Experimental Manufacturing of Ferromanganese Alloy from Man-Made Manganese-Containing Wastes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Arabi-Hashemi, A.; Leinenbach, C.; Shahverdi, M. Influence of thermal treatment conditions on recovery stress formation in an FeMnSi-SMA. Mater. Sci. Eng. A 2021, 802, 140694. [Google Scholar] [CrossRef]
- Ferretto, I.; Borzì, A.; Kim, D.; Della Ventura, N.M.; Hosseini, E.; Lee, W.J.; Leinenbach, C. Control of microstructure and shape memory properties of a Fe-Mn-Si-based shape memory alloy during laser powder bed fusion. Addit. Manuf. Lett. 2022, 3, 100091. [Google Scholar] [CrossRef]
- Saito, T.; Kapusta, C.; Takasaki, A. Synthesis and characterization of Fe–Mn–Si shape memory alloy by mechanical alloying and subsequent sintering. Mater. Sci. Eng. A 2014, 592, 88–94. [Google Scholar] [CrossRef]
- Silicomanganese from India, Kazakhstan, and Venezuela Investigation Nos. 731-TA-929-931 (Third Review) Publication 4881 April 2019. Available online: https://www.usitc.gov/publications/701_731/pub4881.pdf (accessed on 23 April 2019).
- Shekhar, S.; Sinha, S.; Mishra, D.; Agrawal, A.; Sahu, K.K. Extraction of manganese through baking-leaching technique from high iron containing manganese sludge. Mater. Today Proc. 2021, 46, 1499–1504. [Google Scholar] [CrossRef]
- Singh, V.; Biswas, A. Physicochemical processing of low-grade ferruginous manganese ores. Int. J. Miner. Process. 2017, 158, 35–44. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Lu, M.; Su, Z.; Li, G.; Jiang, T. Extraction and separation of manganese and iron from ferruginous manganese ores. A Rev. Miner. Eng. 2019, 131, 286–303. [Google Scholar] [CrossRef]
- Cheraghi, A.; Becke, H.; Eftekhari, H.; Yoozbashizadeh, H.; Safarian, J. Characterization and calcination behavior of a low-grade manganese ore. Mater. Today Commun. 2020, 25, 101382. [Google Scholar] [CrossRef]
- Nurjaman, F.; Amarela, S.; Noegroho, A.; Ferdian, D.; Suharno, B. Beneficiation of two different low-grade Indonesian manganese ores to improve the Mn/Fe ratio. AIP Conf. Proc. 2017, 1823, 020021. [Google Scholar] [CrossRef]
- Abdykirova, G.Z.; Tanekeeva, M.S.; Toylanbai, G.A.; Sydykov, A.E. Prospects for obtaining manganese concentrate from technogenic raw materials. Kompleks. Ispol’zovanie Miner. Syr’a = Complex Use Miner. Resour. 2016, 1, 3–8. Available online: https://kims-imio.kz/wp-content/uploads/2018/03/ilovepdf_com-3-8.pdf (accessed on 1 March 2018).
- Shevko, V.M.; Aitkulov, D.K.; Badikova, A.D.; Tuleyev, M.A. Ferroalloy production from ferrosilicon manganese dusts. Kompleks. Ispol’zovanie Miner. Syr’a = Complex Use Miner. Resour. 2021, 318, 43–50. [Google Scholar] [CrossRef]
- Yuan, S.; Zhou, W.; Han, Y.; Li, Y. An innovative technology for full component recovery of iron and manganese from low grade iron-bearing manganese ore. Powder Technol. 2020, 373, 73–81. [Google Scholar] [CrossRef]
- Singh, V.; Ghosh, T.K.; Ramamurthy, Y.; Tathavadkar, V. Beneficiation and agglomeration process to utilize low-grade ferruginous manganese ore fines. Int. J. Miner. Process. 2011, 99, 84–86. [Google Scholar] [CrossRef]
- Mehdilo, A.; Irannajad, M.; Hojjati-Rad, M.R. Characterization and beneficiation of iranian low-grade manganese ore. Physicochem. Probl. Miner. Process. 2013, 49, 725–741. [Google Scholar] [CrossRef]
- Elliott, R.; Barati, M. A review of the beneficiation of low-grade manganese ores by magnetic separation. Can. J. Metall. Mater. Sci. 2020, 59, 1–16. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Z.; Chu, M.; Wang, R.; Wang, Z.; Feng, C. Upgrading of low-grade manganese ore based on reduction roasting and magnetic separation technique. Sep. Sci. Technol. 2019, 54, 195–206. [Google Scholar] [CrossRef]
- Tangstad, M.; Leroy, D.; Ringdalen, E. Behavior of agglomerates in ferromanganese production. In Proceedings of the Ferromanganese—Pretreatment for Smelting. The Twelfth International Ferroalloys Congress “Sustainable Future”, Helsinki, Finland, 6–9 June 2010; pp. 457–465. Available online: https://www.pyrometallurgy.co.za/InfaconXII/457-Tangstad.pdf (accessed on 9 June 2010).
- Brynjulfsen, T.; Tangstad, M. Melting and reduction of manganese sinter and pellets. In Proceedings of the Manganese Alloys Production and Operation. The Thirteenth International Ferroalloys Congress “Efficient Technologies in Ferroalloy Industry”, Almaty, Kazakhstan, 9–13 June 2013; Available online: https://www.pyrometallurgy.co.za/InfaconXIII/0137-Brynjulfsen.pdf (accessed on 13 June 2013).
- Ultarakova, A.; Tastanov, Y.; Sadykov, N.; Tastanova, A.; Yerzhanova, Z. Physical and Chemical Studies of Smelting Products of Calcinated Composite Pellets Produced from Chromium Production Waste. J. Compos. Sci. 2023, 7, 386. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; You, Z.; Su, Z.; Luo, W.; Li, G. Consolidation Behavior of High-Fe Manganese Ore Sinters with Natural Basicity. Miner. Process. Extr. Metall. Review. Int. J. 2016, 37, 333–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Liu, B.; Huang, J.; Ye, J.; Li, Y. Physicochemical Aspects of Oxidative Consolidation Behavior of Manganese Ore Powders with Various Mn/Fe Mass Ratios for Pellet Preparation. Materials 2022, 15, 1722. [Google Scholar] [CrossRef] [PubMed]
- Zhunusov, A.K.; Tolymbekova, L.B. Metallurgical Processing of Manganese Ores from the Tur and Western Kamys Deposits. Pavlodar, Kazakhstan. 2016. Available online: https://www.twirpx.com/file/2566797/ (accessed on 1 July 2018).
- Zhunusov, A.; Tolymbekova, L.; Abdulabekov, Y.; Zholdubayeva, Z.; Bykov, P. Agglomeration of manganese ores and manganese containing wastes of Kazakhstan. Metalurgija 2021, 60, 101–103. Available online: https://hrcak.srce.hr/file/357485 (accessed on 4 November 2020).
- Tleuov, A.S.; Akhat, G.B.; Atyrkhanova, K.K. Study of physico-chemical regularities of agglomerations of manganese ores. Bull. Sci. South. Kazakhstan 2019, 5, 200–206. [Google Scholar]
- Faria, G.L.; Tenório, J.A.S.; Jannotti, N., Jr.; da Araújo, F.G.S. A geometallurgical comparison between lump ore and pellets of manganese ore. Int. J. Miner. Process. 2015, 137, 59–63. [Google Scholar] [CrossRef]
- Braga, R.S.; Takano, C.; Mourão, M.B. Prereduction of self-reducing pellets of manganese ore. Ironmak. Steelmak. Process. Prod. Appl. 2007, 34, 279–284. [Google Scholar] [CrossRef]
- Eghbali, R.; Hazaveh, P.K.; Rashchi, F.; Ataie, A. Recovery of manganese from a low-grade waste and valorization via the synthesis of a nanostructured magnetic manganese ferrite. Mater. Sci. Eng. B 2021, 269, 115177. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, B.; Zhang, Y.; Han, G.; Huang, J.; Ye, J.; Li, Y. New perspective on the interface reaction and morphology evolution in the reduction of manganese silicate for silicomanganese alloy production. Appl. Surf. Sci. 2021, 539, 148210. [Google Scholar] [CrossRef]
- Available online: https://www.giessereilexikon.com/en/foundry-lexicon/Encyclopedia/show/ferro-alloy-4358/?cHash=8ba6b6eedb595976aaa2729b0b02ea8f (accessed on 11 October 2023).
- Available online: https://www.cn-stainlesssteel.cn/products_detail/c-_detailId%3D976899326129209344.html (accessed on 11 October 2023).
Pattern # | Compound Name | Formula | S-Q, % |
---|---|---|---|
PDF 01-085-0865 | Quartz | SiO2 | 69.4 |
PDF 00-029-0713 | Goethite | Fe+3O(OH) | 7.0 |
PDF 00-039-0264 | Barium Manganese Silicate | Ba2MnSi2O7 | 6.7 |
PDF 01-075-6047 | Magnesium Silicate | Mg(SiO3) | 4.2 |
PDF 00-052-1344 | Calcium Aluminum Silicate | Ca0.880.12Al1.77Si2.23O8 | 3.7 |
PDF 00-045-1489 | Calcium Aluminum Silicate Hydrate | Ca8Al16Si24O80·16H2O | 3.6 |
PDF 01-074-3123 | Bigcreekite | Ba(Si2O5)(H2O)4 | 3.2 |
PDF 01-071-2108 | Srebrodolskite | Ca2Fe2O5 | 2.2 |
Charge Components | Quantity, kg |
---|---|
Manganese concentrate | 8.0 |
Diatomite | 1.0 |
Lime | 0.5 |
Special coke | 0.5 |
Material | Oxides Content, wt.% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mn | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | C | Other | Loss of Ignition | |
Ore fines (sludge) | 15.93 | 28.08 | 3.61 | 6.88 | 9.6 | 1.53 | 0.66 | 0.53 | - | 18.20 | 6.91 |
Fine-grained manganese concentrate | 35.2 | 10.31 | 1.83 | 9.57 | 6.85 | 1.31 | 0.17 | 0.09 | - | 15.38 | 3.94 |
Diatomite | - | 71.24 | 8.06 | 10.21 | 4.95 | 3.42 | - | - | - | 2.12 | - |
Lime | - | 0.23 | 0.05 | 0.09 | 76.32 | 1.80 | - | - | - | 0.54 | 20.97 |
Coke | - | - | - | - | - | - | 89.3 | 10.7 |
Class of Size, mm | Yield, % | Element Content, % | Distribution of Elements, % | ||
---|---|---|---|---|---|
Mn | Fe | Mn | Fe | ||
- 2.5 + 1.25 | 44.39 | 16.36 | 6.40 | 48.27 | 47.1 |
- 1.25 + 0.071 | 47.62 | 15.03 | 5.81 | 47.56 | 45.77 |
- 0.071 + 0 | 8.01 | 7.82 | 5.37 | 4.16 | 7.13 |
Total | 100.0 | 15.04 | 6.03 | 100.0 | 100.0 |
Product | Yield, % | Content,% | Recovery, % | ||
---|---|---|---|---|---|
Mn | Fe | Mn | Fe | ||
Fine-grained manganese concentrate—2.5 + 0 mm | 27.6 | 35.2 | 6.7 | 60.96 | 38.39 |
Concentration tailings | 72.4 | 8.6 | 4.1 | 39.04 | 61.61 |
Total | 100.0 | 15.9 | 4.8 | 100.0 | 100.0 |
Material Composition of the Charge | Fractional Composition of the Charge | Properties of Pellets | ||
---|---|---|---|---|
Porosityfound, % | Apparent Density, g/cm2 | Compressive Strength kg/Pellet | ||
Mn concentrate—85, diatomite—10, CaO—5 wt.% | No. 1 | 30.2 | 1.87 | 24.6 |
Mn concentrate—80, diatomite—10, CaO—5, coke—5 wt.% | 37.5 | 1.39 | 22.1 | |
Mn concentrate—85, diatomite—10, CaO—5 wt.% | No. 2 | 27.3 | 1.91 | 35.3 |
Mn concentrate—80, diatomite—10, CaO—5, coke—5 wt.% | 34.5 | 1.45 | 33.7 |
Material | Oxides Content, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mntotal | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | Other | Loss of Ignition | |
Pellets | 31.98 | 19.10 | 5.43 | 17.11 | 11.37 | 1.39 | 0.18 | 0.34 | 3.83 | - |
Lime | - | 0.23 | 0.05 | 0.09 | 76.32 | 1.80 | 0.54 | 20.97 | ||
MgO | - | - | - | - | - | 98.0 | - | - | 2.0 | - |
Quartz | - | 98.61 | 0.50 | 0.26 | 0.12 | 0.21 | - | - | - | 0.30 |
Coke ash | - | 51.40 | 27.90 | 10.04 | 4.00 | 2.50 | - | - | 4.16 | - |
Indicators | Values of Indicators | DIN 17 564, FeMn70Si (Germany) | FeMn60Si 14 (China) |
---|---|---|---|
1. Material consumption, g: | |||
Manganese pellets | 200 | ||
Coke | 51.42 | ||
Quartz | 31.48 | ||
2. Alloy obtained, g | 94.78 | ||
3. Average chemical composition of the alloy, % | |||
Mn | 63.76 | 65.0–75.0 | 60.0–70.0 |
Si | 17.21 | 15.0–25.0 | 14.0–17.0 |
Fe | 16.38 | ||
C | 1.51 | 0.5–2.0 | ≤2.5 |
P | 0.34 | ≤0.20 | ≤0.30 |
S | 0.02 | ≤0.04 | |
4. Slag received, g | 77.28 | ||
5. Average chemical composition of slag, % | |||
MnO | 12.53 | ||
FeO | 0.54 | ||
SiO2 | 45.58 | ||
MgO | 9.71 | ||
Al2O3 | 13.93 | ||
CaO | 17.52 | ||
6. Base strength (CaO + MgO)/(SiO2) | 0.6 | ||
7. Slag ratio | 0.8 | ||
8. Average manganese extraction, % | 73 |
Pattern # | Compound Name | Formula | S-Q, % |
---|---|---|---|
PDF 01-086-1607 | Dalnegorskite | Ca0.81Mn0.19SiO3 | 42.6 |
PDF 01-077-7954 | Iron Manganese Silicon | FeMn5Si3 | 26.5 |
PDF 01-077-5198 | Diopside | (Ca0.87Fe0.13)Mg0.79Fe0.007(Si2O6) | 21.1 |
PDF 01-080-4478 | Aluminum Manganese | Mn3Al | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tastanova, A.; Temirova, S.; Sukurov, B.; Biryukova, A.; Abdykirova, G. Experimental Manufacturing of Ferromanganese Alloy from Man-Made Manganese-Containing Wastes. Processes 2023, 11, 3328. https://doi.org/10.3390/pr11123328
Tastanova A, Temirova S, Sukurov B, Biryukova A, Abdykirova G. Experimental Manufacturing of Ferromanganese Alloy from Man-Made Manganese-Containing Wastes. Processes. 2023; 11(12):3328. https://doi.org/10.3390/pr11123328
Chicago/Turabian StyleTastanova, Aisha, Saniya Temirova, Bulat Sukurov, Alla Biryukova, and Gulnar Abdykirova. 2023. "Experimental Manufacturing of Ferromanganese Alloy from Man-Made Manganese-Containing Wastes" Processes 11, no. 12: 3328. https://doi.org/10.3390/pr11123328
APA StyleTastanova, A., Temirova, S., Sukurov, B., Biryukova, A., & Abdykirova, G. (2023). Experimental Manufacturing of Ferromanganese Alloy from Man-Made Manganese-Containing Wastes. Processes, 11(12), 3328. https://doi.org/10.3390/pr11123328