Reduction in the Number of Current Sensors of a Semi-Bridgeless PFC Rectifier Based on GaNFET Characteristics
Abstract
:1. Introduction
2. Operating Principle of the Semi-Bridgeless PFC Rectifier Using MOSFET Main Switches
- State 1: [t0 ≤ t ≤ t1]
- State 2: [t1 ≤ t ≤ t2]
- State 3: [t3 ≤ t ≤ t4]
- State 4: [t4 ≤ t ≤ t5]
3. Current Sensor Improvement Based on a GaNFET
3.1. Operational Characteristics of the GaNFET in the Third Quadrant
3.2. Current Flow with GaNFETs Used as Main Switches
4. Design Considerations
4.1. System Configuration Adopted
4.2. System Specifications Defined
4.3. Component Specifications Used
5. Experimental Results
5.1. Measured Steady-State Waveforms
5.2. Measured Dynamic Response Waveforms
5.3. Measured Data
5.4. Experimental Setup
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mansoor, A.; Grady, W.M.; Thallam, R.S.; Doyle, M.T.; Krein, S.D.; Samotyj, M.J. Effect of supply voltage harmonics on the input current of single-phase diode bridge rectifier loads. IEEE Trans. Power Deliv. 1995, 10, 1416–1422. [Google Scholar] [CrossRef]
- Sainz, L.; Pedra, J.; Mesas, J.J. Single-phase full-wave rectifier study with experimental measurements. Electr. Power Syst. Res. 2007, 77, 339–351. [Google Scholar] [CrossRef]
- Najafi, E.; Vahedi, A.; Mahanfar, A.; Yatim, A.H.M. A new controlling method based on peak current mode (PCM) for PFC. In Proceedings of the IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December 2008; pp. 1103–1107. [Google Scholar]
- IEC 61000-3-2; Harmonics Standards Overview. Schaffner EMC Inc.: Edison, NJ, USA, 2006.
- Bhattacharyya, S.; Cobben, J.F.G.; Kling, W.L. Harmonic current pollution in a low voltage network. In Proceedings of the IEEE PES General Meeting’10, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Meyer, J.; Blanco, A.-M.; Domagk, M.; Schegner, P. Assessment of prevailing harmonic current emission in public low-voltage networks. IEEE Trans. Power Deliv. 2017, 32, 962–970. [Google Scholar] [CrossRef]
- Azazi, H.Z.; El-Kholy, E.E.; Mahmoudi, S.A.; Shokalla, S.S. Review of passive and active circuits for power factor correction in single phase low power AC-DC converter. In Proceedings of the 14th International Middle-East Power Systems Conference-MEPCON (MEPCON’10), Giza Governorate, Egypt, 19–21 December 2010; pp. 217–224. [Google Scholar]
- Mitchell, D.M. AC-DC Converter Having an Improved Power Factor. U.S. Patent 4,412,277, 25 October 1983. [Google Scholar]
- Moriconi, U. A bridgeless PFC configuration based on L4981 PFC controller. In Application Note AN 1606; STMicroelectronics: Geneva, Switzerland, 1 November 2002. [Google Scholar]
- Etz, R.; Patarau, T.; Petreus, D. Comparison between digital average current mode control and digital one cycle control for a bridgeless PFC boost converter. In Proceedings of the 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME), Alba Iulia, Romania, 25–28 October 2012; IEEE SIITME’12. pp. 211–215. [Google Scholar]
- Smedley, K.M.; Cuk, S. One-cycle control of switching converters. IEEE Trans. Power Electron. 1995, 10, 625–633. [Google Scholar] [CrossRef]
- Wang, C.-M. A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses. IEEE Trans. Ind. Electron. 2005, 52, 427–435. [Google Scholar] [CrossRef]
- Lu, B.; Brown, R.; Soldano, M. Bridgeless PFC implementation using one cycle control technique. In Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 6–10 March 2005; IEEE APEC’05. pp. 812–817. [Google Scholar]
- Kong, P.; Wang, S.; Lee, F.C. Common mode EMI noise suppression in bridgeless boost PFC converter. In Proceedings of the APEC 07—Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007; IEEE APEC’07. pp. 929–935. [Google Scholar]
- Masumoto, K.; Shi, K.; Shoyama, M.; Tomioka, S. Comparative study on efficiency and switching noise of bridgeless PFC circuits. In Proceedings of the 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, Japan, 22–25 April 2013; IEEE PEDS’13. pp. 613–618. [Google Scholar]
- Huber, L.; Jang, Y.; Jovanovic, M.M. Performance evaluation of bridgeless PFC boost rectifiers. IEEE Trans. Power Electron. 2008, 23, 1381–1390. [Google Scholar] [CrossRef]
- Darly, S.S.; Ranjan, P.V.; Bindu, K.V.; Rabi, B.J. A novel dual boost rectifier for power factor improvement. In Proceedings of the 2011 1st International Conference on Electrical Energy Systems, Newport Beach, CA, USA, 3–5 January 2011; IEEE ICEES’11. pp. 122–127. [Google Scholar]
- Sudheer, L.; Kanimozhi, G.; Sreedevi, V.T. Integrator controlled semi-bridgelesss PFC boost converter. In Proceedings of the 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], Nagercoil, India, 19–20 March 2015; IEEE ICCPCT’15. pp. 1–6. [Google Scholar]
- Hussain, S.A.; Kanimozhi, G. Linear peak current mode control of semi bridgeless AC-DC converter. Indian J. Sci. Technol. 2016, 9, 1–6. [Google Scholar]
- Chen, S.-J.; Liang, T.-J.; Tseng, W.-J.; Liu, P.-Y. Design and implementation of a DSP controlled bridgeless power factor corrector. In Proceedings of the 2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 30 October–2 November 2018; IEEE ACEPT’18. pp. 1–7. [Google Scholar]
- Rajasekar, S.; Karthikeyan, V.; Kumaresan, N. Experimental validation of CCM and DCM operations of semi-bridgeless boost rectifier for power quality improvement in UPS system. In Proceedings of the 2018 20th National Power Systems Conference (NPSC), Tiruchirappalli, India, 14–16 December 2018; IEEE NPSC’18. pp. 1–6. [Google Scholar]
- Hawkins, N.A.; McIntyre, M.L.; Latham, J.A. Nonlinear control for power factor correction of a dual-boost bridgeless circuit. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; IEEE IECON’18. pp. 1368–1373. [Google Scholar]
- Perez, M.C.G.; Mahdavi, M.; Amyotte, M.; Glitz, E.S.; Ordonez, M. Power losses estimation on a semi-bridgeless PFC using response surface methodology. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; IEEE ECCE’18. pp. 2873–2878. [Google Scholar]
- Wang, Q.; Cai, F.; Miao, Z. A bridgeless dual boost PFC converter with power decoupling based on model predictive current control. In Proceedings of the 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG), Hubei, China, 6–9 September 2019; IEEE IGBSG’19. pp. 397–400. [Google Scholar]
- Jalan, S.K.; Gupta, N. Bridgeless boost rectifier as front end converter (FEC) in uninterruptible power supply (UPS) applications for improving power quality issues. In Proceedings of the 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai, India, 4–6 July 2019; IEEE ICESIP’19. pp. 1–6. [Google Scholar]
- Dacol, R.P.; Heerdt, J.A.; Waltrich, G. Non-isolated high current battery charger with PFC semi-bridgeless rectifier. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Confer-ence (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; IEEE COBEP/SPEC’19. pp. 1–6. [Google Scholar]
- Tseng, S.; Fan, J. Bridgeless boost converter with an interleaving manner for PFC applications. Electronics 2021, 10, 296. [Google Scholar] [CrossRef]
- Ortiz-Castrillon, J.R.; Mejia-Ruiz, G.E.; Munoz-Galeano, N.; Lopez Lezama, J.M.; Saldarriaga-Zuluaga, S.D. PFC single-phase AC/DC boost converters: Bridge semi-bridgeless and bridgeless topologies. Appl. Sci. 2021, 11, 7651. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jang, H.-S.; Kang, J.-I.; Han, S.-K. High efficiency common mode coupled inductor bridgeless power factor correction converter with improved conducted EMI noise. IEEE Access 2022, 10, 133126–133141. [Google Scholar] [CrossRef]
- Musavi, F.; Eberle, W.; Dunford, W.G. A phase-shifted gating technique with simplified current sensing for the semi-bridgeless AC-DC converter. IEEE Trans. Veh. Technol. 2013, 62, 1568–1576. [Google Scholar] [CrossRef]
- Sun, B. Does GaN have a body diode? Understanding the third quadrant operation of GaN. In Application Report SNOAA36; Texas Instruments: Dallas, TX, USA, 2019. [Google Scholar]
Parameter | Specification |
---|---|
Inductor Operation Mode | Continuous Conduction Mode (CCM) |
Control Strategy | Average Current-Mode Control |
Input Voltage (vin) | AC 90~264 V |
Output Voltage (Vo) | DC 400 V |
Rated Output Current (Io,rated) | 1.5 A |
Rated Output Power (Po,rated) | 600 W |
Switching Frequency (fs) | 65 kHz |
Rated Load Efficiency (η) | 95% |
Component | Specification | |
---|---|---|
GaNFETs | S1, S2 | NV6128 |
Diodes | D1, D2 | IDH10G65C6 |
Bridge Diodes | D3, D4 | LL25XB60 |
Inductors | L1, L2 | Inductance: 300 μH |
Output Capacitor | Co | 120 μF/450 V 3 |
AC Phase Detector | TEA2206 | |
Gate Drivers | UCC27424 | |
PFC Controller | TEA2017 |
Output Load (%) | PF | THD (%) | Pin (W) | Pout (W) | Eff. (%) |
---|---|---|---|---|---|
100 | 0.994 | 6.48 | 624.90 | 602.52 | 96.42 |
90 | 0.994 | 6.92 | 561.05 | 542.10 | 96.62 |
80 | 0.994 | 7.38 | 497.94 | 481.93 | 96.78 |
70 | 0.993 | 7.92 | 435.19 | 421.69 | 96.90 |
60 | 0.993 | 8.55 | 372.91 | 361.58 | 96.96 |
50 | 0.993 | 9.28 | 310.96 | 301.55 | 96.97 |
40 | 0.993 | 10.16 | 249.23 | 241.49 | 96.89 |
30 | 0.992 | 10.80 | 187.21 | 181.24 | 96.81 |
20 | 0.991 | 12.07 | 125.96 | 121.40 | 96.38 |
10 | 0.974 | 14.80 | 64.63 | 61.31 | 94.86 |
Output Load (%) | PF | THD (%) | Pin (W) | Pout (W) | Eff. (%) |
---|---|---|---|---|---|
100 | 0.996 | 6.51 | 612.30 | 602.82 | 98.45 |
90 | 0.996 | 6.77 | 550.99 | 542.45 | 98.45 |
80 | 0.995 | 7.03 | 489.89 | 482.21 | 98.43 |
70 | 0.993 | 7.36 | 428.99 | 422.13 | 98.40 |
60 | 0.991 | 7.67 | 368.00 | 361.88 | 98.34 |
50 | 0.986 | 8.28 | 307.24 | 301.78 | 98.22 |
40 | 0.977 | 8.86 | 246.49 | 241.70 | 98.06 |
30 | 0.957 | 9.95 | 185.72 | 181.57 | 97.76 |
20 | 0.905 | 10.84 | 125.00 | 121.40 | 97.12 |
10 | 0.720 | 10.99 | 64.30 | 61.30 | 95.34 |
Harmonic Order | IEC 61000-3-2 Class D Limit (A) | Harmonic Test Value (A) |
---|---|---|
3 | 2.3000 | 0.1390 |
5 | 1.1400 | 0.1400 |
7 | 0.7700 | 0.1599 |
9 | 0.4000 | 0.1475 |
11 | 0.3300 | 0.1308 |
13 | 0.2100 | 0.1025 |
15 | 0.1500 | 0.0695 |
17 | 0.1324 | 0.0330 |
19 | 0.1184 | 0.0034 |
21 | 0.1071 | 0.0238 |
23 | 0.0978 | 0.0392 |
25 | 0.0900 | 0.0410 |
27 | 0.0833 | 0.0376 |
29 | 0.0776 | 0.0228 |
31 | 0.0726 | 0.0090 |
33 | 0.0682 | 0.0099 |
35 | 0.0643 | 0.0219 |
37 | 0.0608 | 0.0282 |
39 | 0.0577 | 0.0289 |
Harmonic Order | IEC 61000-3-2 Class D Limit (A) | Harmonic Test Value (A) |
---|---|---|
3 | 2.3000 | 0.1085 |
5 | 1.1400 | 0.0919 |
7 | 0.7700 | 0.0717 |
9 | 0.4000 | 0.0504 |
11 | 0.3300 | 0.0362 |
13 | 0.2100 | 0.0290 |
15 | 0.1500 | 0.0294 |
17 | 0.1324 | 0.0122 |
19 | 0.1184 | 0.0037 |
21 | 0.1071 | 0.0053 |
23 | 0.0978 | 0.0089 |
25 | 0.0900 | 0.0083 |
27 | 0.0833 | 0.0073 |
29 | 0.0776 | 0.0056 |
31 | 0.0726 | 0.0011 |
33 | 0.0682 | 0.0061 |
35 | 0.0643 | 0.0030 |
37 | 0.0608 | 0.0077 |
39 | 0.0577 | 0.0074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.-B.; Hwu, K.-I. Reduction in the Number of Current Sensors of a Semi-Bridgeless PFC Rectifier Based on GaNFET Characteristics. Processes 2023, 11, 3259. https://doi.org/10.3390/pr11123259
Yu C-B, Hwu K-I. Reduction in the Number of Current Sensors of a Semi-Bridgeless PFC Rectifier Based on GaNFET Characteristics. Processes. 2023; 11(12):3259. https://doi.org/10.3390/pr11123259
Chicago/Turabian StyleYu, Chen-Bin, and Kuo-Ing Hwu. 2023. "Reduction in the Number of Current Sensors of a Semi-Bridgeless PFC Rectifier Based on GaNFET Characteristics" Processes 11, no. 12: 3259. https://doi.org/10.3390/pr11123259
APA StyleYu, C. -B., & Hwu, K. -I. (2023). Reduction in the Number of Current Sensors of a Semi-Bridgeless PFC Rectifier Based on GaNFET Characteristics. Processes, 11(12), 3259. https://doi.org/10.3390/pr11123259