.; Cheng, C.L.; Lee, D.J.; Chang, J.S. Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int. J. Hydrogen Energy 2012, 37, 15458–15464. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Lin, R.; Lu, H.; Zhou, J.; Cen, K. Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour. Technol. 2013, 138, 204–213. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Ding, L.; Lin, R.; Huang, R.; Zhou, J.; Cen, K. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis. Bioresour. Technol. 2013, 146, 436–443. [Google Scholar] [CrossRef]
- Woon, J.M.; Khoo, K.S.; Akermi, M.; Alanazi, M.M.; Lim, J.W.; Chan, Y.J.; Goh, P.S.; Chidi, B.S.; Lam, M.K.; Zaini, J.; et al. Reviewing biohydrogen production from microalgal cells through fundamental mechanisms, enzymes and factors that engendering new challenges and prospects. Fuel 2023, 346, 128312. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Song, W.; Su, H.; Ding, L.; Lin, R.; Lu, H.; Liu, J.; Zhou, J.; Cen, K. Fermentative hydrogen production using algal biomass as feedstock. Renew. Sustain. Energy Rev. 2015, 51, 209–230. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Nikolskaya, A.B.; Lyagin, I.V.; Senko, O.V.; Makhlis, T.A.; Stepanov, N.A.; Maslova, O.V.; Mamedova, F.; Varfolomeev, S.D. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour. Technol. 2012, 114, 342–348. [Google Scholar] [CrossRef]
- Kumar, G.; Shobana, S.; Chen, W.-H.; Bach, Q.-V.; Kim, S.H.; Atabani, A.E.; Chang, J.-S. A review of thermochemical conversion of microalgal biomass for biofuels: Chemistry and processes. Green Chem. 2016, 19, 44–67. [Google Scholar] [CrossRef]
- Plankton Strain Chlorella Kessleri to Prevent “Bloom” of Blue-Green Algae in Ponds. Inventor: Bogdanov Nikolaj Ivanovich (RU), Proprietor: Obshshestvo s Ogranichennoj Otvetstvennostyu Nauchno-Proizvodstvennoe Obedinenie «Algobiotekhnologiya» (RU). Patent RU 2585523 C1, 31 March 2015.
- Politaeva, N.A.; Svyatskaya, Y.A.; Kuznetsova, T.A.; Olshanskaya, L.N.; Valiev, R.S. Cultivation and Use of Microalgae Chlorella and Higher Aquatic Plants Duckweed lemna; Monograph; Nauka: Saratov, Russia, 2017; p. 125. (In Russian) [Google Scholar]
- Zibarev, N.; Zhazhkov, V.; Andrianova, M.; Politaeva, N.; Chusov, A.; Maslikov, V. Integrated Use of Microalgae in Waste Water Purification and Processing of Food Industry Waste. Ecol. Ind. Russ. 2021, 25, 18–23. (In Russian) [Google Scholar] [CrossRef]
- Zibarev, N.V.; Politaeva, N.A.; Andrianova, M.Y. Use of Chlorella sorokiniana (Chlorellaceae, Chlorellales) Microalgae for Purification of Brewing-Industry Wastewaters. Biol. Bull. 2022, 49, 1776–1780. [Google Scholar] [CrossRef]
- Zibarev, N.V.; Zhazhkov, V.V.; Andrianova, M.Y.; Politaeva, N.A. Integrated use of microalgae in wastewater treatment and waste recycling food industry. Ecol. Ind. Russ. 2021, 25, 18–23. [Google Scholar]
- Politaeva, N.; Ilin, I.; Velmozhina, K.; Shinkevich, P. Carbon Dioxide Utilization Using Chlorella microalgae. Environments 2023, 10, 109. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, K.; Ghosh, S.; Das, D. Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass Bioenergy. 2014, 61, 157–166. [Google Scholar] [CrossRef]
- Kumar, K.; Roy, S.; Das, D. Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour. Technol. 2013, 145, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Mikheeva, E.R.; Katraeva, I.V.; Kovalev, A.A.; Kovalev, D.A.; Nozhevnikova, A.N.; Panchenko, V.; Fiore, U.; Litti, Y.V. The Start-Up of Continuous Biohydrogen Production from Cheese Whey: Comparison of Inoculum Pretreatment Methods and Reactors with Moving and Fixed Polyurethane Carriers. Appl. Sci. 2021, 11, 510. [Google Scholar] [CrossRef]
- Litti, Y.; Kovalev, D.; Kovalev, A.; Merkel, A.; Vishnyakova, A.; Russkova, Y.; Nozhevnikova, A. Auto-selection of microorganisms of sewage sludge used as an inoculum for fermentative hydrogen production from different substrates. Int. J. Hydrogen Energy 2021, 46, 29834–29845. [Google Scholar] [CrossRef]
- Trenkenshu, R.P. Simplest models of microalgae growth. 1. Batch culture. Ekol. Morya 2005, 67, 89–97. (In Russian) [Google Scholar]
- Kumar, A.; Jain, S.R.; Sharma, C.B.; Joshi, A.P.; Kalia, V.C. Increased H2 production by immobilized microorganisms. World J. Microbiol. Biotechnol. 1995, 11, 156–159. [Google Scholar] [CrossRef]
- Fedorov, A.; Tsygankov, A.; Rao, K.; Hall, D. Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnol. Lett. 1998, 20, 1007–1009. [Google Scholar] [CrossRef]
- Akano, T.; Miura, Y.; Fukatsu, K.; Miyasaka, H.; Ikuta, Y.; Matsumoto, H.; Hamasaki, A.; Shioji, N.; Mizoguchi, T.; Yagi, K.; et al. Hydrogen production by photosynthetic microorganisms. Appl. Biochem. Biotechnol. Part A Enzym. Eng. Biotechnol. 1996, 57–58, 677–688. [Google Scholar] [CrossRef]
- Lakatos, G.; Deák, Z.; Vass, I.; Rétfalvi, T.; Rozgonyi, S.; Rákhely, G.; Ördög, V.; Kondorosi, É.; Maróti, G. Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem. 2014, 16, 4716–4727. [Google Scholar] [CrossRef]
- Kargi, F.; Pamukoglu, M.Y. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. Int. J. Hydrogen Energy 2009, 34, 2940–2946. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J. Effects of Culture and Medium Conditions on Hydrogen Production from Starch Using Anaerobic Bacteria. J. Biosci. Bioeng. 2004, 98, 251–256. [Google Scholar] [CrossRef]
- Li, Z.; Cao, L.; Zhao, L.; Yu, L.; Chen, Y.; Yoon, K.-S.; Hu, Q.; Han, D. Identification and Biotechnical Potential of a Gcn5-Related N-Acetyltransferase Gene in Enhancing Microalgal Biomass and Starch Production. Front. Plant Sci. 2020, 11, 544827. [Google Scholar] [CrossRef]
- Bastos, R.G. Biofuels from microalgae: Bioethanol. In Energy from Microalgae; Springer: Berlin/Heidelberg, Germany, 2018; pp. 229–246. [Google Scholar] [CrossRef]
- Hupp, B.; Pap, B.; Farkas, A.; Maróti, G. Development of a Microalgae-Based Continuous Starch-to-Hydrogen Conversion Approach. Fermentation 2022, 8, 294. [Google Scholar] [CrossRef]
- Mahmoudabadi, Z.S.; Rashidi, A. Hydrogen Creation and Carbon Sequestration by Fracking Carbon Dioxide. In Sustainable Utilization of Carbon Dioxide: From Waste to Product; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Streb, A.; Mazzotti, M. Adsorption for efficient low carbon hydrogen production: Part 2—Cyclic experiments and model predictions. Adsorption 2021, 27, 559–575. [Google Scholar] [CrossRef]
- Fedorov, M.; Maslikov, V.; Korablev, V.; Politaeva, N.; Chusov, A.; Molodtsov, D. Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies 2022, 15, 8019. [Google Scholar] [CrossRef]
- Subani, S.; Kumar, D.V. Combustion and Vibration Investigations of a Reactor-Based Dual Fuel CI Engine that Burns Hydrogen and Diesel. In Conference of Innovative Product Design and Intelligent Manufacturing System; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Jaikumar, S.; Bhatti, S.K.; Srinivas, V. Experimental Explorations of Dual Fuel CI Engine Operating with Guizotia abyssinica Methyl Ester–Diesel Blend (B20) and Hydrogen at Different Compression Ratios. Arab. J. Sci. Eng. 2019, 44, 10195–10205. [Google Scholar] [CrossRef]
- Kong, M.; Feng, S.; Xia, Q.; Chen, C.; Pan, Z.; Gao, Z. Investigation of Mixing Behavior of Hydrogen Blended to Natural Gas in Gas Network. Sustainability 2021, 13, 4255. [Google Scholar] [CrossRef]
- Karim, G.A.; Wierzba, I.; Al-Alousi, Y. Methane-hydrogen mixtures as fuels. Int. J. Hydrogen Energy 1996, 21, 625–631. [Google Scholar] [CrossRef]
Name of the Component | Concentration, mg/L |
---|---|
Chemical Oxygen Demand | 5650 |
Total Nitrogen | 43.77 |
NH4−N | 20.85 |
NO2−N | 0.022 |
NO3−N | 1.6 |
Total Phosphor | 11.85 |
PO4−P | 25.86 |
SO4 | 207.2 |
Ca | 22.3 |
Bioreactor No. | Volume of Suspension, mL | HCl (2%) | 100 °C | Microwave Radiation | Additive (Potato Starch), g | Inoculum, mL |
---|---|---|---|---|---|---|
1, 2 | 300 | – | – | – | – | 30 |
3, 4 | 300 | + | + | – | – | 30 |
5, 6 | 300 | + | + | – | 30 | 30 |
7, 8 | 300 | + | + | + | – | 30 |
Bioreactor No. * | H2, mol.% | CO2, mol.% | O2, mol.% | N2, mol.% |
---|---|---|---|---|
1, 2 | 0.00494 ± 0.00002 | 2.170 | 5.817 | 91.027 |
3, 4 | 0.03323 ± 0.00002 | 7.513 | 0.842 | 86.881 |
5, 6 | 2.17912 ± 0.00002 | 23.763 | 0.049 | 70.505 |
7, 8 | 0.02383 ± 0.00002 | 5.388 | 0.988 | 85.053 |
Bioreactor No. | H2, mL/L of Microalgae Suspension |
---|---|
1, 2 | 0.03 |
3, 4 | 0.67 |
5, 6 | 44.24 |
7, 8 | 0.52 |
Component | Time, min | Area, mV·s | Height, mV | Concentration | Unit of Measure | Detector |
---|---|---|---|---|---|---|
H2 | 0.930 | 1491.181 | 453.904 | 2.179 | mol.% | 2 |
CO2 | 0.983 | 40,157.867 | 9011.215 | 23.763 | mol.% | 1 |
O2 | 1.559 | 3.872 | 0.814 | 0.048729 | mol.% | 2 |
N2 | 2.333 | 4541.205 | 492.372 | 70.505 | mol.% | 2 |
H2S | 0.000 | 0.000 | 0.000 | 0 | mol.% | 1 |
CH4 | 0.000 | 0.000 | 0.000 | 0 | mol.% | 2 |
COS | 0.000 | 0.000 | 0.000 | 0 | mol.% | 1 |
CO | 0.000 | 0.000 | 0.000 | 0 | mol.% | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velmozhina, K.; Shinkevich, P.; Zhazhkov, V.; Politaeva, N.; Korablev, V.; Vladimirov, I.; Morales, T.C. Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2. Processes 2023, 11, 2978. https://doi.org/10.3390/pr11102978
Velmozhina K, Shinkevich P, Zhazhkov V, Politaeva N, Korablev V, Vladimirov I, Morales TC. Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2. Processes. 2023; 11(10):2978. https://doi.org/10.3390/pr11102978
Chicago/Turabian StyleVelmozhina, Ksenia, Polina Shinkevich, Viacheslav Zhazhkov, Natalia Politaeva, Vadim Korablev, Iaroslav Vladimirov, and Tania Carbonell Morales. 2023. "Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2" Processes 11, no. 10: 2978. https://doi.org/10.3390/pr11102978
APA StyleVelmozhina, K., Shinkevich, P., Zhazhkov, V., Politaeva, N., Korablev, V., Vladimirov, I., & Morales, T. C. (2023). Production of Biohydrogen from Microalgae Biomass after Wastewater Treatment and Air Purification from CO2. Processes, 11(10), 2978. https://doi.org/10.3390/pr11102978